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Abstract1 

The tumor microenvironment (TME) plays a central role in tumor development and drug 2 

resistance. Within TME, the stromal cell subset, called cancer-associated fibroblasts (CAFs), is 3 

a heterogeneous population originating from poorly characterized precursors. Since CAFs do 4 

not acquire somatic mutations, other mechanisms like epigenetic regulation, could be 5 

involved in the development of these cells and in the acquisition of tumor supportive 6 

phenotypes. Moreover, such epigenetic modulations have been correlated to the emergence 7 

of an immunosuppressive microenvironment facilitating tumor evasion. These findings 8 

underline the need to deepen our knowledge on epigenetic mechanisms driving TME 9 

development and function, and to understand the impact of epigenetic drugs, that could be 10 

used in future to target both tumor cells and their TME. 11 
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I) Introduction 20 

Epigenetic mechanisms 21 

The concept of epigenetics emerged in the middle of the 20th century, with Conrad 22 

Waddington; who proposed the word, ‘epigenetic’, to describe biological cell diversity that 23 

cannot be attributed to alterations in the deoxyribonucleic acid (DNA) sequence [1]. 24 

Epigenetics is now defined as modifications of DNA or factors associated with DNA, carrying 25 

an information that can be heritable but without inducing any changes into the DNA sequence. 26 

These chromatin modifications are well described and summarized in many reviews [2-5]. 27 

They essentially include: 28 

i) Methylation of DNA in particular; 5-methylcytosine (5mC) enriched CpG islands: This 29 

pattern, especially when found at gene promoters, is associated in most cases to inhibition of 30 

gene expression. DNA methylation is catalyzed by DNA methyltransferases (DNMT), including 31 

DNMT3A/3B that mediates the de novo methylation and DNMT1 that mediate maintenance 32 

of DNA methylation on the newly synthesized DNA strand during DNA replication [6].  33 

ii) Chromatin modifications, based on the post-translational regulation of histones tails: They 34 

can ultimately modulate the compaction of the chromatin and can be associated with gene 35 

expression or repression [7]. Among histone tail modifications, acetylation and methylation 36 

of histones are probably the most studied histone marks. Histone acetylation is associated 37 

with a decompaction of the chromatin and an increased accessibility of gene promoters and 38 

enhancers, allowing transcription factor binding  and regulation of gene expression [8]. 39 

Chromatin acetylation is carried out by histone acetyltransferases (HATs) and deacetylation 40 

by histone deacetyltransferases (HDACs). Histone methylations could be associated with both 41 

activation (H3K4me3, H3K36me3) or repression (H3K9me3, H3K27me3) of gene expression 42 

and is regulated by histone methyltransferases (HMTs or KMTs), adding 1 to 3 methyl groups 43 

on histone lysine or arginine. These modifications can be reversed by histones demethylases 44 

(HDMs or KDMs) that specifically recognize mono, di, or tri-methyl marks [9]. 45 

 iii) Non-coding ribonucleic acid (RNA), including micro RNA (miRNA) and long non-coding RNA 46 

(lncRNA): miRNAs are small RNA molecules, acting at post-transcriptional level to block 47 

translation by degrading messenger RNA (mRNA) [10]. LncRNA regulate gene expression by 48 

regulating chromatin structure, mRNA stability, splicing, and post-translational regulation 49 

processes [11]. 50 
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Altogether, these epigenetic mechanisms are involved in many biological processes, such as 51 

development, gene imprinting, X inactivation, cell fate decision and cell identity control [9,12-52 

14]. They are also shown to be deregulated in many diseases including cancer. Nonetheless, 53 

epigenetic deregulation in cancer is not restricted to cancer cells, but can also be observed in 54 

non-malignant cells of the tumor-microenvironment (TME), suggesting that tumor niche could 55 

also be targeted by epigenetic therapy [15-18]. Through this review, we have presented an 56 

exhaustive account of the epigenetic deregulations observed in the TME, especially of the 57 

stromal cell population corresponding to the cancer-associated fibroblasts (CAFs), the 58 

suppressive immune cells namely; the regulatory T cells (Tregs) and the myeloid-derived 59 

suppressor cells (MDSCs). Finally, we have deliberated the potential impact of epigenetic 60 

therapies on the immunosuppressive properties of TME. 61 

 62 

Genetic and epigenetic deregulation in cancer cells 63 

Cancer is a genetic and epigenetic disease, where genetic alterations and epigenetic 64 

deregulations are entangled from the beginning to the end of the oncogenic process [19]. 65 

Genetic alterations in cancer cells can occur in both oncogenes and tumor suppressors genes 66 

(TSGs). Interestingly, some additional mutations are not oncogenic per se but favor the 67 

crosstalk with TME thus linking tumor genetics and tumor niche features, as observed in 68 

follicular lymphoma (FL) [20] . In addition, in many cancers, genetic alterations can occur 69 

through gene coding for epigenetic regulators. As an example, mutations in genes with a role 70 

of catalyzing the post-translational modification of histones, such as the histone H3 lysine 4 71 

(H3K4) methyltransferases KMT2D and KTM2C, the histone acetyltransferases CREBBP and 72 

EP300, and the histone H3 lysine 27 (H3K27) methyltransferase EZH2, are a hallmark of FL 73 

[21]. About 70% of FL patients harbor at least 2 mutations in chromatin-modifying genes, 74 

making the targeting of epigenetic modifiers an attractive therapeutic target in this disease. 75 

Whilst, the majority of EZH2 mutations are subclonal events, mutations of CREBBP probably 76 

arise as early driver genetic events residing within tumor cell progenitors [22]. It is also the 77 

case for de novo acute myeloid leukemia (AML) where genetic alteration of epigenetic 78 

regulators (DNMT3A and ten-eleven-translocation 2 (TET2)) can be observed at the beginning 79 

of the oncogenic process [23]. Besides mutations, epigenetic deregulations are observed in 80 

virtually all cancer types, with disruptions of DNA methylation, histone modifications and non-81 

coding RNAs mechanisms and are already extensively described [24,25]. Interestingly like 82 
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genetic alterations, epigenetic deregulations in cancer cells could also impact the 83 

establishment of a supportive TME. As an example, overexpression of the H3K27 demethylase 84 

KDM6B impacts the regulation of the NF-kB pathway in melanoma cancer, with the 85 

overexpression of stanniocalcin 1 (STC1) and chemokine (C-C motif) ligand 2 (CCL2) by 86 

melanoma tumor cells, leading simultaneously to macrophage infiltration, angiogenesis, and 87 

lung metastases [26]. 88 

 89 

Tumor microenvironment leads tumor progression 90 

Tumor cells live in a complex ecosystem formed by infiltrating immune cells, endothelial cells, 91 

and stromal cells [27]. There is increasing evidence suggesting the involvement of TME in 92 

many tumorigenic processes including tumor cell proliferation and survival, immune escape, 93 

metastatic process, angiogenesis, and resistance to therapies [28-30]. As an example, in GC-94 

derived B-cell lymphomas, neutrophils recruited through production of IL-8 by stromal cells, 95 

could provide supportive effect to FL B-cells in-vitro [31]. In addition, tumor associated 96 

macrophages (TAM), could also lead to tumor progression through the establishment of an 97 

immune-suppressive microenvironment notably via the production of chemokines like CCL17, 98 

CCL18 and CCL22, with the consequence to sequester Tregs and inhibits immune responses 99 

[32-34]. Immune suppression in the TME is also mediated by stromal cells such as CAFs and 100 

myeloid cells like MDSCs and will be further elaborated in the next sections. Interestingly, the 101 

emergence of immune-checkpoint therapy has revealed a major role of TME in the resistance 102 

to immune-checkpoint inhibitors. In particular through  physical blockade of access by 103 

immune cells to tumor bed (immune-excluded tumors) and inhibition of immune cell 104 

activation/cytotoxicity (inflamed tumors), revealing a key role of immune cell number, 105 

localization, and activation in patient clinical outcome [35,36]. Recently, there have been 106 

scientific studies that describe the potential for combining epigenetic inhibitors with immune 107 

checkpoint inhibitors, as a mechanism of cancer therapy [37-39], This emphasizes the 108 

desideratum to satisfactorily discern the role of epigenetic deregulations in the emergence of 109 

immunomodulating cellular properties of the TME as well as the impact of epigenetic 110 

therapies on these cells.  111 

 112 

 113 
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II) Epigenetic deregulation mechanisms in CAFs 114 

Stromal cell compartment 115 

Cancer-associated fibroblasts (CAFs), represents one of the most abundant stromal cell 116 

populations in the tumor microenvironment. They are frequently described as myofibroblast 117 

characterized by the expression of a-sma and have been shown to enhance tumor 118 

phenotypes, with critical role in tumor initiation, progression, dissemination, immune escape, 119 

and drug resistance [40]. Based on these observations, CAFs emerged as a key player in the 120 

TME with numerous reports describing the strong pro-tumorigenic properties of CAFs [41]. 121 

These pro-tumorigenic properties are mediated as an example, by the expression of stromal 122 

cell-derived factor 1 (SDF-1), also called CXCL12, which could lead to the recruitment and 123 

activation of Tregs [42,43]. CAFs also create an immunosuppressive microenvironment 124 

through the production of TGFβ and the establishment of a particular extra-cellular matrix 125 

(ECM) environment that blocks immune cell trafficking associated with immune-checkpoint 126 

therapy failure [35,44]. To date, it is quite difficult to study native CAF subpopulations due to 127 

their low numbers and lack of characterization for specific surface markers. These difficulties 128 

in describing common CAF markers can be ascribed to their multiple putative origins, including 129 

mesenchymal stromal cells, activation of resident fibroblasts, pericytes and epithelial cells 130 

that follow epithelial-to-mesenchymal transition (EMT), or conversion of endothelial cells 131 

[45]. Moreover, a recent study elegantly demonstrates that CAFs are a heterogeneous 132 

population in situ with different subsets of CAFs carrying specific phenotypes, gene expression 133 

profiles, and functions in a given TME [42]. 134 

Another layer of complexity could come from the fact that not only are tumors spatially 135 

heterogeneous, but CAFs themselves are a heterogeneous population, with different 136 

phenotypes and functions depending on their localization, as well as their origins [46]. In 137 

particular; solid tumors frequently include tertiary lymphoid structures, that contain CAFs 138 

with features of lymphoid stromal cells that regulate immune cell recruitment and activation 139 

within lymphoid organs. Presence of these tertiary lymphoid structures are at least in colon 140 

cancer, associated with a better outcome [47], suggesting possible anti-tumoral activities [48]. 141 

Conversely, infiltration by draining lymph nodes of tumor cells was shown to trigger 142 

reprogramming of resident lymphoid stromal cells into CAFs leading to a reduced capacity to 143 

promote leukocyte recruitment, migration, and activation; a functional phenotype associated 144 
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with a pro-tumoral activity [49]. Similar observation was made in FL where the primary tumor 145 

site is the lymph node and where infiltrating lymphoid stromal cells present a specific 146 

phenotype. These cells notably overexpress CXCL12 under the influence of T-cell-derived IL-4 147 

and trigger FL B cell activation, migration, and adhesion [50]. However, CAFs origin in tumor-148 

invaded lymph node is still a matter of debate and is not fully elucidated. Interestingly, bone 149 

marrow is also penetrated in about 70% of FL patients and CXCL12 is also overexpressed in FL 150 

bone marrow stromal cells. Moreover, bone marrow stromal cells also overexpress CCL2 and 151 

IL-8 that contributes to the recruitment and activation of tumor-supportive monocyte and 152 

neutrophils [31,51].  153 

As discussed above, CAFs are heterogeneous, arising from different cells of origin and 154 

displaying both pro and anti-tumoral activities. To date, there is no clear report showing that 155 

genetic alterations could be the drivers of CAF phenotype [45]. Conversely, studies showing 156 

that CAFs in culture retain some of their properties; suggesting that epigenetic mechanisms 157 

could be involved in changes occurring in their transcriptional and phenotypic profiles [15,49].  158 

 159 

DNA methylation 160 

It was recently shown that CAFs could be involved in the epigenetic reprogramming of cancer 161 

cells, as observed in breast cancer [52]. Moreover, it was proposed that CAFs could present 162 

the same DNA methylation pattern as observed in tumor cells, including a global DNA 163 

hypomethylation and a local DNA hypermethylation. Such profiles have been observed in CAFs 164 

from various cancer types such as gastric cancers [53], colorectal cancer [54], lung cancer [55]. 165 

However, these previous results are not in agreement with a recent study in prostate cancer 166 

[18]. In this study, the authors by using whole-genome bisulfite sequencing, showed that CAFs 167 

from prostate cancer did not exhibit global hypomethylation but rather changed (both 168 

increased and decrease) at discrete loci, suggesting that DNA global hypomethylation in CAFs 169 

is probably, dependent of the cancer type and should be assessed more carefully with 170 

resolutive techniques. These recent observations concerning the whole genome DNA 171 

methylation profile of CAFs, both highlights the importance of analyzing DNA methylation for 172 

reprogramming of CAFs [56].Interestingly, local hypermethylation in CAFs was shown to be 173 

involved in the conversion of normal fibroblasts into pro-invasive fibroblasts in several cancers 174 

(head and neck, lung, and breast cancer). This conversion was mediated through an increased 175 

expression of DNMT3b and a local hypermethylation of SHP-1 [57]. In this context, DNMT3b 176 
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overexpression was induced by the activation of the JAK1/JAK3 (Janus kinase) signaling 177 

pathway by P300 histone acetylation in response to the proinflammatory cytokine leukemia 178 

inhibitory factor (LIF), secreted by tumor cells [57]. In addition, inhibition of the RAS inhibitor 179 

RASAL1 by DNMT1 was observed in CAFs from renal cancer [58], whereas in prostate cancer 180 

aberrant DNA methylation targets the Ras inhibitor RASAL3 [59]. Both lead to the oncogenic 181 

activation of Ras and to the modification of CAF metabolism (glutamine synthesis) which are 182 

associated with an increase in cancer cell survival and proliferation. DNMT1 was also shown 183 

to be up-regulated in breast cancer and its up-regulation is critical for the conversion of 184 

normal fibroblasts into CAFs [60]. This conversion was mediated by HuR protein which 185 

stabilizes DNMT1 mRNA leading to enhanced pro-inflammatory properties of CAFs via an 186 

increased expression of CXCL12, TGFβ, and IL-6 [60]. 187 

  188 

Histone modifications and chromatin remodeling 189 

Histone marks were shown to be involved in the regulation of the functional properties of 190 

CAFs. These regulations can be separated in three different observations:  191 

i) Change in histone modifying enzyme gene expression among CAFs. Indeed, it was described 192 

in breast cancer that CAFs can overexpress HDAC6, leading to the activation  of prostaglandin 193 

E2/cyclooxygenase-2 (PGE2/COX2) expression in association with signal transducer and 194 

activator of transcription 3 (STAT3) and enhancing the recruitment of MDSCs and Tregs cells 195 

[61]. These observations accent that CAF epigenetic deregulations could impact not only 196 

cancer cells but also other cells of the TME [62]. HDAC1/3/8 were also shown to be involved 197 

in CAF differentiation upon TGFβ exposure, increasing tumor growth and ECM secretion [63]. 198 

Interestingly, the use of an inhibitor of colony stimulating factor-1 receptor (CSF-1R); the JNJ-199 

40346527, to target the tumor-associated macrophage, was shown to have a pro-tumoral 200 

effect mediated by CAFs. Indeed this paradoxical  pro-tumoral effect relies on the blockade of 201 

the CSF-1-dependant recruitment of HDAC2 to the promoter of granulocyte-specific 202 

chemokines in CSF1R-expressing CAF, thus increasing the release of MDSC-recruiting 203 

chemokines, that ultimately leads to an increase in polymorphonuclear MDSC (PMN-MDSC) 204 

infiltration, ultimately,explaining the limited clinical efficacy of CSF1-R inhibitor [64].  205 

ii) Chromatin remodeling in CAFs. The transcriptional repressor ATF3 and CSL where shown to 206 

control CAF activation and are repressed in CAFs. Re-expression of these factors triggers 207 

chromatin remodeling and suppression of CAF tumor-promoting properties in mouse models 208 



Rev
ise

d m
an

us
cri

pt

 8 

[65]. In gastric cancer, it was recently shown that CAFs have a distinct H3K27me3 profile 209 

compared to normal fibroblasts. This loss was mostly observed with genes involved in stem 210 

cell niche, cell growth and tissue development like WNT5A, GREM1, NOG and IGF2 [66]. In 211 

addition, the chromatin remodeler HMGA2 enhances the tumor supportive properties of 212 

stromal cells in mouse prostate cancer [67].  213 

iii) CAFs can also affect epigenetic landscape in cancer cells. In ovarian cancer, CAFs induce an 214 

overexpression of EZH2 leading to an increase of cancer cell migration [68]. Interestingly, 215 

epigenetic changes induced by fibroblasts on cancer cells could also be associated with 216 

antitumor properties. In particular, it has been described that normal fibroblasts could inhibit 217 

breast cancer cell proliferation, through mechanosensitive downregulation and nuclear exit 218 

of the H3K9 demethylase JMJD1a leading to a downregulation of YAP/TAZ expression [69]. 219 

This observation paves the way to the idea that reversing and inhibiting epigenetic 220 

mechanisms involved in CAFs conversion/differentiation could promote generation of CAFs 221 

that carry anti-tumor properties. 222 

 223 

Non-coding RNA 224 

Many studies highlight the importance of miRNA regulation in CAF pro-tumoral properties 225 

[70]. As an example, in prostate cancer, miR-15a and miR-16 are downregulated in CAFs thus 226 

reducing the post-transcriptional repression of fibroblast growth factor 2 (Fgf-2) and Fgfr1 and 227 

enhancing cancer cell survival, proliferation, and invasiveness [71]. It was also shown that 228 

upregulation of miR-409 in CAFs from prostate cancer is sufficient for the differentiation of 229 

normal stroma into CAFs [72]. Interestingly, miR-409 can then be released by CAFs via 230 

extracellular vesicles and result in enhanced tumor progression and EMT. In ovarian cancer, 231 

miR-200 supports the up-regulation of CXCL12 beta isoform expression in a specific CAF 232 

subtype and is associated with immunosuppressive cell recruitment [42]. However, in non-233 

mesenchymal ovarian tumors, another subset of CAFs are present which express a miRNA 234 

cluster that represses CXCL12 expression, miR141/200c and decreases Tregs recruitment in 235 

tumor niche [73], highlighting the bivalent role of CAFs and miRNA regulation.  236 

 237 

 238 

 239 
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III) Epigenetic deregulation of the suppressive immune cell subsets 240 

Besides CAFs, the TME also include several pro-tumoral and anti-tumoral immune cell subsets, 241 

and epigenetic deregulation of the immune cells in cancer is already described by others 242 

[16,62]. However, the crosstalk between CAFs and the main suppressive immune cells, namely 243 

Tregs and MDSCs, plays a key role in organizing tumor-promoting microenvironment, 244 

highlighting the need to have a holistic comprehension on the epigenetic deregulation of the 245 

suppressive cells found in TME. Moreover, understanding epigenetic mechanisms sustaining 246 

the development of this immunosuppressive network would be useful in predicting the impact 247 

of epigenetics drugs on the TME (Figure 1). 248 

 249 

Immune cells in the tumor microenvironment 250 

Many immune cell subsets could be identified within TME and participate in the establishment 251 

of an immunosuppressive microenvironment [62]. Among them, Tregs secrete 252 

immunosuppressive cytokines like IL-10, IL-35 and tumor growth factor beta (TGFβ) [74] and 253 

block activation of effector T cells. This blockade is partially mediated through cytotoxic T 254 

lymphocyte associated protein 4 (CTLA-4) expression and consumption of IL-2, limiting IL-2 255 

availability [74]. MDSCs are another heterogeneous subset of immune cells also found in TME 256 

of many tumors [75]. MDSCs belong to the monocytic (M-MDSC) or granulocytic (PMN-MDSC) 257 

lineages and display strong immunosuppressive functions mediated through diverse 258 

mechanisms including production of nitric oxide (NO), reactive oxygen species (ROS), 259 

immunosuppressive enzymes including arginase 1 (ARG1) or indoleamine 2,3-dioxygenase 260 

(IDO),) and immunosuppressive cytokines like IL-10 and TGFβ, that will altogether impact T 261 

cells and naturel Killer (NK) functions [76]. As observed on Tregs, MDSCs immunosuppressive 262 

properties are also mediated by expression of the inhibitory immune checkpoint PD-L1 [77]. 263 

 264 

DNA methylation 265 

DNA methylation was shown to be involved in the regulation of Tregs, the transcription factor 266 

forkhead box P3 (FOXP3) is crucial for the development and function of Tregs and its 267 

expression is strongly dependent on the Treg-specific demethylated region (TSDR), an 268 

epigenetic marker for natural Tregs (nTregs) [78]. DNA demethylation agents used in cancer 269 

cell therapy could thus impact Treg population. As it was shown for CAFs and cancer cells, 270 
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MDSCs also present a global DNA hypomethylation profile with a local gain of DNA 271 

hypermethylation. These are notably shown in ovarian cancer, where MDSCs presents a global 272 

DNA hypomethylation profile compared to dendritic cells, with a specific gain of DNA 273 

methylation and repression of genes associated with an immunogenic phenotype like S1PR4, 274 

RUNX1 and FAS. This loci specific methylation, could be related to an increase of DNMT3A (a 275 

de novo DNA methyltransferase) expression in MDSC [79]. This neoteric observation seems in 276 

contradiction with other studies shown in mice models where Cannabinoid (Δ9-277 

Tetrahydrocannabinol) could induce a global hypomethylation of MDSCs and a decrease of 278 

DNMT3A and DNMT3B expression by DNA methylation of their promotor. This leads to a 279 

higher expression of Arg1 and STAT3, that ultimately promote MDSCs immunosuppressive 280 

properties [80,81], suggesting that a common epigenetic enzyme deregulation could have 281 

different ramifications on acquisition of tumor supportive properties. 282 

 283 

Histone modifications 284 

As observed in CAFs, histone modifications are also found altered in immune cells of tumor 285 

niche. As an example, HDAC11 was shown to be a negative regulator of MDSCs expansion in 286 

mice, in addition the same study described that MDSC isolated from HDAC11-KO tumor-287 

bearing mice were more suppressive than MDSC, purified from the wild type mice [82] . 288 

HDAC11 in co-operation with HDAC6 was also shown to be involved in the regulation of IL-10 289 

expression (a cytokine known to recruit immune-suppressive cells like MDSCs) by antigen 290 

presenting cells (APC). This suggested the involvement of this mechanism during 291 

tumorigenesis to promote an immunosuppressive TME. Besides HDAC11, HDAC2 was shown 292 

to be involved in the conversion of M-MDSCs to PMN-MDSCs with higher pro-tumoral 293 

properties through the inhibition of the retinoblastoma gene 1 (RB1) [83]. Moreover, the H3K4 294 

methyltransferase SETD1B activates nitric oxide synthase 2 (nos2) expression in MDSCs, 295 

leading to an inhibition of T cell-activation, and is associated with an anti-tumor immune 296 

response [84]. 297 

Epigenetic deregulation in tumor cells can also indirectly lead to an increase of the 298 

immunosuppressive properties of TME. In ovarian cancers, EZH2 and DNMT1 are involved in 299 

gene repression of T helper 1 chemokines CXCL9 and CXCL10, associated with a decrease in 300 

CD8+ effector T cell infiltration [85]. In colon cancer, T cell recruitment is also impacted by the 301 
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epigenetic regulation of CXCL9 and CXCL10 expression by H3K27me3 repression marks which 302 

is modulated by an EZH2/KDM6B balance [86]. 303 

 304 

Non-coding RNA 305 

As observed for CAFs, it is well described that miRNA are involved in MDSCs identity and 306 

acquisition of their pro-tumoral properties [16,76]. Exosomes from glioma cells produced in 307 

hypoxic condition induce MDSCs activation by transferring miR-29a and miR-92a. These miRs 308 

enhance the proliferation and function of MDSCs by targeting HMG-box transcription factor 1 309 

(Hbp1), a mitosis inhibitor protein and protein kinase CAMP-dependent type 1 regulatory 310 

subunit alpha (Prkar1a), an inhibitor of the STAT3 pathway activation [87]. In glioma as well, 311 

miR-10a and miR-21 that target RAR-related orphan receptor alpha (RORA) and phosphatase 312 

and tensin homolog (PTEN) respectively are also transmitted to MDSCs via exosomes from 313 

cancer cells, leading to an enhanced MDSCs differentiation and activation [88]. Moreover, in 314 

melanoma, a set of miRs (miR-146a, miR-155, miR-125b, miR-100, let-7e, miR-125a, miR-146b, 315 

miR-99b) have been  associated with MDSC differentiation and poor clinical response to 316 

immune checkpoint therapy [89]. Interestingly, MDSCs in epithelial ovarian cancer can also 317 

influence TME polarization and function through the transmission of miR-21 and miR-29a to 318 

T cells, leading to the blockade of STAT3 signaling pathway and increase in 319 

immunosuppressive Tregs [90].  320 

 321 

IV) Epigenetic therapies 322 

Epigenetic deregulations in tumor cells relies on epigenetic enzymes that can be targeted by 323 

epigenetic drugs; many epigenetic drugs (epi-drugs) have been developed, essentially 324 

targeting the DNA-methylation machinery and HDACs [91].  The development of epi-drugs is 325 

still an intense area of research [4,5,92]. We will not discuss here the direct impacts of these 326 

epi-drugs on cancer cells but how these epi-drugs could directly and indirectly impact cells 327 

present in the TME (Table1). 328 

 329 

 330 

 331 

 332 
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TME mediated anti-tumoral impacts of epi-drugs 333 

-DNA methyltransferase inhibitors  334 

DNA demethylating agents (DNMTi), such as 5-aza-2’-deoxycytidine (5-Aza-Cdr), can be used 335 

to inhibit DNMTs and are currently approved for the treatment of myelodysplastic syndromes 336 

(MDS) and AML [93]. These DNMTi through modulations of the epigenome of the cancer cells 337 

could indirectly impact the TME of the cancer cells. As an example, DNMTi could mimic a viral 338 

infection in cancer cells called “viral mimicry”, [94,95] through the re-expression of 339 

endogenous retrovirus in cancer cells and formation of double stranded RNA. This “viral 340 

mimicry“ by creating an inflammatory context, favor the activation and recruitment of T 341 

lymphocytes and in consequence, lead to an increased efficacy of immunotherapy strategies 342 

[95,96]. Interestingly, DNMTi can also impact directly the TME. In particular, it was recently 343 

proposed that DNMTi could prevent CD8+ T cell exhaustion, by allowing them to retain their 344 

effectors functions [97]. Moreover, in a mice model of breast cancer, It was shown that DNMTi 345 

could impact MDSCs by reducing their expansion and potentially diminishing their 346 

immunosuppressive properties, thus favoring adoptive T cell transfer [98]. This observation 347 

confirmed previous results describing a direct impact of 5-Aza-CdR on MDSCs proliferation, in 348 

mice models of prostate cancer adenocarcinoma and lung cancer [99]. In addition, it was 349 

shown that DNMT3a genetic inhibition, is sufficient to suppress MDSCs immunosuppressive 350 

properties  abrogating their capacity to suppress CD8+ T cell proliferation and the production 351 

of IFNg in the context of ovarian cancer [79]. Finally, to date, only one study describes the 352 

impact of DNMTi on CAF. In this study, done on human fibroblasts from various cancers (head 353 

and neck, breast, lung) the author described a constitutive activation of the JAK1/STAT3 354 

pathway, involving both the de novo methyltransferase (DNMT3b) and DNMT1 for the 355 

maintenance of DNA methylation to stably repress the PTPN6 tyrosine phosphatase leading 356 

to the acquisition of the pro-tumoral properties of CAFs [57]. These pro-tumoral properties 357 

could be then reversed by DNMTi treatment in combination with JAK1/2 inhibitors. 358 

 359 

-Histone modifying enzyme inhibitors 360 

Only few studies, have established the impacts of histone modifying enzyme on CAFs. One 361 

study describes the role of Scriptaid ,a selective inhibitor of HDACs, 1, 3 and 8, on CAFs, in an 362 

in-vitro and in-vivo model of melanoma [63]. They observed, that blocking of the HDACs (1,3 363 

and8) supresses the activation of the TGFbeta pathway in CAFs leading to a reduction of the 364 
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CAFs tumor supportive properties. In a PDX model of pancreatic ductal adenocarcinoma 365 

(PDAC), JQ1, an inhibitor of chromatin readers which contain bromo- and extra-terminal 366 

domain (BET) can reverse CAF phenotype by downregulating key pathways involved in CAF 367 

activation, in particular the activation of the TGFβ pathway [100]. These two studies highlight 368 

the importance of blocking the TGFbeta pathway on CAFs, a pathway that was recently shown 369 

to be associated with the immune-suppressive properties of CAFs [44]. In addition, a recent 370 

study, described that methyltransferase inhibitors (targeting both histones and DNA 371 

methylation), could block the capacity of CAFs to remodel the ECM and prevent metastasis 372 

formation in a model of breast cancer, through the interaction of SNAIL with the 373 

methyltransferase PRMT1 and PRMT4 [101]. 374 

To finish, indirect impact of histone modifying enzyme inhibitors on the TME, mediated by the 375 

cancer cells were described. As an example, in murine ovarian cancer, 5-Aza-CdR induces a 376 

type I IFN response, leading to the activation of cytotoxic T cells and NK cells and reducing the 377 

percentage of MDSCs. These anti-tumor effects are enhanced by a combination of HDACi and 378 

immune checkpoint inhibitors [102]. EZH2 inhibitors were also shown to inhibit Tregs, and to 379 

improve anti-CTLA-4 therapy, highlighting our incomplete knowledge of the impact of epi-380 

drugs on anti-tumor immune response [103]. Finally, Immune checkpoint inhibitors in 381 

association with the two HDACi ,entinostat or mocetinostat, decrease MDSCs recruitment and 382 

increase CD8+ T cell infiltrations in TME of breast, pancreatic cancer and non-small cell lung 383 

cancer [104,105]. 384 

 385 

Epi-drugs promote a pro-tumoral microenvironment 386 

However, epi-drugs could have a dual effect on the stromal compartments. Indeed, DNMTi 387 

were also shown to induce immunosuppressive MSC through upregulation of COX2 [106], an 388 

effect that could be beneficial in immune diseases where immune cells need to be tempered, 389 

but could have inverse effects in cancer. Moreover, DNMTi also increases the 390 

immunosuppressive properties of MDSCs through STAT3 and ARG1 activation [80]. the EZH2 391 

inhibitor GSK126 can induce an increase of MDSCs while CD4 + and CD8+ T cells are decreased 392 

[107]. In addition, some studies suggest that HDACi could enhance MDSCs proliferation 393 

[108,109] as well as Treg differentiation [110-112]. In addition, in PDAC, HDACi were shown 394 

to induce a supportive stroma and inhibition of HDAC2 in CAFs leading to an increased 395 

secretion of tumor-supportive cytokines and chemokines [113]. These were also confirmed in 396 
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breast tumors, where HDAC1 inhibition in CAFs leads to an increased expression of 397 

osteopontin and promote tumor growth [114]. These observations highlight that epi-drugs 398 

could have a dual impact on TME, that need to be cautiously analyzed by further researches.  399 

 400 

V) Future perspectives 401 

In conclusion, epigenetic deregulation in TME, especially in CAFs and MDSCs, are involved in 402 

the establishment of an immunosuppressive microenvironment. Moreover, epigenetic 403 

therapies targeting cancer cells, such as DNMTi and HDACi could favor or repress the tumor-404 

supportive activities of TME. To date, there is a scarcity of studies addressing the direct impact 405 

of these epigenetic therapies on cells present in the TME. As discoveries in the role of TME 406 

towards tumor progression and resistance to therapy advances, it will become inevitable to 407 

address how these treatments could impact cells of the TME. Especially, one challenge that 408 

surfaces, would be the specific targeting of the TME to deliver epigenetic drugs. Development 409 

of strategies to deliver epigenetic drugs is an intense area of research [115,116]. Targeting of 410 

the TME is currently being developed and achievements thus far, in this field of research have 411 

been epitomized in this review [116]. However, identification of the right ligand to target 412 

specifically CAFs will be a prerequisite and is still a matter of research [116]. In addition, with 413 

the development of the single-cell epigenomics technique [117-119], it will be possible to have 414 

a better understanding of the role of epigenetic modifications for the fine-tuning of TME 415 

differentiation and functions. Such techniques, will be a prerequisite for a better design of 416 

adequate epigenetic therapeutic strategies. 417 

  418 
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Executive summary  419 

Epigenetic mechanisms deregulation in CAFs 420 

• Cancer associated fibroblasts (CAFs) are key players of the tumor microenvironment 421 

(TME) and lead to tumor progression. 422 

• CAFs differ from normal fibroblasts, in contrary to cancers cells. CAFs do not present 423 

genomic alterations, highlighting others mechanisms involved in their modification 424 

and associated with their pro-tumorigenic properties. 425 

• CAFs present epigenetic deregulation, like global DNA hypomethylation and local DNA 426 

hypermethylation. DNA methylation seems to be critical for CAF conversions. In 427 

addition, histone modifications and chromatin remodeling are also observed in CAFs 428 

and support their pro-tumorigenic properties. 429 

Epigenetic deregulation of the suppressive immune compartment 430 

• TME include beside CAFs, others immunosuppressive cells and especially regulatory T 431 

cells (Tregs) and myeloid-derived suppressor cells (MDSCs). 432 

• Immunosuppressive properties of Tregs is mediated in part by DNA demethylation of 433 

the Treg-specific demethylated region. In addition, as observed in CAFs and Cancer 434 

cells, MDSCs present a global DNA-methylation profile and a local hypermethylation. 435 

• Epigenetic changes observed in MDSCs also include histone modification and Non-436 

coding RNA that are both involved in the acquisition of their immunosuppressive 437 

properties. 438 

Epigenetic therapies 439 

• Epigenetic drugs (epi-drugs) were first developed to target cancer cells. However, 440 

these epi-drugs can impact directly and indirectly on cells present in the TME 441 

• Epi-drugs could have a dual impact on the immunosuppressive properties of cells 442 

present in TME. These Epi-drugs can both favor or repress the tumor-supportive 443 

activities of TME 444 

• In future, a better understanding of the role of epigenetic modification in the fine-445 

tuning of TME is a prerequisite for a better design of adequate epigenetic therapeutic 446 

strategies. 447 

 448 

 449 
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Table 1. Epigenetic drugs impact both tumor and tumor microenvironment 781 

 782 
783 

Treatments Effects References 

DNA methyltransferase 
inhibitors 

- Activation of “viral mimicry” 
mechanism  

- Enhances tumor antigens, reverse CAFs 
phenotype 

- Up regulation of cytokines in CD8 T cells 
- Reactivation of CXCL9/10 chemokine in 

tumor cells 

[57,85,94,95] 

Histone 
methyltransferase 
inhibitors 

- De-repress CXCL9/10 and effector T 
cells trafficking 

- Increases immune checkpoint therapy 
[85,86,103] 

Histone deacetylase 
inhibitors 

- Decreases of MDSCs and increase CD8+ 
T cells infiltration in association of 
immune checkpoint inhibitor 

- Reverses CAFs phenotype  
- Enhances tumor antigen expression 

[63,102,104,105] 

Chromatin reader 
inhibitors - Reverses CAFs phenotype [100] 
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Figure 1: Impact of epigenetic regulation on crosstalk between tumor cells and CAFs, MDSCs 784 
and T cells of the microenvironment. Immunosuppressive properties and tumor supportive 785 
effects of microenvironment cells are under the control of epigenetic mechanisms that are 786 
deregulated. These deregulations impact: cytokines, chemokines and exosomes secretion. 787 
Altogether they favor tumor progression and metastasis, escape to the immune system and 788 
resistance to immune checkpoint therapy. Green box contains the up-regulated epigenetic 789 
factors and red box the down-regulated.  790 
 791 
 792 
 793 
 794 
 795 
Figure 1796 

 797 
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