
HAL Id: hal-02442763
https://univ-rennes.hal.science/hal-02442763

Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Combination of Polarimetric Features for
Vegetation Classification in PolSAR Image

Q. Yin, W. Hong, F. Zhang, E. Pottier

To cite this version:
Q. Yin, W. Hong, F. Zhang, E. Pottier. Optimal Combination of Polarimetric Features for Vegetation
Classification in PolSAR Image. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 2019, 12 (10), pp.3919-3931. �10.1109/JSTARS.2019.2940973�. �hal-02442763�

https://univ-rennes.hal.science/hal-02442763
https://hal.archives-ouvertes.fr


1

Optimal Combination of Polarimetric Features for
Vegetation Classification in PolSAR Image

Qiang Yin , Member, IEEE, Wen Hong, Senior Member, IEEE, Fan Zhang , Senior Member, IEEE,
and Eric Pottier, Fellow, IEEE

Abstract—Polarimetric features of PolSAR images include
inherent scattering mechanisms of terrain types, which are
important for classification and other Earth observation
applications. By using target decomposition methods, many
polarimetric scattering components can be obtained. Besides, the
elements of a coherency/covariance matrix, as well as polarimetric
descriptors, such as SPAN, single-bounce eigenvalue relative
difference/double-bounce eigenvalue relative difference, etc., can
also provide characteristic information. In fact, more and more
polarimetric decomposition components and descriptors have
been proposed; the computation cost increases if all of them are
employed as the input of the classification process. Although all
these features obtained from the coherency/covariance matrix are
not independent, still, finding out which ones are significant for
the classification of different terrain types will improve the un-
derstanding of scattering mechanisms. In this article, the effective
polarimetric feature combination is studied based on the vegetation
classification performance of support vector machine (SVM) and
nearest-regularized subspace (NRS) machine learning approaches,
as well as their combinations with a Markov random field (MRF).
A framework on the basis of similarity and the orthogonal subspace
projection (OSP) method in a hyperspectral area is used to select the
polarimetric features. For the airborne PolSAR data in Flevoland,
The Netherlands, 107 polarimetric features are extracted,
including matrix elements, target decomposition components, and
polarimetric descriptors. A subset is selected by using the proposed
and OSP methods. They have a good classification accuracy evalu-
ated by SVM+MRF and NRS+MRF classifiers. However, when the
SVM and the NRS are used without combining spatial information
of the MRF, the features selected by the proposed framework
with correlation coefficient criteria have much better classification
performance than those of OSP and principal component analysis.

Index Terms—Classification, feature combination, nearest-
regularized subspace (NRS), PolSAR, support vector machine
(SVM).
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I. INTRODUCTION

POLARIMETRIC features provide scattering mechanisms
of land cover, which make unsupervised classification

possible. Many studies focusing on polarimetric features can
be found in the literature; however, the main role of different
features has not been revealed. More and more polarimetric
decomposition components and descriptors have been proposed;
the computation cost increases if all of them are employed as the
input of the classification process. Meanwhile, there is no direct
answer about their importance and specific roles in different
applications yet. It is meaningful to study which features are
important for certain applications. Some of the features may be
irrelevant to the classification task, and others may be redundant.
Thus, it is useful to exploit the discriminative power offered by
the selection and combination of these features [1]. The idea of
this article is to find out whether a small subset of features could
achieve similarly good classification results as the whole feature
sets. Actually, it depends on the features of specific data as well
as the classifier, but there might also exist some regular patterns
underlying.

The scheme of normal supervised classification includes two
parts: feature extraction/selection and machine learning clas-
sifiers. The focus of this article is on the polarimetric fea-
tures of PolSAR images, rather than the classifiers. We em-
ploy some classifiers for evaluating the performance of feature
combinations.

Several groups work on the optimal feature selection for
PolSAR image classification. Feature reconstruction methods,
such as independent component analysis [2] and principal com-
ponent analysis (PCA) [3], have been found applicable, but they
will change the physical meaning of the original data because
new channels do not correspond to an original polarimetric
feature, but their linear combinations. In this way, we cannot
figure out which polarimetric features play a significant role
in applications. Chen et al. [4] applied a convex framework
for joint learning of the optimal feature weights and support
vector machine (SVM) parameters. Haddadi et al. [5] used
a combination of a genetic algorithm and an artificial neural
network for extracting optimized features of PolSAR images
that are required for classification. Some methods need to rear-
range the PolSAR image to vectors, which may lose the spatial
information of neighboring pixels. For this consideration, Tao
et al. proposed a tensor-based dimension reduction technique,
using 48 polarimetric decomposition features of synthesized
PolSAR data [6]. Based on the Touzi decomposition parameters,
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Banerjee et al. [7] proposed a third-order class-dependent mutual
information (MI) method and another eigenspace decomposition
of the conditional MI matrix method to select a feature subset.
Besides, a feature selection separability index criterion with the
naive Bayes classifier was utilized in [8], where ten polarimetric
features and 27 other features were examined.

The analysis on polarimetric features is necessary for classifi-
cation and other related applications, since machine learning as
well as deep learning classifiers have been used a lot; however,
their requirement on input features is not clear. Several classifiers
such as nearest neighbor, naive Bayes, and neural network (NN)
have been successfully used in the literature for characterizing
SAR data [9], [10]. The SVM has outperformed the traditional
classifiers in almost all the domains in terms of the generalization
accuracy as well as time and space complexities. The SVM
has been used in this article, as it has a convex formulation,
requires lesser numbers of training samples, and has a simple but
mathematically sound statistical learning-based background the-
ory. In some cases, the recently proposed representation-based
classifications provide better performance than the classic NN
[11] and SVM [9] in that they require few labeled data instead
of the traditional training–testing mode. Representation-based
classification is essentially based on the concept that a pixel can
be represented as a linear combination of labeled samples via
the sparse regularization methods, such as the l0-norm, l1-norm,
and l2-norm regularization. In this manner, an approximation
of the pixel is generated from labeled samples of each class
independently, and the class label is then derived according to
the class of the minimum representation error. In this article,
the supervised classifiers of SVM, nearest-regularized subspace
(NRS), as well as SVM+MRF [12] and NRS+MRF [13] are
used. By the way of involving the MRF model, the spatial
information between pixels is reserved. The Markov random
field (MRF) approach is a popular model for incorporating
spatial information into image classification [12], [14], [15].

In this article, we focused on the polarimetric feature analysis
and its effective combinations for the classification of PolSAR
data. The classifiers are employed only for the performance eval-
uation of the features’ capability on terrain classification. They
are independent of the feature selection process. A set of 107
polarimetric features is extracted, and the polarimetric feature
vector is constructed, which cover almost all the representative
and recent ones [16]. A polarimetric feature selection method
based on the similarity between each two features is proposed,
which takes into consideration of both representatives of highly
related features and the unrelated ones. As summarized in the
review of [17], the current feature selection methods based on
the similarity all use a criterion or a parameter, such as Laplacian
Score, SPEC, Fisher Score, Trace ratio, Relief F, etc., to com-
pute the weight of each feature. Afterward, with the obtained
weights, all the features are ranked, so the important ones can
be selected out. However, the key point of our suggested method
is to compute the similarity between each pair of features, for
example, the correlation coefficient (CR). Hence, what we got
is the correlation between each pair of two features, rather
than the weight of each feature. In the obtained feature subset,
the features with different kinds of scattering mechanisms are

preserved. In addition, another similarity-based band selection
method proposed for a hyperspectral image is introduced to the
PolSAR image for the first time. Experiments are implemented
to assess these two methods, as well as to compare them with
the principal components constructed by the PCA approach. It
is shown that the feature subset obtained by the proposed CR
criteria keeps better polarimetric scattering information at the
pixel level for the application of vegetation classification.

The rest of this article is organized as follows. In Section II, the
basic of polarimetric features of SAR data is briefly introduced.
Afterward, in Section III, two feature selection methods are
presented. The first proposed criterion is based on CR and the
second one is introduced from hyperspectral image processing
called similarity-based band selection. Supervised classifiers
used for classification are briefly introduced in Section IV. Then,
the experiment data, extracted polarimetric features, as well as
the corresponding classification results with different selection
methods are shown in Section V. For the aim of comparison, the
PCA method is also employed to form the same number of new
features and then to be used for the classification application.
Finally, the conclusion is given in Section VI.

II. POLARIMETRIC FEATURE EXTRACTION

The information of the PolSAR data is contained in four
channels, respectively, HH , HV , V H , and V V , which indicate
four linear orthogonal polarization combinations. Assuming that
the data are processed with spatial average under a monostatic
mode, the complex backscattering matrix [S] for each image
pixel at a specific incidence angle can be expressed as

[S] =

[
Shh Shv

Svh Svv

]
(1)

where the subscript h indicates the horizontal polarization chan-
nel, and the subscript v represents the vertical polarization
channel. Under the monostatic backscattering case, there exists
a reciprocity theorem, i.e.,Shv = Svh. We discuss this backscat-
tering case in the following part of this article.

From the scattering matrix [S], polarimetric information is
usually interpreted by the second-order polarimetric descrip-
tor coherent and covariance matrices. The multilook coherent
matrix [T ] and covariance matrix [C] can be expressed as
follows:

[T ] =
〈
�k · �kH

〉
(2)

[C] =
〈
�Ω · �ΩH

〉
(3)

where 〈·〉 denotes the ensemble average, the superscript H
indicates the complex conjugation and transpose of vector and
matrix, �k is the Pauli-based scattering vector, and �Ω is the Lexi-
cographic scattering vector. These two vectors can be specified
by vectorizing the scattering matrix [S] and are defined in the
backscattering case as follows:

�k =
1√
2
[Shh + Svv, Shh − Svv, 2Shv]

T (4)

�Ω = [Shh,
√
2Shv, Svv]

T (5)
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TABLE I
EXTRACTED POLARIMETRIC FEATURES

where the superscript T indicates the transpose of the vector.
Accordingly, the coherency matrix [T ] and the covariance matrix
[C] are 3 × 3 in the monostatic backscattering case.

Three categories of polarimetric features are used in this
article: matrix elements, decomposition components, and po-
larimetric descriptors, as shown in Table I. The first category
includes ten elements of coherency and covariance matrices.
The second category includes 79 decomposition components
of different target decomposition methods. In addition, the
third category has 18 polarimetric descriptors, such as SPAN,
polarimetric fraction, polarimetric asymmetry (PA), scattering
predominance, etc.

In the first category of polarimetric features, seven elements of
the coherency matrix are extracted, which are T11, T22, T33, and
the amplitude and phase ofT13 andT23. Other three elements are
obtained from the covariance matrix, which are the amplitude
of C12, C13, and C23.

Within the second category, there have been many proposed
target decomposition theorems that can be classified into four
main types, which are those based on the Kennaugh matrix, those
using an eigenvector or eigenvalues analysis of the covariance
matrix or coherency matrix, those based on a model-based
decomposition of the covariance matrix or the coherency matrix,
and those employing coherent decomposition of the scattering

matrix [16]. Among these four types of target decomposition
algorithms, the former three belong to the incoherent decompo-
sition, which is usually used to process the coherency matrix,
the covariance matrix, and the Kennaugh matrix for representing
them as a linear combination. The coherent target decomposition
algorithm is used to process the scattering matrix for repre-
senting the polarimetric information of the point target and the
distributed target [18]–[31].

In the third category of polarimetric descriptors, most are
developed based on the eigenvalues and eigenvectors of the
coherency matrix, such as SPAN, single-bounce eigenvalue
relative difference (SERD), double-bounce eigenvalue relative
difference (DERD), Shannon entropy, polarization fraction, PA,
target randomness, radar vegetation index, pedestal height, etc.
These new parameters have been proved to be useful when
analyzing scattering characteristics of PolSAR data, together
with other polarimetric features [32]–[36].

All these 107 polarimetric features are in fact extracted
originally from the coherency matrix [T ], or the equivalent
covariance matrix [C], which means they are not independent.
However, different features can reflect scattering mechanism
details from different perspectives, so we can study about which
features are significant for land classifications.

III. FEATURE SELECTION METHOD

The proposed method for polarimetric feature selection is
based on the similarity measured by the CR; then, the orthogonal
subspace projection (OSP) similarity-based approach in the
hyperspectral area is introduced into the polarimetric feature.
Besides, PCA is applied to form the same number of principal
components for comparison. The data processing flowchart is
shown in Fig. 1.

A. Proposed Framework Based on Similarity

Our suggested method is based on the similarity between each
pair of features. For instance, the CR can be employed to measure
the similarity between every two features. Hence, what we got
is the correlation between each pair of two features, rather than
the weight of each feature. This is the main difference compared
to other existing methods, which usually use a criterion or a
parameter, such as Laplacian Score, SPEC, Fisher Score, Trace
ratio, Relief F, etc., to compute the weight of each feature. The
difference leads to the following steps of the feature selection
process. It is because we cannot simply rank the correlation
of each pair. Our strategy in the following steps is: on one
hand, with the similarity between each pair of features, above a
certain threshold, those pairs containing the same feature are put
into one group. By this step, several groups are formed, within
which the highly related features are put together. Then, in each
group, the appearance frequency of each feature is calculated,
and the one with the maximum frequency in each feature group
is selected out. It means that the representative features are
kept from each group for classification. On the other hand, the
features under the threshold are also kept, since the unrelated
ones may contain specific information, which may be useful for
the discrimination of classes. The whole framework is shown in
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Fig. 1. Flowchart of data processing.

Algorithm 1: Proposed Method for Feature Selection.
Require: Extracted polarimetric features of the PolSAR
image
Ensure: Selected features in the subset

1: Feature vector construction← stacking all the
categories of polarimetric features;

2: The similarity measurement between any two features
is calculated;

3: The feature pairs with the CR above a certain
threshold are examined;

4: Those pairs containing the same feature are put into
one group, and the one with the maximum appearance
frequency in each group is chosen into the feature
subset;

5: The features under the threshold, which has not
appeared above the threshold, are kept into the subset.

Fig. 2. And the general algorithm for feature selection is listed
in the following.

One of the basic criteria of measuring the similarity between
a pair of features is the CR, when it is employed to evaluate the
similarity among different features. First, the CR between any
pair of two features is calculated by the following equation:

Coef(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
(6)

Fig. 2. Framework of the proposed method.

where Cov(X,Y ) is the covariance between the single feature
vectors X and Y , and Var is the variance of the feature vector.
Second, a proper threshold should be set. Thereafter, the feature
pairs with the CR above this threshold are examined. Those
pairs containing the same feature are put into one group, and the
one with the maximum appearance frequency in each group is
chosen into the feature subset. Meanwhile, the features under
the threshold, which has not appeared above the threshold, are
kept into the subset as well.

In our suggested framework, besides the CR, any criterion
measuring the similarity could be used, such as Euclidean
distance, Minkowski distance, Manhattan distance, and so on.
Therefore, it is possible to change the criterion for similarity
under the general framework. It provides a scheme to select
feature subsets based on the similarity between two features.
Some classic distances are listed as follows:

EuDist(X,Y ) =
√

(X − Y )2 (7)

MinkDist(X,Y ) = ((X − Y )p)1/p (8)

ManhDist(X,Y ) = |(X − Y )| . (9)

In this article, the Euclidean distance is also used for data
experiments, which is shown and analyzed in Section V. When
the distance is used to obtain the similarity among features, the
computed values are not the same as with the correlation, which
lies between 0 and 1. So, it is necessary to do normalization
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Algorithm 2: OSP Similarity Band Selection.
Require: Extracted polarimetric features of the SAR image
Ensure: Selected features in the subset

1: Feature vector construction← stacking all the
categories of polarimetric features;

2: Choose an initial pair of features;
3: Find a third one feature that is the most dissimilar to all

others in the current subset by using the OSP criterion;
4: Continue on Step 3 until the number of features is

large enough.

before setting the threshold. In addition, the indication of dis-
tance is opposite to correlation. The larger the distance, the lower
the similarity. Usually, the negative sign can be added to the
normalized distances for next selection steps. In this way, the
pairs above the threshold have higher similarity, while the pairs
under have lower correlation.

B. Similarity-Based Band Selection (OSP)

In this article, we introduce the similarity-based band se-
lection method, which is widely used in hyperspectral image
processing into polarimetric SAR feature selections. Generally,
there are two well-known algorithms, which are unsupervised
fully constrained least-squares linear unmixing in [37] and OSP
in [38]. Due to a large number of original bands, the exhaus-
tive search for optimal band combinations is computationally
prohibitive. For this group of similarity-based approaches, the
band similarity is evaluated jointly instead of pairwisely. The
sequential forward search can save significant computation time.
It begins with the best two-band combination, and then, this
two-band combination is subsequently augmented to three, four,
and so on until the desired number of bands is selected [39].

Here, the OSP band selection is used to compute the similarity
between a single feature and multiple features in step 3. Assume
that there are two features B1 and B2 in Φ. To find a feature that
is the most dissimilar to B1 and B2, an orthogonal subspace of
B1 and B2 is constructed as

P = I− Z(ZTZ)−1ZT (10)

where I is an N ×N identity matrix, and Z is an N × 2 matrix,
whose first column includes all the pixels in B1 and the second
column includes all the pixels in B3. Then, the projection yo =
PTy is computed, where y includes all the pixels in B and
yo is the component of B in the orthogonal subspace of B1 and
B2. The feature that yields the maximum orthogonal component
‖yo‖ is considered as the most dissimilar band to B1 and B2

and will be selected as B3 for Φ.
The initial two features of M feature dataset whose dissimi-

larity is the largest can be found with the following steps.
1) Randomly select a band A1, and project all the other M −

1 bands to its orthogonal subspace 〈A1〉⊥.
2) Find the band A2 with the maximum projection in 〈A1〉⊥,

which is considered as the most dissimilar to A1.

3) Project all the other M − 1 bands to the orthogonal sub-
space 〈A2〉⊥, and find the band A3 with the maximum
projection.

4) If A3 = A1, A1 and A2 are confirmed to be the pair with
the most significant dissimilarity, and the algorithm is
terminated; if A3 �= A1, go to the next step.

5) Continue the algorithm until Ai + 1 = Ai − 1; then, either
Ai−1 or Ai can be used as the band selection initial B1.

IV. SUPERVISED CLASSIFIER

The classification methods employed in this article are SVM,
NRS, as well as their corresponding combinations with the MRF
method, i.e., SVM+MRF and NRS+MRF, under the consider-
ation of reserving spatial information of pixels in images. The
performance of these latter two classifiers have been studied in
[13] with different datasets. The principles of NRS and MRF are
stated in the following.

Assume a given dataset with training samples X = {xi}ni = 1

in 	d and the class label wi ∈ {1, 2, . . . , C}, where d is the
number of spectral variables (bands),C is the number of classes,
and n is the total number of the training samples.

An approximation of the test sample y is represented via a
linear combination of available training samples per class. For
each class, we can calculate the approximation yl as

yl = X l ·αl (11)

where Xl is a matrix with size of d× nl, nl is the number of
available training samples for class l,

∑C
l = 1 nl = n, and αl

represents the weight vector coefficients with size of nl × 1 for
the linear combination. Suppose we have obtained the weight
vector; the label of the test sample is determined by the residual
between y and yl, which is represented as

rl (y) = ‖y − yl‖ 2 = ‖y −X l · αl‖2. (12)

Then, the class label is derived according to the class of the
most accurate representation (i.e., the minimum value of the
residuals for all the classes) as

class (y) = arg min
l=1,2,...,C

rl (y) . (13)

In NRS [40], the weight vector for the linear combination is
solved as follows:

αl = argmin ‖y −X l · αl‖ 22 + λ ‖Γl,y · αl‖22 (14)

where Γl,y is a biasing Tikhonov matrix specific to each class
l and test sample y, and λ is a global regularization parameter,
which is used to balance the minimization between the residual
and regularization terms. For the NRS classifier, we design the
diagonal elements of matrix Γl,y in the form of

Γl,y =

⎡
⎢⎢⎣

∥∥y − xl,1‖2 · · · 0
...

. . .
...

0 · · · ∥∥y − xl,nl
‖2

⎤
⎥⎥⎦ (15)

where xl,1,xl,2, . . . . . . ,xl,nl
are the columns of X l for the

class l. Commonly, the Euclidean distance will be used for
measuring the similarity between the testing sample and the
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training sample and then to vote for the test sample belong to
the proper label. According to formulas defined in (14) and (15),
the approximation yl of each test sample y can be expressed as

yl = X l

(
XT

l X l + λΓT
l,yΓl,y

)−1
XT

l y. (16)

The pixelwise NRS classifier has been demonstrated to be
effective [40]; however, for the PolSAR classification, the image
representation of the same category object is always the block-
wise manner, under which the spatial information may have the
potential to further improve the classification accuracy.

In the MRF model, we have the probability of the test pixel
yp (note that yp has the same meaning as aforementioned y) for
each class, and the energy function E(·) of yp for class l can be
represented as

E (yp |wp = l ) = μEdata (yp |wp = l ) + Esmooth (yp |wp = l )

(17)

Edata (yp |wp = l ) =
∑
p∈P

Dp (yp |wp = l ) (18)

where Dp is the spectral energy function for yp, and μ is
the balance parameter. Esmooth(yp|wp = l) means the extent on
piecewise smoothness:

Esmooth (yp |wp = l ) =
∑
q∈Np

B〈p,q〉 (1− δ (wp, wq)) (19)

wherewp andwq are the labels, δ is the Kronecker delta function
(δ(wp, wq)= 1 ifwp = wq , and δ(wp, wq)= 0 otherwise),B〈p,q〉
is viewed as the penalty between yp and yq [41], yq represents
the adjacent pixel to yp, and Np is the set of neighbors for the
given pixel yp. Commonly, the more similar these neighboring
pixels are, the larger the value it will be. If they are totally
different, B〈p,q〉 will be definitely zero.

The performance of these four supervised classifiers has been
demonstrated in [13]. In general, the MRF can greatly decrease
the misclassifications based on the good homogeneousness as-
sumption. Hence, SVM+MRF and NRS+MRF can achieve high
classification accuracy than single SVM and NRS. Usually,
SVM is better than NRS. But with a combination of MRF,
NRS+MRF performs even better than SVM+MRF.

V. EXPERIMENT

A. Datasets

The PolSAR dataset is the widely used L-band data acquired
by the NASA/JPL AIRSAR system in Flevoland, The Nether-
lands, in August 1989. There are 11 different terrain types
marked in ground truth, most of which are agricultural classes,
such as stem beans, forest, wheat, bare land, rapeseed, pea, and
so on. The size of this dataset is 750× 1024 pixels, in which the
ground truth data have around 68 188 pixels. The Pauli image
and the ground truth image are shown in Fig. 3. The ground
truth region mask is generated manually. To avoid the edge
effect between different agricultural areas caused by the speckle
filtering process, the mask of each region is set a bit smaller than
the natural borders. Accordingly, the pixels in the mask region

Fig. 3. Flevoland dataset: (left) Pauli image and (right) ground truth image.

are used to calculate the classification overall accuracy in the
following experimentations.

B. Polarimetric Features

After the speckle filtering process with the refined Lee method
of a 7 × 7 window size, all of these features are extracted
through the recent version of open-source software PolSARpro
v5.0 funded by the European Space Agency [42]. This set of 107
features includes almost all the polarimetric characteristics for
classification, as listed in Table I. The polarimetric properties and
statistical correlation between channels filtered by the refined
Lee filter are well preserved, through the experimentation of
many airborne and spaceborne polarimetric SAR data experi-
ments in the literature of last 20 years. The filtering is applied
to each term of the covariance matrix, including all the matrix
elements. According to Lee et al., to preserve the polarimetric
signatures, all elements are filtered in the same way by the same
amount. The span image is used to compute the weight in a
selected edge aligned window [43].

Again, these 107 polarimetric features are not independent,
since they are extracted originally from the coherency matrix
[T ] or the equivalent covariance matrix [C]. However, we can
still investigate on which ones play important role for land
classifications.

C. Feature Combinations

1) Feature Combination by the Proposed Method: With the
proposed selection strategy based on the CR, ten features are
chosen out of the total 107 features under the correlation thresh-
old of 50%, as shown in Table II. In fact, for the Flevoland
data, different threshold has been studied between 0.5 and 0.8.
Although the obtained feature subset changes a bit, the whole
classification performances basically keep the same level. In our
proposed method, the idea to set this threshold is to find out the
representative features in the highly related feature groups and,
meanwhile, keep the unrelated features. As shown in Fig. 4, the
number of feature groups containing more than 20 feature pairs
above the threshold changes from 6 to 4 as the threshold changes
from 0.5 to 0.8. Considering both the representative related and
unrelated features inside the whole feature set, the threshold is
set to 0.5 in this article, in order to keep six features above it and
four features below it.
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TABLE II
TEN FEATURES SELECTED BY THE CR

Fig. 4. Feature group number changes as the threshold increases.

It can be seen that the subset contain eight decomposi-
tion components (Yang3 Odd, Cloude T33, Combination HA,
Entropy, Freeman Odd, VanZyl3 Odd, Yamaguchi3 Dbl, and
Yamaguchi3 Vol) and two polarimetric descriptors (Scattering
mech. Entropy and Shannon Entropy I). Within these eight target
decomposition components, different kinds of scattering mech-
anisms are preserved. Yang Odd, Freeman Odd, and VanZyl
Odd refer to single bounce or surface scattering, Yamaguchi
Dbl corresponds to double bounce scattering, and Cloude T33
and Yamaguchi Vol are volume scattering. Besides, Entropy and
Combination HA are the important parameters of eigenvalue de-
composition. For this feature selection method, if the threshold
is lower, the fewer features are preserved.

Yang decomposition is based on the Huynen decomposition,
which is proposed as phenomenological theory. From this
theory, it is possible for a single stationary target to define the
“target structure diagram” and the nine “Huynen parameters,”
which are all tied to a physical property of the target. The
basic idea of the Huynen target decomposition theorem is
to separate from the incoming data stream apart, which
would be identified with a single average target and a residue

TABLE III
TEN FEATURES SELECTED BY THE EUCLIDEAN DISTANCE

component called “N-target.” But if only the Odd component
is observed, actually it is the T11 element itself, while VanZyl
is one of the eigenvector-based target decomposition models.
Since the eigenvalue problem is automatically basis invariant,
such decompositions have been suggested as alternatives to the
Huynen approach. This decomposition shows that the first two
eigenvectors represent equivalent scattering matrices that can
be interpreted in terms of odd and even numbers of reflections,
so the odd component corresponds to the multiscattering with
odd times. As to Freeman decomposition, which is one of the
scattering-model-based decompositions, the three components
correspond to three scattering mechanism models. The first
component is described by the first-order Bragg surface
scattering model of a slightly rough surface, in which the
cross-polarized component is negligible. Because the above
three decomposition methods belong to three types of methods,
their odd components have some differences. Hence, it is
possible to be kept in our selected feature subsets.

Besides the CR, the criterion of the Euclidean distance is also
employed in our proposed framework to choose a polarimetric
feature subset. When we use distance as the similarity measure-
ment, it should be noted that normalization is very important in
two aspects. On one hand, since the previous CR is a normalized
parameter, which lies between 0 and 1, there is no need to do
normalization. But for various distances, the values sometimes
are very large. It is necessary to do normalization before setting
the threshold of distances. In addition, the indication of distance
is opposite to correlation. The larger the distance, the lower
the similarity. Usually, the negative sign can be added to the
normalized distances for next selection steps. On the other hand,
while the distance is used, the features input to the classifiers
should be normalized before the computation of distances. This
is due to the fact that the distance is obtained between different
pairs of features. Finally, ten features are chosen out of total 107
features under the threshold of 40%, as shown in Table III.

In this feature subset chosen by our proposed framework
with the Euclidean distance, there are two matrix elements (C13
real and T22), seven decomposition components (VanZyl3 Dbl,
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TABLE IV
TEN FEATURES SELECTED BY OSP

Yamaguchi Y4O Dbl, Holm2 T22, Barnes1 T22, Krogager Kd,
and MCSM Vol), and two polarimetric descriptors (SPAN and
Combination HA). Different scattering mechanisms could be
observed in this feature combination.

2) Feature Combination by the OSP Method: In order to
compare different feature selection approaches, the same num-
ber of features is kept in the subset in the following experi-
ments. With the introduced selection approach based on OSP,
ten features are chosen out of the total 107 features, as shown
in Table IV. Here, the subset contains eight decomposition
components (MCSM Vol, Gamma, Huynen T11, Holm2 T22,
MCSM Hlx, Neumann delta mod, MCSM Wire, and Krogager
Ks) and two polarimetric descriptors (Polarization fraction and
Pedestal). Again, different scattering mechanisms are preserved.
Huynen T11 and Kragager Ks are single-bounce scattering;
Holm T22 refers to double-bounce scattering. MCSM Vol, Hlx,
and Wire corresponds to volume, helix, and wire scattering.
There are also the components of eigenvalue decomposition and
Neumann decomposition kept in the subset. Since there is a
sequence of the selected features in this band selection method,
once the number of required features is set, the selection process
stops until the number reaches to the required number.

In the step of feature selection, the CR method mainly com-
putes the correlation between each pair of two features, and
it costs 184 s for the Flevoland data. The time for choosing
features under a threshold is very short—less than 1 s, so as to
be neglected. Compared to it, the OSP method costs 1190 s to
select ten features for the same data.

D. Classification Results

First, the polarimetric SAR feature space is constructed by
107 features for each pixel. In the SVM classifier, sigma is equal
to 0.1. In the NRS, the regularization parameter is 2.5, and the
tuning parameter is −0.5. For all the classification experiments
in this article, the number of training samples is set to 300 for
each class. And the number of test samples is shown in Table V.

1) Classification of the Whole Feature Set: In Fig. 5, the
classification results of all 107 features using four classifiers

TABLE V
NUMBER OF TEST SAMPLES FOR EACH CLASS

Fig. 5. Classification results using 107 features: (top left) SVM, (top right)
SVM+MRF, (bottom left) NRS, and (bottom right) NRS+MRF.

are given. Using the SVM, the classification results is 81.31%,
while the NRS gets lower accuracy of 77.68%. Both SVM+MRF
and NRS+MRF classifiers have very fine overall classification
accuracies of 96.1% and 99.58%, respectively, on the condition
of training ratio lower than 4.5%.

2) Classification of Feature Combination by the Proposed
Method: The classification results of the feature subset selected
by CR criteria are shown in Fig. 6. It can be seen that for all these
four classifiers, this feature combination can achieve similar
classification performances. Using the SVM, the classification
result is 81.20%, while the NRS gets the accuracy of 75.56%.
Both SVM+MRF and NRS+MRF classifiers have very fine over-
all classification accuracies of 89.78% and 95.76%, respectively.
Especially, for NRS+MRF, except that only a part of an area
covered by wheat is wrongly classified into grassland, almost
all pixels in other areas are classified correctly.

It should be noted that without MRF improvement, only
SVM or NRS can still get good results from this feature subset.
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Fig. 6. Classification results using ten features selected by the proposed
method with the CR: (top left) SVM, (top right) SVM+MRF, (bottom left) NRS,
and (bottom right) NRS+MRF.

Fig. 7. Classification results using ten features selected by the proposed
method with the Euclidean distance: (top left) SVM, (top right) SVM+MRF,
(bottom left) NRS, and (bottom right) NRS+MRF.

For the NRS, the classification accuracy is even higher than
the result of 107 features. This means that the feature subset
preserves the polarimetric scattering information at the pixel
level very well. Therefore, these ten polarimetric features can be
considered as the effective feature combinations for this certain
dataset.

The classification experiments with the Euclidean distance
in our proposed framework are also implemented. The result
can be seen in Fig. 7. We can see that by using the Euclidean
distance, the selected feature subset has a bit lower classification
performance compared to the CR. When the classifiers are SVM,
NRS, SVM+MRF, and NRS+MRF, their overall classification
accuracy is 74.16%, 68.89%, 87.02%, and 98.67%, respectively.

3) Classification of Feature Combination by OSP: The clas-
sification results of the feature subset selected by OSP band
selection criteria are shown in Fig. 8. One obvious property

Fig. 8. Classification results using ten features selected by OSP: (top left)
SVM, (top right) SVM+MRF, (bottom left) NRS, and (bottom right) NRS+MRF.

Fig. 9. Classification results using ten features constructed by PCA: (top left)
SVM, (top right) SVM+MRF, (bottom left) NRS, and (bottom right) NRS+MRF.

of this feature combination is that the classification results by
SVM+MRF and NRS+MRF are very high even up to those with
input of the whole feature set. However, by use of the simple
classifiers SVM and NRS, the results are around 50% or lower
than that. It means that at the pixel level, the features selected
by the OSP method contain less discriminative information for
classifications than the CR approach.

4) Classification of Constructed Feature Combination by
PCA: For the aim of comparison, we also constructed feature
combinations using the PCA method, although in this way there
is no corresponding direct feature related to certain scattering
components. The classification results of the feature subset
selected by PCA are shown in Fig. 9. The performance of this
feature subset is close to the one chosen by OSP when using
SVM+MRF and NRS+MRF, but a bit better when employing
SVM or NRS.
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TABLE VI
CLASSIFICATION OVERALL ACCURACY OF FIVE FEATURE COMBINATIONS

WITH DIFFERENT CLASSIFIERS

Fig. 10. Flevoland dataset II: (left) Pauli image and (right) ground truth image.

The classification results of above four feature combinations
with various classifiers are displayed in Table VI. To conclude,
with complex classifiers like NRS+MRF/SVM+MRF, which
utilize spatial information, the feature subset selection by OSP
and constructed features by PCA get very good performance,
while, on the other hand, with simple classifiers using pixel-level
polarimetric information, the feature combination obtained by
CR criteria performs better. It means the CR approach keeps
more polarimetric scattering properties useful for classifications.

Another PolSAR dataset is acquired in the same area by the
NASA/JPL AIRSAR system in June 1991. There are 14 different
terrain types measured with ground truth, which are rapeseed,
lucerne, peas, wheat, grass, oats, onions, potato, beet, maize,
fruit, barley, beans, and background. The size of this dataset is
1024× 1279 pixels, and the number of pixels with the ground
truth data is around 122 928. The Pauli image and the ground
truth image are shown in Fig. 10.

Similar data processing steps are implemented in this dataset,
including speckle filtering and polarimetric feature extraction.
First, the polarimetric SAR feature space is constructed by 107
features for each pixel. Then, the classification experiments
with the whole feature space are done. The parameters inside
the classifiers are basically the same with the first dataset. The
difference is that the number of training samples is set to 1% for
each class, instead of 300 for each class. This is because there are
some small classes containing less pixels than 300. The number
of test samples is shown in Table VII. The classification results of

TABLE VII
NUMBER OF TEST SAMPLES FOR EACH CLASS IN FLEVOLAND II DATA

Fig. 11. Classification results of dataset II using 107 features: (top left) SVM,
(top right) SVM+MRF, (bottom left) NRS, and (bottom right) NRS+MRF.

all 107 features using four classifiers are given in Fig. 11. Using
the SVM, the classification result is 95.47%, while the NRS
gets lower accuracy of 91.07%, SVM+MRF and NRS+MRF
classifiers have better overall classification accuracies of 97.07%
and 92.97%, respectively.

Following that, feature combination by the CR method is
implemented. Nine features are chosen out of the total 107
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TABLE VIII
NINE FEATURES SELECTED BY THE CR WITH DATASET II

Fig. 12. Classification results of dataset II using nine features selected by the
CR: (top left) SVM, (top right) SVM+MRF, (bottom left) NRS, and (bottom
right) NRS+MRF.

features under the correlation threshold of 50%, as shown in
Table VIII. Here, in this experiment, nine instead of ten features
are kept due to the fact that there are nine independent elements
of the coherency or covariance matrix, hence nine independent
components of the whole extracted feature groups. It can be
seen that the subset contains seven decomposition components
(lamda, Huynen T33, MCSM wire, MCSM Odd, VanZyl3 Odd,
Yamaguchi3 Odd, and Yamaguchi4 Odd), one matrix element
T22, and one polarimetric descriptor SPAN. Within these nine
features, different kinds of scattering mechanisms are preserved.
Odd components refer to single bounce or surface scattering,

T22 corresponds to double bounce scattering, Huynen T33 is
volume scattering, and MCSM wire refers to wire scattering.
SPAN is the whole scattering power, while lamda is an important
parameter of eigenvalue decomposition.

The classification results of the feature subset selected by
CR criteria are shown in Fig. 12. It can be seen that for all
these four classifiers, this feature combination can achieve good
classification performances. Even a bit lower than the results of
107 features, however, it should be noted that here only nine
features are used as input of the classifiers. Using the SVM, the
classification result is 83.40%, while NRSs gets the accuracy of
84.03%. SVM+MRF and NRS+MRF classifiers have a bit better
classification accuracy of 87.12% and 88.32%, respectively.

Even without MRF improvement, only SVM or NRS can still
get good results from this feature subset. This means that the
feature subset preserves the polarimetric scattering information
at the pixel level very well. Therefore, these nine polarimetric
features can be considered as the effective feature combinations
for this certain dataset.

VI. CONCLUSION AND FUTURE WORK

Studying the selection strategy of the polarimetric feature
combination is of significance, since the computation cost can
be reduced a lot. In fact, it depends on both the features of
specific datasets and the classifier. In this article, we focused
on the polarimetric features of PolSAR data. A set of 107
polarimetric features is extracted, and the polarimetric feature
vector is constructed, which almost covers all the representative
and recent ones. Two polarimetric feature selection methods
are used to obtain a subset of ten features, which preserve the
information of different scattering mechanisms. The proposed
framework uses the CR and the Euclidean distance as criteria
for similarity measurement and selects the representative ones
within each feature group above the threshold; meanwhile, it
keeps the unrelated features under the threshold. Besides, the
influence of the threshold is also analyzed. OSP is introduced to
PolSAR data from the hyperspectral area, but the performance
is not as good as the proposed one. Besides, the computation
time is longer. As to PCA, it is not the kind of method to keep
the features with physical meaning, because the constructed
feature corresponds to no scattering mechanisms. Experiments
are implemented to assess these two methods, as well as to
compare them with the principal components constructed by the
PCA approach. With the subset of ten features, good classifica-
tion results are achieved by using SVM+MRF and NRS+MRF
classifiers. However, when the SVM and NRS are used as
classifiers without combining spatial information by using the
MRF, the ten features selected by CR criteria have a much better
classification performance than that of the other OSP criteria.
It means that better polarimetric scattering information at the
pixel level is preserved through the proposed selection method
for the application of vegetation classification. Another dataset
in Flevoland area is tested using the proposed method to select
nine polarimetric features, and the experiments show that less
than 9% of features could achieve the comparable classification
accuracy with the whole feature set.
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In the future, other similarity criteria could be tested in our
proposed framework, in order to find out the best ones especially
for describing the relations among lots of polarimetric features.
Besides, new polarimetric features inside PolSARpro v.5.1 will
be included in experiments. The experiments on other datasets
will also be shown in future work, in order to see the difference
in feature combinations for various data, and to reveal the
underlying reason due to scattering mechanisms.
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