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ABSTRACT: Well-defined optically pure Transition 
Metal-complexes bearing C1- and C2-symmetric N- Het-
erocyclic Carbene (NHC) ligands were prepared from 
prochiral NHC precursors. As predicted by DFT calcula-
tions, our strategy capitalizes on the formation of a met-
al-carbene bond which induces an axis of chirality. Con-
figurationally stable atropisomers of various NHC con-
taining TM-complexes were isolated by preparative 
HPLC on a chiral stationary phase in good yields and 
excellent optical purities (up to 99.5% ee). The carbene 
transfer from an optically pure Cu-complex to gold or 
palladium center reveals, for the first time, a full stere-
oretentivity, supporting the hypothesis of an associative 
mechanism for the transmetalation. The potential of 
these new chiral TM-complexes was illustrated in 
asymmetric catalysis with up to 98% ee. 

Due to their unique topology along with a highly modu-
lar steric environment around the metal, chiral N-
heterocyclic carbenes (NHCs) rapidly emerged as ste-
reo-directing ligands.1 Since the first report of a highly 
enantioselective reaction in 2001,2 chiral NHCs were 
intensively studied in enantioselective catalysis with 
resounding breakthroughs.3 Advantageously, their versa-
tile and easy synthetic access led to the development of a 
plethora of chiral NHCs containing various elements of 
symmetry. Among them, chiral Transition Metal (TM) 
complexes containing C2- or C1-symmetric NHC precur-
sors 1 and 2 proved to be quite efficient, thanks to the 
effective chiral relay from the stereogenic substituents of 
carbene backbone to the N-aryl ortho-substituent that 
induces a trans-relationship (Figure 1,a).4 The resulting 
chiral environment close to the metal enabled to reach 
remarkable stereo-inductions (up to >99% ee) in numer-
ous asymmetric catalytic transformations.3 Despite these 
notable achievements, the technology remains somewhat 
costly as optically pure starting materials are required (in 
both enantiomers if possible) for the synthesis of NHCs. 

Consequently, reducing the cost of chiral technology 
remains a longstanding goal for chemists. Moreover, the 
chiral relay generates a mismatch effect which might be 
detrimental to chiral inductions.4 We report herein the 
synthesis of many optically pure (>98% ee) well-defined 
C1- and C2-symmetric NHC-TM complexes containing 
an axial chirality, which may be readily synthesized 
from prochiral NHC precursors (Figure 1,b).5 The chiral 
resolution of resulting stable atropisomers is efficiently 
achieved by HPLC on a preparative scale.6 

 

 Figure 1. Design of chiral NHC-TM catalysts  
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These new C1- and C2-symmetric chiral Cu- and Pd-
complexes display excellent performances in asymmet-
ric catalysis (up to 98% ee). Importantly, and for the first 
time, we demonstrate that the carbene transfer from an 
optically pure Cu-complex to gold or palladium center 
occurred with a full stereoretentivity giving experi-
mental insights to the NHC transmetalation mechanism. 

Our study began with the design of prochiral NHC 
precursors, i.e. imidazolium salts 3∙Cl (Figure 2). Given 
the infinite substitution patterns that could be considered 
either on the carbene backbone or on N-aryl substituents, 
prior theoretical calculations appeared useful to deter-
mine with accuracy the expected rotational barriers of 
the N-aryl bond after coordination to copper(I) chloride 
(>93 kJ∙mol-1; t1/2 >1000 s at 25 °C to observe atropiso-
mers, but ideally >110 kJ∙mol-1; t1/2 >12 days at 25 °C).7 
With a bulky isopropyl group on ortho position of N-aryl 
substituents (Cu-3a), the rotation barrier values are too 
low to obtain stable atropisomers (Figure 2,a; G≠

(Cu) = 
51.0 kJ∙mol-1 and G≠

(BB) = 42.6 kJ∙mol-1).8 

 
Figure 2. DFT calculations of rotational barriers for NHC-
copper complexes Cu-3a,-3b,-3c. G≠

(Cu) and G≠
(BB) are 

the values of rotation barriers on backbone (BB) and 
copper (Cu) sides, respectively.  

Nevertheless, the backbone substitution with methyl 
groups (Cu-3b) leads to a substantial increase of the 
rotation barriers values up to expect configurationally 
stable enantiomers (Figure 2,b, G≠

(Cu) = 116.4 kJ∙mol-1 

and G≠
(BB) = 144.1 kJ∙mol-1). Of note, despite the me-

thyl groups on the backbone, a methyl substituent in 
ortho position of the aryl group (Cu-3c) could not pre-
vent the aryl rotation (Figure 2,c, G≠

(Cu) = 94.4 kJ∙mol-1 

and G≠
(BB) = 123.1 kJ∙mol-1). In order to assess experi-

mentally these data obtained from theoretical calcula-
tions, Cu-3b complex was synthesized from the prochi-
ral imidazolium salt 3b∙Cl (Scheme 1, see Supporting 
Information; SI).9 The deprotonation of the latter by 
K2CO3 in the presence of CuCl afforded the desired 
complex Cu-3b in 57% yield after silica gel purifica-
tion.10 The HPLC analysis on chiral stationary phase 
confirmed clearly that stable atropisomers were formed 
in a racemic mixture (Scheme 1).  

Scheme 1. Synthesis of optically pure copper-complexes 
Cu-3b from prochiral imidazolium 3b∙Cl 

 
aIsolated yields. bDetermined by chiral-stationary phase HPLC analy-
sis. 

Thanks to the robustness of copper-NHC complexes 
toward silica gel, the chiral resolution of (rac)-Cu-3b by 
HPLC on a preparative scale (80 mg, flow-rate = 5 
mL.min.-1; see SI) enabled to isolate both atropisomers 
(+)-Cu-3b and (–)-Cu-3b in excellent yields and re-
markable >99% optical purities. Moreover, the Electron-
ic Circular Dichroism (ECD), affording chiroptical 
properties of the copper complex, showed expected 
mirror-image spectra for both enantiomers (see SI, Fig-
ure S4). X-ray diffraction analysis of the second eluted 
atropisomers (+)-Cu-3b confirmed its structure but also 
enabled to determine its absolute configuration (Sa, 
Scheme 1). Furthermore, kinetic of enantiomerization of 
(Sa)-(+)-Cu-3b in 1,2-dichloroethane at 83.5 °C gave 
access to the experimental rotation barrier value (G≠ = 
117.2 kJ∙mol-1) which fits with the predicted lowest 
value (G≠

(Cu) = 116.5 kJ∙mol-1, see Figure 2,b). This 
validates the use of theoretical calculations as a reliable 
tool to design the NHC structures.  

We next turned our attention to the synthesis of other 
optically pure atropisomeric NHC transition metal com-
plexes. On this concern, the transmetalation represents a 
fundamental organometallic reaction as numerous transi-
tion-metal complexes were and are synthesized via this 
process.11 Furthermore, the elucidation of its mechanism, 
notably when coinage NHC-TM complexes are in-
volved, remains a longstanding goal for organometallic 
chemists. The stable optically pure atropisomers of cop-
per-NHC complexes, in which the axis of chirality is 
induced by the metal-carbene bond, represents an oppor-
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tunity to generate other TM-complexes and to gain valu-
able insights about the mechanistic route of transmeta-
lation (vide infra).12 In that respect, the optically pure 
(Sa)-(+)-Cu-3b complex (>99.5% ee) was treated with 
AuCl∙SMe2 complex in dichloromethane at 40 °C over 2 
h (Scheme 2, a).13 To our delight, the corresponding gold 
complex Au-3b was isolated in quantitative yield. HPLC 
analysis confirmed the high enantiopurity of the newly 
formed gold complex (>99.5% ee) attesting that no rac-
emization occurred during the transmetalation. 

 
Scheme 2. Stereoretentive transmetalation affording opti-
cally pure gold and palladium complexes  

 
aDetermined by chiral-stationary phase HPLC analysis. bReaction 
performed in dichloroethane. 

Moreover, X-ray diffraction analysis allowed us to con-
firm the complex structure and determine its absolute 
configuration (Sa, Scheme 2). Similarly, the transmeta-
lation starting from (Ra)-(–)-Cu-3b afforded the corre-
sponding gold enantiomer (Ra)-(–)-Au-3b in quantitative 
yield and full optical purity, indicating unambiguously 
the stereoretentivity of the transmetalation (Scheme 2, 
b). Importantly the rotation barriers of Au-3b were as-
sessed both by DFT calculations (G≠

(Au) = 145.5 
kJ∙mol-1 and G≠

(BB) = 158.5 kJ∙mol-1) and experimen-
tally (G≠ = 142.4 kJ∙mol-1 at 132 °C in chlorobenzene), 
showing their enhancement over the analogous Cu-
complex. The transmetalation process was then success-
fully extended to -allyl palladium chloride (Scheme 2, 
c).13 Nevertheless, a prolonged reaction time (24 h) was 
required to reach a good 86% isolated yield. The optical 
purity of the newly formed Pd-complex (98% ee) was 
confirmed by HPLC analysis attesting again that no 
racemization occurred during the transmetalation. In 

order to shorten the reaction time, the media was heated 
up to 80 °C. Satisfactory, similar isolated yields could be 
reached with a duration dropping to 2 h. However, a 
slight erosion of the optical purity was observed from 
95% ee at 40 °C to 81% ee at 80 °C. This behavior could 
be relied to a racemization of the starting copper com-
plex occurring at this temperature.14 Indeed, the rotation 
barriers of Pd-3b obtained from DFT calculations 
(G≠

(Pd) = 133.4 kJ∙mol-1 and G≠
(BB) = 159.4 kJ∙mol-1) 

and experimentally (G≠ = 131.5 kJ∙mol-1 at 132 °C in 
chlorobenzene) are higher than for Cu-3b. (Ra)-(–)-Cu-
3b is quite stable at 40 °C with a half-life time of 22 
days, but at higher temperatures, the enantiomerization 
occurs rapidly (t1/2 = 3 h at 80 °C). Regarding palladium 
and gold counterparts, they show greatly higher stabili-
ties, even at 80 °C, with half-life times up to 15 days and 
2 years respectively.14 Considering the aforementioned 
experimental results, a hypothetic reaction pathway for 
the transmetalation process is depicted in Figure 4. First, 
the observed stereoretentivity supports that an associa-
tive pathway could occur for the transmetalation of 
coinage NHC-TM complexes (Figure 3, A). 

 

Figure 3. Proposed associative (A) vs dissociative (B) 
transmetalation pathway. 

Indeed, a dissociative pathway (Figure 3, B) that would 
involve a transient free carbene seems incompatible with 
stereoretention as partial to full racemization could hap-
pen due to the free rotation around the N-Aryl bond,15 as 
demonstrated by DFT calculations with low values for 
rotational barriers on free NHC (G≠

(Carbene) = 60.9 
kJ∙mol-1; t1/2 = 0.8 ms at 40 °C). Second, considering the 
steric hindrance within the metal coordination sphere, a 
four–center transition state is suspected for the associa-
tive pathway, probably in the less sterically hindered 
pocket in opposite side to that of iPr-aryl substituents 
(Figure 3, A). DFT calculations related to the formation 
of Au-3b from Cu-3b are currently underway to provide 
useful information regarding the transmetalation path-
way. Of note, Au-3b and Pd-3b could be also prepared 
as heterochiral complexes from the corresponding imid-
azolium and then efficiently separated by chiral HPLC 
on preparative scale.  
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Following the aforementioned protocol depicted in 
scheme 1, various optically pure C1-symmetric Cu-
complexes were synthesized from NHC precursors 3b,d-
h featuring bulky ortho-substituents (Scheme 3). In all 
cases, stable atropisomeric complexes were formed and 
each enantiomer was isolated in moderate to excellent 
yields and high optical purities. Moreover, the absolute 
configuration of each complex was assigned via X-ray 
diffraction analysis.16 The methodology was then ex-
tended to synthesis of C2-symmetric NHC complexes 
from symmetric NHC precursors 4a-c (Scheme 4). Nev-
ertheless, the formation of meso complexes could com-
plicate the cHPLC resolution in addition to lower the 
quantity of expected chiral complexes. Indeed, with 
imidazolium 4a∙Cl and 4a∙BF4, meso and heterochiral 
complexes Cu-4a and Pd-4a were respectively isolated 
with ratios of 1:1.8 and 2.2:1 (Scheme 4). Fortunately, 
the preparative cHPLC allowed their efficient separa-
tions and the expected C2-symmetric homochiral Pd-4a 
and Cu-4a complexes were isolated in moderate to good 
yields (27-34%) and remarkable optical purities 
(>99.5% ee), highlighting the versatility of the concept. 
Heterochiral salts could easily be separated from the 
meso stereoisomers and used to prepare complexes Pd-
4b and Pd-4c, which were isolated free of meso isomers, 
and very efficiently resolved on preparative cHPLC. For 
instance, both enantiomers of Pd-4b were separated with 
91% yield on 580 mg-scale in only 3 hours. DFT calcu-
lations confirmed that an additional ortho-substituent, 
even a fluorine, is sufficient to restrict the aryl rotation 
along the N-C bond which leads to configurationally 
stable NHC precursors (lowest rotation barriers: for 
4a∙BF4: G≠

(H) = 69.7 kJ∙mol-1; for 4b∙BF4: G≠
(H) = 

155.9 kJ∙mol-1; for 4c∙BF4: G≠
(H) = 108.7 kJ∙mol-1).17 

Scheme 3. Library of optically pure C1-symmetric 
NHC-copper complexes 

 
aIsolated yields after preparative chiral resolution. bDetermined by chiral-
stationary phase HPLC analysis.  

Scheme 4. Library of optically pure C2-symmetric 
NHC-copper and -palladium complexes 

 
aDiastereomers were separated by SiO2 chromatography. bIsolated yields 
after preparative chiral resolution. c34% of meso Cu-4a was also isolated. 
dDetermined by cHPLC analysis.  

X-ray diffraction analysis of homochiral complexes 
confirmed their structure and enabled to determine their 
related absolute configurations (Scheme 4).16 Having 
these new C1- and C2-symmetric NHC TM-complexes in 
hands, we next investigated their catalytic performances 
in asymmetric catalysis. First, the copper-catalyzed 
asymmetric allylic alkylation18 of diethylzinc to allyl 
phosphates 8 was explored (Scheme 5,a).  

Scheme 5. Catalytic performances of optically pure 
NHC Cu- and Pd-complexes in asymmetric catalysis 

 

aMolar ratio of  adduct were monitored by 1H NMR spectroscopy 
analysis. bIsolated yields after SiO2 chromatography. cDetermined by 
chiral-phase GC analysis. dDetermined by chiral-phase HPLC analysis. 
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From the copper-catalysts library19, optically pure C1-
symmetric (Sa)-(+)-Cu-3h and C2-symmetric (Ra,Ra)-(+)-
Cu-4a featuring respectively ortho-F/CHPh2 and ortho-
H/CHPh2 substituents were found to be the best cata-
lysts. The desired -adducts 9a,b were produced with 
complete regioselectivity and up to 90% ee, and isolated 
in excellent yields.20 Advantageously, by using opposite 
enantiomers of Cu-complexes, the -adducts (ent)-9b 
could also be produced with similar efficiencies. The 
second asymmetric transformation investigated was the 
asymmetric intramolecular -arylation21 of amides 10 

(Scheme 5,b). Among C2-symmetric Pd-complexes22, 
the homochiral (Sa,Sa)-(–)-Pd-4b afforded the highest 
enantioselectivity. Resulting adducts (R)-11a,b were 
isolated in good to excellent yields and remarkable chi-
ral inductions (95 to 98% ee). Of note, (S)-11a was also 
obtained in similar good yield and ee using (Ra,Ra)-(+)-
Pd-4b. 

In summary, a novel access to chiral C1- and C2-
symmetric NHC-TM complexes from readily accessible 
prochiral NHC precursors was developed. As predicted 
by DFT calculations, the appropriate choice of the N-
aryl ortho-substituents and the NHC backbone substitu-
ents induced an axis of chirality which is constrained by 
the carbene-metal coordination. Resulting configura-
tionally stable atropisomers of TM-complexes were 
successfully separated by preparative chiral HPLC in 
good yields and up to >99.5% ee. For the first time, an 
optically pure Cu-complex was successfully 
transmetaled to gold and palladium counterparts in ex-
cellent yields with a full stereoretentivity (>99.5% ee). 
Valuable insights to the transmetalation pathway were 
therefore obtained, supporting the hypothesis of an asso-
ciative mechanism. The catalytic performances of these 
Cu- and Pd-complexes were illustrated in Cu-AAA and 
Pd-AIA with up to 98% ee. 
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