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Letter to the Editor Regarding the Article "Rotenone Increases Isoniazid Toxicity but Does Not 

Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the 

Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-

Induced Liver Injury" by Cho and Co-Workers, 2019

To the Editor: Idiosyncratic drug-induced liver injury (iDILI) is a major issue for the treated 

patients because of its unpredictability and its potential severity. It is also a concern for the 

pharmaceutical companies since severe or lethal liver injury can lead to the withdrawal of drugs 

from the market, or earlier during clinical trials, thus causing significant financial losses.1 While 

immune response plays a major role,2 it is now accepted that mitochondrial dysfunction is also 

an important mechanism whereby drugs can induce iDILI.1,3,4 The unpredictability of drug-

induced mitochondrial dysfunction in iDILI can be due to different causes such as drug-drug 

pharmacokinetic and/or pharmacodynamic interactions, the presence of an underlying liver 

disease, or different types of genetic predisposition affecting mitochondrial function.1,5 Genetic 

defects affecting the mitochondrial electron transport chain (mtETC) or the mitochondrial fatty 

acid oxidation (mtFAO) pathway have been reported to favor mitochondrial dysfunction and 

liver injury induced by several drugs such as the anticonvulsant drug valproic acid and some 

antiretroviral agents.1,5

In a recent article published in Chemical Research in Toxicology, Cho and co-workers 

treated C57BL/6 mice with rotenone (a prototypical inhibitor of the MRC complex I), isoniazid 

(an antituberculosis drug inhibiting the MRC complex II), or both compounds, over a six-week 

period.6 Whereas treatment with rotenone alone (0.05 or 0.1% w/w in food) or isoniazid alone 

(0.2% w/w in food) did not cause death among the animals, the coadministration of rotenone 

and isoniazid led to lethality in 100% of the mice. This toxicity was not related to liver injury 

as assessed by hepatic histology and serum glutamate dehydrogenase (GLDH) activity. 

Notably, the latter investigations were performed after only 3 and 6 days since the cotreated 

mice did not survive afterwards. From these results, the authors conclude that inhibition of the 

mtETC is not a significant mechanism of iDILI.6 Although this in vivo study provides 

interesting data, this conclusion is somewhat misleading for the following reasons.  

First and foremost, there is already strong evidence that mtETC impairment is responsible 

for liver injury with different drugs, especially with drugs altering the replication or translation 

of mitochondrial DNA (mtDNA), which encodes for 13 mtETC polypeptides. Of note, such 
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alteration eventually leads to an impairment of electron transfer from both complexes I and II 

and onwards of the hepatic mtETC. For instance, phase II clinical trials with the anti-HBV drug 

fialuridine, which inhibits mtDNA replication,7 were prematurely interrupted due to serious 

adverse effects including unmanageable lactic acidosis, microvesicular steatosis and liver 

failure requiring liver transplantation, or even leading to death.8,9 Similar adverse effects can 

be induced by different antiretroviral nucleoside reverse-transcriptase inhibitors (NRTIs) such 

as zalcitabine (ddC), stavudine (d4T) and didanosine (ddI),10,11 which also strongly inhibit 

mtDNA replication.7,10 Experimental investigations with fialuridine and NRTIs demonstrated 

the major role of mtDNA depletion and mtETC impairment in the development of liver 

injury.10,12,13 NRTI-induced hepatotoxicity occurs only in some patients, thus suggesting the 

role of underlying factors such as genetic predisposition.5,14 Furthermore, other experimental 

investigations support the role of mtETC impairment in liver injury induced by amiodarone,15,16 

perhexiline17 and buprenorphine.18 

Second, in the study of Cho and colleagues, the premature death from extra-hepatic causes 

of the mice cotreated with rotenone and isoniazid most probably precluded the possibility to 

observe delayed mitochondrial toxicity in liver and subsequent hepatic injury.6 Notably, liver 

is not the primary target organ during rotenone toxicity.19 Human and animals studies showed 

that rotenone-induced mitochondrial toxicity causes respiratory depression, cardiovascular 

collapse and severe metabolic (i.e. lactic) acidosis.19 In addition to heart and lungs, kidney and 

spleen are also damaged after rotenone exposure.20 Regarding isoniazid, although 

hepatotoxicity is a significant adverse event in treated patients, hypotension, renal failure and 

metabolic acidosis could also occur.21,22 A thorough necropsy of the deceased mice might have 

uncovered which vital organs were severely damaged by rotenone. Moreover, in vitro 

investigations in hepatocytes might have permitted to evaluate the toxicity of rotenone, 

isoniazid and their combination. Indeed, previous investigations reported that rotenone and 

isoniazid could induce toxicity in hepatic cells.23,24    

Third, the authors looked for hepatic injury in liver sections by using hematoxylin and eosin 

staining. However, this staining method is not appropriate in order to detect microvesicular 

steatosis,25 a liver lesion commonly occurring with drugs and toxins inducing mitochondrial 

dysfunction.7,26 Regardless of the pathophysiological context, minor or moderate 

microvesicular steatosis is better detected with Oil red O or Sudan III staining on frozen liver 

section.25,27 
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Investigations in animals are useful in order to study DILI including iDILI, but different 

factors may greatly modulate the severity of liver injury such as drug distribution and 

metabolism as well as animal species and strain.1,28,29 Interestingly, isoniazid did not induce 

microvesicular steatosis in C57BL/6J mice, whereas this liver lesion was observed in other 

strains such as BALB/cJ, DBA/2J and LG/J mice.30 The latter study and others1,14,31,32 underline 

the importance of genetic susceptibility in the occurrence of drug-induced liver injury, in 

particular when considering genes encoding for mitochondrial proteins. Importantly, drug-

induced mtETC toxicity can cause not only microvesicular steatosis and cell death but also 

other liver lesions such as steatohepatitis and cholestasis.5,17,33 Hence, more investigations are 

clearly needed in order to identify the main factors able to modulate drug-induced 

mitochondrial dysfunction in liver. While in vivo investigations may better reflect the 

complexity of iDILI, complementary in vitro experiments are also useful to decipher the 

mechanisms whereby drugs can be toxic for mitochondria.  
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