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Intrauterine Growth Restriction (IUGR) affects 8% of newborns and increases morbidity
and mortality for the offspring even during later stages of life. Single omics studies have
evidenced epigenetic, genetic, and metabolic alterations in IUGR, but pathogenic
mechanisms as a whole are not being fully understood. An in-depth strategy combining
methylomics and transcriptomics analyses was performed on 36 placenta samples in a
case-control study. Data-mining algorithms were used to combine the analysis of more
than 1,200 genes found to be significantly expressed and/or methylated. We used an
automated text-mining approach, using the bulk textual gene annotations of the
discriminant genes. Machine learning models were then used to explore the phenotypic
subgroups (premature birth, birth weight, and head circumference) associated with IUGR.
Gene annotation clustering highlighted the alteration of cell signaling and proliferation,
cytoskeleton and cellular structures, oxidative stress, protein turnover, muscle
development, energy, and lipid metabolism with insulin resistance. Machine learning
models showed a high capacity for predicting the sub-phenotypes associated with IUGR,
allowing a better description of the IUGR pathophysiology as well as key genes involved.

Keywords: data mining, methylomics, intrauterine growth restriction, multi-omics, text-mining, transcriptomics
Abbreviations: IUGR, intrauterine growth restriction; PE, pre-eclampsia; Se, sensitivity; Sp, specificity; tf, term frequency; idf,
inverse document frequency; SVM, support vector machine; RMSE, root-mean-square deviation; C-section, caesarean section.
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INTRODUCTION

Intrauterine growth restriction (IUGR) is a frequent
complication of pregnancy with a prevalence in up to 5% to
10% in the general population (Zhang et al., 2015). It is defined as
a restriction of fetal growth during pregnancy, “a fetus that
doesn’t reach its growth potential” (Vayssière et al., 2015). It
can lead to a birth weight and/or length below the tenth
percentile for a given gestational age in newborns, thus
considered as “Small for Gestational Age” (Vayssière et al.,
2015). IUGR represents a major public health problem, being
one of the main causes of premature birth, perinatal mortality,
and neurological and respiratory morbidities (Flamant and
Gascoin, 2013). It is also suspected to be a determining factor
in the development of cardiovascular diseases, obesity, and type 2
diabetes in adulthood (Gascoin and Flamant, 2013).

Fetal growth is a complex process that involves fetal genetics,
nutrient and oxygen availability, and maternal nutrition, as well
as growth factors and hormones from maternal, fetal, and
placental origin (Murki, 2014). Fetal growth is inseparable
from placental growth and requires a continuous supply of
nutrients that is adapted to each period of pregnancy (Sharma
et al., 2016).

IUGR remains a complex problem for the clinician. Placental
dysfunction and vascular underperfusion are involved in the
largest proportion of cases (Kaplan, 2007; Malhotra et al., 2019).
It results from utero-placental insufficiency due to abnormal
uterine artery remodeling in the first trimester of pregnancy and
may or may not be associated with pre-eclampsia (PE). However,
while many risk factors have been identified, placental
insufficiency is still unexplained in up to 60% of cases
(Malhotra et al., 2019).

Epigenetics (Xiao et al., 2016) and gene expression (Buffat
et al., 2007; Madeleneau et al., 2015) reprogramming play
a central role in IUGR. However, the pathophysiological
connections between these two fields of high-throughput
analyses have only recently begun to be studied (Ding and Cui,
2017). Although many tools have been developed to analyze and
integrate multi-omics data, this task remains a challenge in
medicine (Gomez-Cabrero et al., 2014). Many features
originating from the variance between samples and the
complexity of the statistical data processing require developing
data-driven approaches rather than classical hypothesis-driven
approaches (van Helden, 2013). The exploration of
pathophysiological conditions with such data-driven
approaches must integrate many processes from clinical and
biological data collection, through complex data normalization
and mathematical and bioinformatics modeling, to the final
interpretation and data visualization.

When dealing with a short list of genes, the exploration of
their roles and underlying patterns is usually carried out through
“manual” interpretation, using both annotations and personal
knowledge. This “manual” interpretation may be used to
categorize the genes, or to seek patterns in roles, functions, or
localizations, underpinning the pathology or context studied.
When dealing with thousands of significant gene features (e.g.
Frontiers in Genetics | www.frontiersin.org 2
expression levels or methylation levels), the interpretation
becomes humanly untenable, due to time and memory limits.
Rather than limiting our literature review to a small subset of the
most significantly altered genes, we used text-mining algorithms
to perform an unsupervised analysis of those genes. Those
algorithms have already been used to categorize and
summarize text corpora based on similarities in their content
(Aggarwal and Zhai, 2012).

With the aim of having an extended vision of the
pathophysiological processes at the origin of IUGR, while
identifying the most predominant deregulated pathways that
may be targeted for therapeutic purposes, we used machine-
learning models to explore the relationship between placental
transcriptomics and methylomics variations and IUGR. The
highly predictive models obtained from IUGR and its sub-
phenotypes were then used to highlight the genes with a high
correlation with IUGR clinical severity, and thus with a high
therapeutic potential.
MATERIAL AND METHODS

The global workflow is summarized in Figure 1.

Patients
All placentas were collected from Angers University Hospital.
This study was approved by the Ethics Committee of Angers.
All patients gave their informed consent for the use of their
placenta. Clinical data related to the mother and the fetus, as
well as neonatal data, were collected from the patients’
obstetric files. The cohort was registered at the French CNIL
(Commission Nationale de l’Informatique et des Libertés no.
pWP03752UL, ethics committee for the collection of clinical
data from patient records). The study was validated by the
French CPP (Comité de Protection des Personnes) and
registered to the French Ministry of Research under number
DC-2011-1467. The study was conducted in accordance with
the declaration of Helsinki.

Placentas were obtained from caesarean sections before onset of
labor or from vaginal delivery. For the analysis, patients were
classified into two groups: IUGR and control group. The IUGR
group was defined by a reduction of fetal growth during gestation,
with anotchobservedbyEcho-Doppler inat least oneuterine artery
and with Doppler abnormalities on umbilical Doppler and/or
cerebral Doppler and/or ductus venosus, and with a birth weight
below the tenth percentile according to Audipog growth curves
(American College of Obstetricians and Gynecologists, 2013) and
confirmedby the anatomopathological analysis of theplacenta after
birth. The control group was defined by women with normal
pregnancy and who underwent a planned caesarean section. All
obstetrical and neonatal data were collected prospectively from
medical records.

Placental Samples
To avoid degradation, only placental tissues dissected within a
time frame of 30 min after delivery were included. After removal
January 2020 | Volume 10 | Article 1292
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of the maternal decidua and amniotic membrane, sections of
1 cm3 of placental villi were dissected from four different
cotyledons between the basal and chorionic plates, as
previously described (Gascoin-Lachambre et al., 2010). After
vigorous washing with PBS to remove maternal blood, tissues
were immediately frozen in liquid nitrogen, before storage at
−80 °C, to further extract DNA and RNA. Placentas were then
sent for anatomopathological analysis or stored at the biological
core facility at Angers University Hospital.

DNA Preparation and Microarray
Hybridization
Genomic DNA extraction was performed manually using a
QIAamp DNA mini QIAcube Kit (Qiagen, Venlo, Netherlands),
according to the manufacturer’s protocol.

DNA was treated with bisulfite using an EZ-96 DNA
Methylation Kit on a Zymo Spin I-96 column (Zymo Research,
Irvine, CA, U.S.A.). Bisulfite-converted DNA was amplified,
fragmented, and hybridized to Illumina Human Methylation
450k microarrays using an Illumina Hybridization Oven
(Illumina, San Diego, CA, U.S.A.), according to the
Frontiers in Genetics | www.frontiersin.org 3
manufacturer’s protocol. Slides were analyzed by an Illumina I-
Scan (Illumina, San Diego, CA, U.S.A.).

Raw iDAT files were directly imported in R software (R
Development Core Team, 2008) and processed using the R
minfi package (Aryee et al., 2014). Raw data were normalized
using functional normalization (Fortin et al., 2014) before
constructing the beta matrix for all 36 samples and 485,512
CpG sites (methylomics dataset).

RNA Preparation and Microarray
Hybridization
Total RNA was extracted after lysing samples with TRIzol
reagent (Life Technologies, Carlsbad, CA, U.S.A.), using the
RNeasy Micro kit (Qiagen, Venlo, Netherlands), according to
the manufacturer’s recommendations. Biotinylated, amplified
cRNA was generated using the Illumina Total Prep RNA
Amplification kit (Ambion, Life Technologies, Carlsbad, CA,
U.S.A.), according to the manufacturer’s recommendations.
cRNA was hybridized on Illumina HumanHT-12 v4
Expression BeadChips, stained, and detected with the iScan
system, according to the manufacturer’s protocol (Illumina,
FIGURE 1 | Global workflow of the analysis. Placentas methylome and transcriptome were analyzed (A). Significant genes were clustered and described using text
annotations (B). Quantitative data were used to predict phenotypic data, and the importance of each gene in phenotype prediction was visualized using networks (C).
January 2020 | Volume 10 | Article 1292
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San Diego, CA, U.S.A.). A total of 47,323 marker probes were
assessed, of which: 47,231 elements with sequences, with 46,841
with at least one genome alignment, including 34,627 elements
mapped to at least one among 22,283 unique genes.
GenomeStudio 2011 (version 1) and its Expression Analysis
Module (version 1.9.0) were used for signal extraction and
quantile normalization (Illumina, San Diego, CA, U.S.A.).

Normalized data for all 47,323 marker probes and 36 samples
were imported into R software (R Development Core Team, 2008)
and processed as described below (transcriptomics dataset).

Omics Data Integration
Each omics dataset was processed independently. Levene’s tests
were used to assess the comparability of variances between
control and IUGR groups. Significant features were determined
using Student’s t-tests. Alpha thresholds for p-value significance
were set to a = 0.05. For Student’s t-tests, p-values were adjusted
into q-values using the Benjamini-Hochberg method in order to

control the false discovery rate. The IUGR
control fold-change was

computed for all significant features. Only features with Levene’s
test p-value ≥ 0.05 and Benjamini-Hochberg adjusted Student’s
t-test q-value < 0.05 were considered significant.

Gene Annotation and Text-Mining
All genes showing a significant alteration in methylation or
expression were annotated using abstracts available on
PubMed, by automatic retrieval. Genes without available
annotations were discarded. Abstracts were pre-processed by
removing punctuation, short words (words of three characters or
fewer) and stop words (i.e. common language non-specific
words), and stemming (Willett, 2006). They were then
analyzed by taking into account, in the same analytical process,
unigrams, bigrams, and trigrams, commonly denoted as terms. A
normalized term-frequency inverse-document-frequency (tf-idf)
matrix (Aggarwal and Zhai, 2012) was then computed based on
the frequency and specificity of each term in each gene summary,
using the formula:

Mi,j = tfi � idfi

With the inverse document frequency idfi for the term i:

idfi = log2
jDj

j df jti ∈ djgj
� �

whereMi,j is the value in the matrix for the term i and gene j,tfi is
the number of occurrences of the term i in the gene j summary
divided by the total number of terms in the summary, |D| is the
number of genes and |{d|ti ∈ d|}| is the number of gene
summaries where the term i appears.

Due to the large dimension of the initial tf-idf matrix, a Latent
Semantic Analysis (LSA) (Evangelopoulos, 2013) was performed
in order to reduce its dimension and render further analyses
possible. K-means was then used to perform clustering based on
gene annotations similarity. Clusters were then summarized by
terms closest to the cluster centers.
Frontiers in Genetics | www.frontiersin.org 4
Phenotype Prediction and Network
Visualization
Support vector machines (SVM) are state-of-the-art machine-
learning models that have already been successfully applied to
several omics studies (Ben-Hur et al., 2008). They can
successfully highlight non-linear correlations between genes
and phenotypic traits, in order to highlight genes based on
their links with several phenotypic traits (Altmann et al.,
2010). Furthermore, SVM models are particularly suitable for
high-dimensionality datasets, such as results of high-throughput
analyses (Vanitha et al., 2015).

SVM models were trained using grid search cross-validation
to predict four phenotypic traits as a function of omics data:
control/IUGR group, premature birth (see below), birth weight,
and head circumference at birth. These four phenotypic traits
were chosen because of their known relevance in the IUGR
pathophysiology. Term birth is defined by the International
Classification of Diseases as between 37 (included) and 42
(excluded) weeks (Quinn et al., 2016), otherwise 39.43 ± 2.43
weeks. To simplify, pregnancy term was expressed as a variable
named premature birth, computed with the formula:

Premature birth = 39 − Gestational Age

Since gestational age and the newly-created variable,
premature birth, are linearly correlated, this simplifies yet does
not alter the interpretation of the results of the model’s
predictions. Values >2 therefore indicate pre-term newborns,
while values ≤-3 indicate post-term newborns.

Both head circumference at birth and birth weight were
expressed as Z-scores according to the gestational age and
gender, based on Olsen growth curves (Olsen et al., 2010), to
standardize values between infants born at different terms. Case-
control classification is important to verify the integrity of the
dimension-reduced dataset. Birth weight is a criterion of severity
of the IUGR. Head circumference at birth is a criterion of high
severity, due to the brain sparing effect (Cohen et al., 2015).
Premature birth is indirectly linked to severity of these. Indeed,
in most cases during IUGR pregnancies, a delivery is induced or
carried out via caesarean section, to prevent either maternal or
fetal damage. Exploring factors correlated with the premature
birth may therefore allow exploring severity symptoms not
directly and only linked to IUGR.

The dimensionality of the omics dataset had to be reduced
before training the SVM, to reduce noise and achieve better
model predictions (Keogh and Mueen, 2010). For this reason,
only features with a significant difference between IUGR and
control groups were used to train SVM models (q < 0.05, after
Benjamini-Hochberg adjustment). Several methods may be used
to reduce the dimensionality of a dataset (Guyon and Elisseeff,
2003). Features selection was preferred compared to other
methods like Principal Components Analysis as it allows the
use of the initial variables instead of computing new, abstract
dimensions, making the final interpretation easier. Student’s t-
tests have already been evidenced as an effective method for
features selection (Haury et al., 2011). By using Student’s t-tests
as the features selection method, this step could be applied
January 2020 | Volume 10 | Article 1292
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seamlessly to our omics analyses results, without modifying or
altering the results.

The dataset was randomly partitioned into training and test
sets, with a ratio of two-thirds/one-third, using stratified
sampling in order to respect the original case

control ratio. Due to

the low number of samples and the imbalance between IUGR
and control samples, Synthetic Minority Over-sampling
Technique (SMOTE) was used in order to synthetically
increase the training set size (Chawla et al., 2002). Test sets
were not modified to ensure unbiased results when measuring
models’ performances. Hyperparameters were fine-tuned with
grid search cross-validation. Model results were assessed using
accuracy for classification, and Pearson’s correlation factor
for regression.

The variable importance for predicting each phenotypic trait
was computed for each feature by Permutation Importance
(Breiman, 2001). These results were used to carry out a
network visualization to assess the importance of each feature
in the prediction of each phenotypic trait.

Computational Tools
R software (version 3.4.1) and Python (version 3.6) were used to
carry out all data processing and analysis, as well as to output all
plots (van Rossum, 1995; R Development Core Team, 2008).
Heat maps were created using the gplots package (Warnes et al.,
2016). Gene functional annotation analysis was performed for
both gene expression and gene methylation using the DAVID 6.8
online tool (Huang et al., 2009a, 2009b). Genes were annotated
with abstracts available from PubMed (10/10/2019) using
easyPubMed (Fantini, 2019). Text-mining and SVM
Frontiers in Genetics | www.frontiersin.org 5
computing were processed using the python scikit-learn library
(Pedregosa et al., 2011). Word clouds were created using the
wordcloud R software package (Fellows, 2014). Hierarchical
clustering was performed using the R software base package.
Networks were constructed using Cytoscape (Shannon et al.,
2003). The GIMP software was used to refine figures.
RESULTS

Cohort
Patient cohort is described in Table 1. It should be noted that
while the control group is smaller, controls are much more
homogeneous concerning clinically relevant phenotypic traits
discussed below. F-tests show a significantly lower variance in
this control group for gestational age at birth (in grams) (p =
4.48E-5), head circumference at birth (in centimeters) (p =
1.08E-3), and APGAR at 5 min (p = 3.48E-5).

Univariate Analyses
A total of 1651 features (1,072 DNA methylation sites, 579
transcripts) showed significantly different values between
IUGR and control groups (q < 0.05). The full list of significant
features is available in Supplementary Table 1.

Since a significant difference in mean gestational age had
been observed between IUGR and control groups, univariate
analyses were re-run after excluding IUGR samples with a
gestational age lower than 37 weeks. Kendall correlation tests
were then performed to compare Student’s t-tests results
obtained for the whole cohort and for the high gestational age
TABLE 1 | Description of the patient cohort. p-values were computed using Wilcoxon tests (quantitative values) or Fisher tests (percentages).

Control group (n = 8) IUGR group (n = 28) p

Maternal data Age (years) 35.4 ± 3.9 8 29.1 ± 5.9 28 0.006
BMI before pregnancy (kg/m2) 23.7 ± 7.0 8 25.1 ± 7.9 28 N.S.
Tobacco consumption Before pregnancy 0 (0.0%) 8 2 (7.1%) 28 N.S.

During pregnancy 0 (0.0%) 8 9 (32.1%) 28 N.S.
Ethnic group European 7 (87.5%) 8 26 (92.9%) 28 N.S.

North African 1 (12.5%) 8 2 (7.1%) 28 N.S.
Obstetric data Gestity 4.0 ± 2.1 8 2.5 ± 1.9 28 0.03

Parity 2.6 ± 1.3 8 1.4 ± 0.9 28 0.005
Weight gain (kg) 10.5 ± 10.5 8 9.1 ± 6.4 24 N.S.
Type of delivery Vaginal delivery 0 (0%) 8 5 (17.9%) 28 N.S.

C-section 8 (100%) 8 23 (82.1%) 28 N.S.
Pathology IUGR 0 (0%) 8 16 (57.1%) 28 N/A

IUGR + PE 0 (0%) 8 12 (42.9%) 28 N/A
Newborn data Gestational age (week) 38.7 ± 0.7 8 34.0 ± 3.9 28 <0.001

Gender Boy 4 (50.0%) 8 9 (32.1%) 28 N.S.
Girl 4 (50.0%) 8 19 (67.9%) 28 N.S.

Birth weight (Z-score) −0.07 ± 0.89 8 −2.02 ± 0.75 28 <0.001
(g) 3346 ± 444 8 1,524 ± 664 28 <0.001

Birth size (Z-score) −0.47 ± 0.74 7 −1.90 ± 0.80 26 <0.001
Birth size (cm) 49.2 ± 1.8 7 39.2 ± 5.2 26 <0.001
Head circumference at birth (Z-score) 0.22 ± 0.49 7 −1.30 ± 0.86 27 <0.001
Head circumference at birth (cm) 34.6 ± 0.9 7 29.0 ± 3.4 27 <0.001
APGAR at 5 min 9.88 ± 0.35 8 9.11 ± 2.08 28 N.S.
Resuscitation at birth 0 (0%) 8 12 (42.9%) 28 0.03
NICU 0 (0%) 8 18 (64.3%) 28 0.003
January 2020 | Volume 10 | Artic
BMI, body mass index; PE, pre-eclampsia; NICU, neonatal intensive care unit; N.S., non-significant versus a = 0.05; N/A, not applicable.
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restricted subset. Gene expression and gene methylation features
were significantly correlated (p < 0.001, t = 0.45; p < 0.001,
t = 0.40, respectively).

Heat maps picturing all genes with significant expression
(Figure 2) or methylation (Figure 2) alteration showed a global
hypomethylation, as opposed to a balanced ratio between the
number of overexpressed and underexpressed transcripts. While
hierarchical clustering distinctly separated IUGR from control
samples, IUGR samples appeared divided into two different
clusters for both heatmaps, even though the exact distribution
of IUGR samples is not exactly the same for epigenetic and
expression alterations. In order to explain this behavior,
gestational age at birth of IUGR samples according to clusters
was plotted in Figure 3.

Gene functional annotation analysis, performed with
DAVID, showed gene expression and/or methylation
alterations significantly associated with several pathways (p <
0.05), including: NAD-binding, histone acetylation, mTOR
signaling pathway, lysosome, cell-cell adhesion and cell
Frontiers in Genetics | www.frontiersin.org 6
junction, calmodulin binding, and carbohydrates metabolism.
The complete results are available in Supplementary Table 2.

Only 25 genes were found to be altered both in methylome
and transcriptome (Table 2). Among these 25 genes, eight
show a significant linear correlation between methylation
and expression.

Textual Annotation and Text-Mining
Among these 1,651 features, 1,269 unique genes could be
identified, and textual annotations were successfully retrieved
for 1,259 of them. A total of 196,918 abstracts were retrieved
(95% confidence interval: [146;167] abstracts per gene). LSA
allowed reducing the dimension from 135,220 unique terms
among all abstracts to 1,000 principal components, while
retaining 97% of the initial tf-idf matrix variance. Genes were
classified into 24 clusters. The cluster sizes ranged from 7 (0.6%)
to 241 (19.1%) genes.

These clusters were summarized by word clouds picturing the
most frequent and specific terms among the gene clusters,
FIGURE 2 | Hierarchical clustering of samples, gene expression (A) and methylation (B).
January 2020 | Volume 10 | Article 1292
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allowing a quick and easy grasp and visualization of the global
role of the clusters (Figure 4).

Predicting Phenotypic Traits From Omics
Data
The 1,651 features were used as input data to predict the
outcome for four phenotypic traits (IUGR, premature birth,
birth weight, and head circumference), in order to measure the
importance of each gene in sub-phenotypic prediction. Class-
Frontiers in Genetics | www.frontiersin.org 7
control classification showed perfect predictions on the test set,
with clearly distinct predicted probabilities between control and
IUGR samples (Figure 5). This large gap of probabilities between
IUGR and control samples confirmed the robustness of the
model. These results were expected, as only features showing a
significant difference between IUGR and control groups were
selected for training the model. Furthermore, the previous
unsupervised analysis (Figure 2) confirmed a clear distinction
between IUGR and control samples.
TABLE 2 | Genes found altered in both methylome and transcriptome. Numbers in brackets refer to the number of methylation sites (methylome) and transcripts
(transcriptome) found significantly altered.

Gene symbol Gene name Epigenetics (sites count/total) Gene expression
(transcripts count/total)

r

PAPPA2 Pregnancy-Associated Plasma Preproprotein-A2 Hypomethylated (2/13) Overexpressed (2/2) -0.76
AP2A1 Adaptor Related Protein Complex 2 Subunit Alpha 1 Hypomethylated (1/26) Underexpressed (2/3) N.S.
BCL6 B Cell CLL/Lymphoma 6 Hypomethylated (2/55) Overexpressed (1/2) -0.65
SLC2A1 Solute Carrier Family 2 Member 1 Hypomethylated (2/34) Overexpressed (1/1) -0.42
UNKL Unkempt Family Like Zinc Finger Hypomethylated (2/74) Underexpressed (1/3) N.S.
WSB1 WD Repeat and SOCS Box Containing 1 Hypomethylated (1/19) Underexpressed (2/3) N.S.
AFAP1 Actin Filament Associated Protein 1 Hypomethylated (1/103) Overexpressed (1/3) N.S.
ALDOA Aldolase, Fructose-Bisphosphate A Hypomethylated (1/27) Overexpressed (1/4) -0.43
ALKBH5 AlkB Homolog 5, RNA Demethylase Hypomethylated (1/23) Overexpressed (1/1) N.S.
C1QTNF1 C1q And TNF Related 1 Hypomethylated (1/40) Underexpressed (1/3) 0.40
CALM1 Calmodulin 1 Hypermethylated (1/20) Overexpressed (1/1) N.S.
DGKZ Diacylglycerol Kinase Zeta Hypomethylated (1/62) Overexpressed (1/3) N.S.
DLX5 Distal-Less Homeobox 5 Hypomethylated (1/47) Overexpressed (1/1) N.S.
FLNB Filamin B Hypomethylated (1/40) Overexpressed (1/1) -0.58
FOXK1 Forkhead Box K1 Hypomethylated (1/175) Underexpressed (1/2) 0.36
LIMCH1 LIM and Calponin Homology Domains 1 Hypomethylated (1/51) Overexpressed (1/1) -0.51
PDP2 Pyruvate Dehyrogenase Phosphatase Catalytic Subunit 2 Hypomethylated (1/13) Underexpressed (1/2) N.S.
PDXK Pyridoxal Kinase Hypomethylated (1/37) Underexpressed (1/1) N.S.
PEA15 Proliferation and Apoptosis Adaptor Protein 15 Hypomethylated (1/12) Overexpressed (1/1) N.S.
PLEKHA2 Pleckstrin Homology Domain Containing A2 Hypermethylated (1/22) Overexpressed (1/4) N.S.
RALGPS1 Ral GEF With PH Domain and SH3 Binding Motif 1 Hypomethylated (1/20) Underexpressed (1/1) N.S.
RRAD RRAD, Ras Related Glycolysis Inhibitor and Calcium Channel Regulator Hypomethylated (1/13) Overexpressed (1/2) N.S.
SFRS8 Splicing Factor SWAP Hypomethylated (1/77) Underexpressed (1/1) N.S.
UCKL1 Uridine-Cytidine Kinase 1 Like 1 Hypomethylated (1/18) Underexpressed (1/1) N.S.
USP5 Ubiquitin Specific Peptidase 5 Hypomethylated (1/23) Underexpressed (1/1) N.S.
Janu
ary 2020 | Volume 10 | Article
Pearson’s correlation coefficient r is given for genes with a significant correlation between methylation and expression. N.S., Not significant.
FIGURE 3 | Box plots of gestational age at birth according to IUGR samples position in hierarchical clustering based on methylomics (A) and transcriptomics (B) data.
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Premature birth, birth weight, and head circumference scores
predicted on test samples were linearly correlated with actual
values (p < 0.01) (Figure 6).

A network was created to represent all omics features with
at least 10% importance for predicting at least one phenotypic
trait (Figure 7). Among the nine genes with high importance
(> 80%) in the prediction of at least one phenotypic trait,
five (NMD3, ORC6L, MAPK8, PDCL, PLP1), in the center of
the network share an importance in predicting most studied
phenotypic traits.

The full list of methylomics and transcriptomics features with
importance higher than 50% for phenotypic prediction is
available in the Supplementary Table 3.
DISCUSSION

Text Annotation Clustering and Word
Cloud Visualization
In most high-throughput gene studies, functional annotation
analysis is a powerful tool, allowing the highlighting of pathways
enriched in a particular pathophysiological context. However,
FIGURE 4 | Word clouds summarizing the most frequent and specific terms among the 24 gene clusters (A–X).
FIGURE 5 | Box plot of case-control model predicted probability according
to IUGR/control group.
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limiting gene annotation to categorical roles or pathways leads to
a significant loss of knowledge in comparison with data available
in literature.

Word clouds allowed a visual description of the main biological
processes and pathways involved in the IUGR pathophysiology, in
order to speed up and deepen the bibliographic work on genes
significantly altered in IUGR.
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Cell Signaling and Proliferation
Many terms among the most frequent and specific refer to proto-
oncogenes and cell proliferation and signaling and development
mechanisms. This is confirmed by several genes isolated from
both methylome and transcriptome (overexpression of BCL6,
CALM1, DLX5, PEA15, RRAD, and underexpression of FOXK1
and UCKL1).
FIGURE 6 | Values predicted by SVM models as a function of actual values for premature birth (A), birth weight (B), and head circumference at birth (C).
FIGURE 7 | Network depicting significantly altered features and their importance in predicting IUGR phenotype. Nodes were positioned according to an Edge-
weighted Spring Embedded Layout, based on feature importance for predicting each phenotypic trait. Only genes with at least 80% importance for predicting at
least one phenotypic trait are labeled.
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DNA, RNA Regulation, Transcription, Translation
Many gene clusters (C, D, F, G, I, L, respectively 5.4%, 5.5%,
2.1%, 1.8%, 2.0% and 2.9% of genes) refer to DNA methylation
and repair, regulation of transcription, and RNA splicing and
translation. Epigenetic and gene expression alterations in IUGR
have been evidenced here as well as in literature (Kawai
et al., 2015).

Mitochondria and Oxidative Stress
Clusters H and T (2.0% and 1.8%, respectively) refer to
mitochondria alterations, cell death and apoptosis, and redox
reactions. Indeed, pregnancy increases ROS production and
oxidative stress, causing damage to mitochondria and
potentially leading to cell death, especially during pathological
pregnancies like PE or IUGR (Myatt and Cui, 2004). These
phenomena may have a role in the fetal programming
of atherosclerosis (Leduc et al., 2010). ALKBH5 (found
hypomethylated, overexpressed) encodes a hypoxia-inducible
factor playing a role in cell proliferation (Zhang et al., 2016).

Intra- and Extra-Cellular Matrix
Several clusters (E, F, W, respectively 2.3%, 2.1% and 5.0%)
suggest primarily cytoskeleton and cell-cell junction alterations.
Furthermore, cluster N (1.0%) refers to intra-cellular trafficking
and cell mechanisms relying heavily on the cytoskeleton.
Riquelme and her colleagues (Riquelme et al., 2011)
have already evidenced abnormalities in the lipid raft
composition of the microvillous membrane of the placental
syncytiotrophoblast, linked with alterations in the expression
of several cytoskeletal proteins (actin, ezrin, and cytokeratin-7)
in placentas from pathological pregnancies (PE and IUGR). They
suggest that these cytoskeleton alterations might be responsible
for alterations in the syncytiotrophoblast microvilli, which may
play a major role in the IUGR pathophysiology. Among the
genes found altered in both methylome and transcriptome,
AFAP1 is a major regulator of the cytoskeleton structure
(Xiao et al., 2012). FLNB codes for an actin-binding
protein crosslinking actin filaments and playing various roles
including cell proliferation and angiogenesis through
mechanotransduction (Xu et al., 2017). Clusters P and X (2.0%
and 6.9%, respectively) refer to extracellular matrix alterations.
Such alterations have already been evidenced in IUGR
(Merchant et al., 2004; Swierczewski et al., 2012).

Protein Degradation and Turnover
Cluster S (2.6%) refers to protein SUMOylation, ubiquitination,
and degradation. It has been evidenced that protein
ubiquitination is altered in IUGR and PE, particularly due to a
modulation by oxidative stress, with an increased degradation of
p53 and Mcl-1 proteins, contributing to the pathological
mechanisms of the diseases (Rolfo et al., 2012). WSB1
(underexpressed here) mediates ubiquitination and proteolytic
degradation, and is also involved in cell and glucose metabolism,
playing a role in hypoxia-related mechanisms (Haque et al.,
2016). USP5 (underexpressed here) codes for a deubiquitinating
enzyme which has also been shown to play a role in cell
cycle modulation.
Frontiers in Genetics | www.frontiersin.org 10
Heart and Skeletal Muscle Development
Heart and skeletal muscles are referred to in cluster P (2.0%).
Wang et al. (Wang et al., 2013) and Yates et al. (Yates et al., 2012)
already reported that hypoxemia and hypoglycaemia undergone
during IUGR decrease muscle mass in offspring. DGKZ (found
hypomethylated, overexpressed) is known to induce muscle fiber
hypertrophy and plays a role in the adaptation to energy
metabolism alterations (Benziane et al., 2017). FOXK1 induces
muscle progenitor cell proliferation and inhibits their
differentiation (Shi et al., 2012). FOXK1 was found here both
hypomethylated and underexpressed. This underexpression
might be due to another role of FOXK1 in repressing
starvation-induced atrophy and autophagy (Bowman et al., 2014).

Energy Metabolism and Insulin Resistance
Major references are made to fat and lipid metabolism in cluster
O (5.4%) and cluster Q (1.2%). These clusters support the
hypothesis of an alteration of lipid and fat metabolism during
IUGR, reflecting mechanisms of insulin resistance. Several genes
found altered in both methylome and transcriptome support this
pathway. Among these genes, PAPPA-2 is the gene with the
largest number of methylation sites significantly altered
(hypomethylation), and with the largest number of transcripts
significantly differently expressed (overexpression) in IUGR
placentas. Its overexpression has already been reported in both
maternal blood and the placenta in IUGR (Whitehead et al.,
2013) and PE (Kramer et al., 2016). PAPPA-2 encodes a protein
cleaving the insulin-like growth factor 1 (IGF-1) from a ternary
complex with IGF binding proteins (IGFBP-3) (Fujimoto et al.,
2017). Via this regulation of the IGF-1 bioavailability, it plays a
key role in both placenta development and fetal growth. Both low
and high levels of IGF-1 have also been associated with insulin
resistance (Friedrich et al., 2012). Interestingly, the STC2 gene,
encoding the PAPPA2 inhibitor stanniocalcin-2, was found
significantly hypomethylated here, but its expression was not
significantly altered between IUGR and control groups.

PEA15 encodes a phosphoprotein responsible for insulin
resistance and diabetes. Higher levels of expression of PEA15
have been reported in both patients with diabetes mellitus type 2
(Condorelli et al., 1998) and in euglycemic patients with
impaired insulin sensitivity (Valentino et al., 2006). The DGKZ
gene, already discussed above, has been proven to play a role in
the protection against peripheral insulin resistance and in
improving overall energy metabolism (Benziane et al., 2017).
SLC2A1, also known as glucose transporter 1 (GLUT1), is the
major glucose transporter in the human placenta and the rate-
limiting step of glucose transport from the placenta to the fetus
(Illsley, 2000). Its overexpression here might reflect mechanisms
of adaptation to fetal nutrient restriction. C1QTNF1, also known
as glucose-dependent insulinotropic polypeptide (GIP) is an
adipokine, whose secretion by adipocytes is increased under
hypoxia, partially under the control of HIF-1a. It stimulates
proinflammatory gene expression and impairs insulin sensitivity
of adipocytes (Chen et al., 2015). However, C1QTNF1 was found
underexpressed in this study.

Two more genes supporting these mechanisms of insulin
resistance were found here among the most overexpressed genes:
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HTRA4 (IGF binding domain containing protein, fold-change =
7.33) and LEP (leptin, fold-change = 4.89). This major
overexpression had already been observed in both IUGR
(Madeleneau et al., 2015) and PE (Brew et al., 2016).

Sub-Phenotype Prediction
Unsupervised clustering (Figure 2) showed a clear distinction
between IUGR and controls and suggested the existence of
multiple sub-phenotypes in the IUGR group (Figure 3).

As expected, SVM models were able to accurately predict
such phenotypic traits: gestational age at birth, birth weight, and
head circumference, using only a small subset of the whole data,
i.e. 1,651 (0.3%) methylome and transcriptome variables. These
results confirmed the high predictive value of the genes
highlighted in this study in the IUGR, as well as in several
variables of severity and pathophysiology of the IUGR.

In particular, nine genes with high importance in the
prediction of these phenotypic traits were observed. Network
visualization (Figure 7) showed that most of these genes are
correlated with most clinically relevant traits studied here.

Among these genes, CERK, GNL1, PLP1, and MAPK8 are
known to be altered or play a direct role in the pathophysiology
of IUGR or PE in various pathways discussed above:
differentiation and proliferation regulation, response to
hypoxia and oxidative stress, and neurological maturation
(Vaiman et al., 2011; Reid et al., 2012; Goyal et al., 2013; Chan
et al., 2019). For the other genes (VTCN1, C11ORF49, PDCL,
ORC6L, NMD3), no obvious link with IUGR was found in
literature, creating a topic for future studies regarding their
exact role in the IUGR pathophysiology.

Limits
Our study was mainly limited by the imbalance between cases
and controls and the relatively weak number of controls.
However, as already stated, controls show a significantly lower
variance for most phenotypic traits discussed in this study.
Furthermore, oversampling methods were used in order to
compensate this limit and prevent model overfitting, while
assessing the importance of genes on unmodified test sets
which were not previously used for training models.

Conclusion
Many epigenetic and gene expression alterations in IUGR
placentas have been observed here, some of them confirming
previous mechanisms already published, and others being new
findings. Several major pathways were highlighted by annotation
text-mining analysis: cell cycle and proliferation, regulation of
apoptosis, epigenetic modifications, transcription, translation,
oxidative stress and hypoxia, cytoskeleton and cell structure,
protein degradation and turnover, autophagy, muscle
development, and glucose and lipid energy metabolism. The
involvement of these pathways was supported by significant
differences in both methylome and transcriptome. Finally,
several key genes with high correlation with phenotypic traits
clinically relevant for IUGR were observed and may constitute
potential targets for future study.
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