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27 Abstract 

28 While the use of transition metal oxides in catalyzing advanced oxidation reactions has 

29 been widely investigated, very few reports have focused on how the preliminary contact of 

30 oxides with target compounds may affect the succession of reaction. In this study, we 

31 examined the adsorption and electron transfer reactions of two fluoroquinolones, flumequine 

32 (FLU) and norfloxacin (NOR), with goethite (α-FeOOH) or manganese (Mn) oxide, and their 

33 impact on the subsequent mineralization of target compounds using H2O2 or S2O8
2- under 

34 UVA irradiation. Intriguingly, higher total organic carbon (TOC) removal was achieved when 

35 antibiotics and metal-oxides were allowed for pre-equilibration before starting the oxidation 

36 reaction. The rate and extent of TOC removal is strongly dependent on the molecule structure 

37 and the redox-active mineral used, and much less on the pre-equilibration time. This high 

38 efficiency can be ascribed to the presence of reduced metal ions, chemically or 

39 photochemically generated during the first stage, onto oxide minerals. Oxide-bound MnII 

40 plays a crucial role in catalyzing oxidant decomposition and then producing greater amounts 

41 of radical species through a photo-assisted redox cycle, regardless of the underlying surface, 

42 MnIVO2 or MnIIIOOH. This finding will be of fundamental and practical significance to Mn-

43 based oxidation reactions and wastewater treatment processes.

44

Page 2 of 34

ACS Paragon Plus Environment

Environmental Science & Technology



3

45 1. Introduction

46 Fe- and Mn- oxyhydroxides, commonly found in the Earth’s near-surface environment, 

47 are generally the dominant sorbents and redox-active compounds in the environment 1-2. 

48 Interactions of these oxides with organic compounds may involve the adsorption associated or 

49 not with a heterogeneous redox reaction. The latter, which is typically attributed to sequential 

50 one electron-transfer reactions, results in reductive dissolution of the oxide into reduced ions 

51 (e.g. FeII or MnII) and oxidative transformation of the molecule into oxidized products 3-5. 

52 These interactions are mainly affected by solution pH, oxide surface properties, and structural 

53 characteristics of target compound 6-13. 

54 The heterogeneous electron transfer reactions are generally studied in the context of 

55 characterization of affected environments, as the fate of organic contaminants is often tied to 

56 their affinities to surfaces of soil and sediment mineral particles. Some reports contend that 

57 theses reactions can also be applied in water and wastewater treatment technologies11-13, even 

58 though there is no total effective destruction of target contaminants. Indeed, one electron-

59 transfer reactions with Mn- or Fe-oxides produce a suite of products, including ring-cleavage 

60 products or dehalogenated products5-10. Although they could modify the contaminant 

61 structure, they are not able to achieve total mineralization, i.e., their complete conversion to 

62 CO2 and/or inorganic ions. The latter may be achieved by advanced oxidation processes 

63 which are a set of techniques based on the catalytic decomposition of oxidants, hydrogen 

64 peroxide (H2O2) or persulfate (S2O8
2-)14-16, and then the formation of strongly reactive 

65 transient species such as the hydroxyl radical, ●OH (2.8 V), or the sulfate radical, SO4
●- (2.5-

66 3.1 V) 17-18. 

67 In this work, we examined, for the first time, how the electron transfer reactions between 

68 organic contaminants and redox-active minerals can determine the subsequent total removal 

69 or mineralization of target compounds. For this purpose, we first studied the reaction (i.e., 
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70 adsorption and/or heterogeneous redox reactions) of two kinds of fluoroquinolone antibiotics 

71 with goethite (α-FeOOH) and manganese oxide (MnO2), which are the most common redox-

72 active minerals in terrestrial and marine environments. The formation of byproducts and 

73 reduced metal ions during the first stage of reaction was also monitored. Flumequine (FLU) 

74 and norfloxacin (NOR) were selected because of their growing use in human and veterinary 

75 medicine and continuous release into the environment, resulting in their large presence in 

76 surface waters, groundwaters and sediments at concentrations levels ranging from ng to µg 

77 per L 19-20. Fluoroquinolones such as NOR are electron donor–acceptor compounds with the 

78 piperazinyl group serving as the electron donor and 4-oxoquinoline-3-carboxylic acid as the 

79 electron acceptor in the neutral and zwitterion forms.

80 The catalytic decomposition of H2O2 or Na2S2O8 and degradation/mineralization of target 

81 compounds were then investigated in presence of MnO2 or α-FeOOH, under dark and UVA 

82 irradiation. We also evaluated the impact of pre-equilibration time (i.e., first contact between 

83 molecules and oxides) on the mineralization of compounds through hydroxyl/sulfate radical -

84 based oxidation processes. Radical scavengers and Laser Flash Photolysis (LFP) experiments 

85 were performed to assess the involved radical species and their reactivity with generated 

86 byproducts. To assess the contribution of MnIV and MnIII in the overall reaction, Mn-oxides 

87 with lower valence states as in manganite (γ-MnIIIOOH) were investigated, and the role 

88 played by mineral-bound MnII on the heterogeneous oxidation process was discussed.  

89
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90 2. Materials and methods

91 2.1. Chemicals

92  All chemicals were of pro-analytical quality or better and purchased from Sigma-

93 Aldrich, France. FLU (purity > 99%) and NOR (purity > 98%) stock solutions were prepared 

94 separately by dissolving 20 mg of both chemicals in 0.5 mL of 1 M NaOH, then diluted to 1 L 

95 with ultrapure water. Hydrogen peroxide (H2O2, 35% w/w) and sodium persulfate (PS) 

96 (Na2S2O8 > 99.5% purity) were also provided by Sigma-Aldrich. Sulfuric acid, Sodium 

97 hydroxide, Manganese (II) nitrate tetrahydrate (Mn(NO3)2.4H2O), 2-propanol (2-Pr, C3H8O), 

98 t-butanol (t-but, C4H10O) were obtained from Sigma–Aldrich. Solutions were prepared with 

99 high-purity water obtained from a Millipore Milli-Q system.

100 Goethite (α-FeOOH), manganite (γ-MnOOH) and manganese oxide (MnO2) particles 

101 were synthesized as described in previous studies 21-23. The nature of goethite and manganite 

102 was confirmed by X-ray diffraction (XRD) (Fig. S1). The diffractogram of manganese oxide 

103 corresponds to that of pyrolusite (Fig S1). The B.E.T. specific surface area of α-FeOOH, γ-

104 MnOOH and MnO2 were 85 ± 1, 64 ± 1 and 371 ± 5 m2 g-1, respectively. The point of zero 

105 charge (PZC) determined from potentiometric titration of MnO2 and MnOOH were 2.4 and 

106 6.3, respectively, whereas that of goethite was 9.1. Mn average oxidation state (AOS) of 

107 pyrolusite was measured by a back-titration method using a KMnO4 standard solution. 24 AOS 

108 of the MnO2 used in this study was determined as 3.95.

109 2.2.   Adsorption, redox and Laser Flash Photolysis experiments

110 Solubility experiments were conducted by suspending separately FLU and NOR 

111 powders (~4-6 mg) in 10 mL water solution containing NaCl (10 mM) as a function of pH. 

112 The suspensions were equilibrated for 24 h, thereafter the supernatants were filtered (0.2 µm). 

113 Then, FLU and NOR concentrations were measured by high-performance liquid 
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114 chromatography (HPLC, Waters 600 controller with a C18 column (250 mm×4.6 mm i.d., 5 

115 μm). Solubility is relatively low at acidic pH for FLU (~80 µM) and between pH 7 and 8 for 

116 NOR (~1200 µM) (Fig. S2). 

117 Adsorption and redox kinetics were then evaluated at pH = 6.5 ± 0.1, NaCl 

118 concentration = 10 mM, NOR initial concentration = 24 µM, FLU initial concentration = 24 

119 µM with α-FeOOH and MnO2 concentration = 10 m2 L-1. All batch experiments were 

120 performed under an atmosphere of N2 (g) to purge dissolved CO2 from the aqueous solutions. 

121 Because the adsorption of target compounds is negligible at pH higher than 10 (according to 

122 preliminary adsorption tests), desorption tests were conducted at pH = 11 as a means to check 

123 the mass balance. Amount of MnII released in the reaction solution was monitored by Atomic 

124 Absorption Spectrometer (Varian AA 140). Possible generation of dissolved ferrous ion was 

125 assessed by UV-visible spectrophotometry (Cary 50 probe, Varian) using the 1-10 

126 phenanthroline method.

127 Aqueous concentrations of NOR and FLU were determined using a Waters 600 

128 controller high performance liquid chromatography (HPLC) system equipped with an 

129 autosampler (Waters 717 plus), a C18 column (250 mm×4.6 mm i.d., 5 μm) and a UV 

130 detector (246 nm for FLU or 277 nm for NOR, Waters 2489). The mobile phase was a 

131 mixture of water/acetonitrile (60:40 v/v) containing 0.1 % of formic acid. The flow rate of the 

132 mobile phase was set at 1 mL min-1 in an isocratic mode. Under these conditions, the retention 

133 times of FLU and NOR were 6.5 and 7.5 min, respectively. 

134 Oxidation by-products were analyzed with a water ultrapure HPLC-MS/MS (Acquity 

135 UPLC) system, equipped with a BEH C18 column (100 mm x 2.1mm, 1.7µm). The mobile 

136 phase consisted of acetonitrile containing 0.1 % of formic acid (eluant A) and mixture 

137 acetonitrile/water (i.e., 10 % / 90 %) containing 0.1 % of formic acid (eluant B) with gradient 

138 0 min / 0 % A – 1 min/0 % A – 9 min/100 % A – 12 min / 0 % A and a flow rate equal to 400 
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139 µL min-1. An electrospray ionization (ESI) was used for the MS measurements in positive 

140 ionization mode and full scan acquisition.

141 The reactivity of NOR or FLU and their byproducts with radical species was monitored 

142 using a Laser Flash Photolysis apparatus (LFP), following previously reported procedure.25 

143 Briefly, a laser flash photolysis system using 266 nm excitation wavelength (pulse energy of 

144 45 mJ) is used to generate hydroxyl and sulfate radical from H2O2 and PS solutions in the 

145 presence of different concentrations of fluoroquinolone. Aliquots of chemical solutions (FLU, 

146 NOR, S2O8
2−, H2O2, etc.) were mixed just before each LFP experiment to obtain the desired 

147 concentrations. Reactivity of FLU with hydroxyl radical was determined by using chemical 

148 competition kinetics with thiocyanate anion (SCN–) and consequent formation of di-

149 thyociante radical anion (SCN2
•–) detected at 470 nm. Absorption of SCN2

•– transient was 

150 correlated to the competitive reactivity between ●OH and fluoroquinolones in solution to 

151 obtain the second order rate constant. 25 The second-order rate constant for the reactivity 

152 between SO4
●- and NOR or FLU, was determined from the slope of the linear correlation 

153 between the first-order decay constant of the radical, determined from the regression lines of 

154 the logarithmic decays of SO4
●- signal monitored at 450 nm, and the initial concentration of 

155 fluoroquinolone. Each error was obtained from the scattering of the experimental data from 

156 the fitting line. The constant was reported as L mgC-1 s-1 after determination of carbon 

157 concentration (mgC L-1) using TOC analyser of each sample. Experiments were performed at 

158 pH 3 and 9 for FLU (pKa 6.3) and at pH 3.5, 7.5 and 11 for NOR (pKa 6.2 and 8.5) in order 

159 to determine the reactivity of neutral and deprotonated forms, which coexist at pH 6.5. 

160 2.3. UVA irradiation experiments

161 A photoreactor (made of borosilicate glass) of 500 mL capacity was used to perform all 

162 experiments at pH 6.5 ± 0.1. The tubular reactor, 34 cm high and 3.8 cm in diameter, was 

163 designed. This setup has an enclosed chamber comprising this reactor; an UVA lamp 24 W 
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164 (Philips PL-L) placed in the center of the glass cell emitting in a wavelength region 320-400 

165 nm with the emission peak centered at λmax = 360 nm, yielding a irradiation intensity of 16 

166 mW cm−2 quantified with an UVA Radiometer (VLX- 3W equipped with a sensor CX 365, 

167 ALYS Technologies, Switzerland). The solution with catalysts was continuously stirred with 

168 a magnetic bar at 180 rpm. The pH of the sample solution was measured with a VWR 

169 instruments 6000 pH-meter. Monitoring of suspension temperature indicated no significant 

170 fluctuation (20 ± 2 °C) along the experiment.   

171 Two different experiments were conducted at room temperature. In the first series of 

172 experiments, FLU or NOR, oxidants (H2O2 or S2O8
2-) and oxides (α-FeOOH or MnO2) were 

173 mixed simultaneously few minutes before UVA irradiation. In the second experimental series, 

174 suspensions containing antibiotics and goethite or manganese oxide were stirred in the dark 

175 for a certain time (1, 24, or 48 h) before adding oxidant and/or starting UVA irradiation. 

176 In both experiments, 0.059 g of goethite or 0.0135 g of MnO2 were added to 500 mL of 

177 contaminant solution and the pH was kept constant (6.5 ± 0.1) using NaOH or H2SO4. At each 

178 time interval, an aliquot of solution was collected to determine the aqueous concentration of 

179 FLU or NOR by HPLC/UV. Total Organic Carbon (TOC) was determined using a TOC-

180 meter (Shimadzu TOC-VCSH). All experiments were conducted in triplicates and showed a 

181 good reproducibility within 5 % of relative standard deviation.

182

183 Results and discussion
184
185 3.1. Assessment of adsorption and electron transfer reactions on mineral surfaces 

186 Sorption kinetics of FLU onto 10 m² L-1 of oxide (α-FeOOH or MnO2) with 10 mM 

187 NaCl at pH = 6.5 ± 0.1 conducted over a 6-day period showed that a steady-state was 

188 achieved within approximately 20 h of reaction time (Fig. S3). Mass balance showed that 

189 FLU was removed only by adsorption (i.e., ~ 40 % of FLU was sorbed onto 10 m² L-1 of α-
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190 FeOOH or MnO2, respectively), and that transformation by oxidation did not occur under the 

191 experimental conditions of this study. As widely reported for organic ligands, adsorption 

192 kinetics onto mineral surfaces could be described according to the pseudo-first-order 

193 equation. The pseudo-first-order apparent rate constant kapp (min-1) obtained by linear 

194 regression of -ln([FLU]aq /[FLU]o) versus time were found close for α-FeOOH (0.15 min-1) 

195 and MnO2 (0.17 min-1).

196 Both adsorption and oxidation appear to be involved in the removal of NOR in presence 

197 of α-FeOOH or MnO2 (See [NOR]tot and [NOR]aq in Fig. S3), which is in agreement with 

198 previous works 6,26. This oxidation reaction was more pronounced for MnO2 likely due to its 

199 higher redox potential, i.e., MnIII/MnII being more electron acceptor than FeIII/FeII 3-5 :

            FeIIIOOH(s) + 3H+ + e-             Fe2+
(aq) + 2H2O    E° = +0.67V                              (1)             

            MnIIIOOH(s) + 3H+ + e-             Mn2+
(aq) + 2H2O    E° = +1.50V                              (2)          

            MnIVO2(s) + 4H+ + 2e-             Mn2+
(aq) + 2H2O    E° = +1.23V                              (3)           

200

201 The disappearance kinetics of compounds undergoing adsorption/transformation process on 

202 metal oxides cannot be described by simple equations that include classical exponential 

203 functions (e.g., pseudo-first order model). Instead, we calculated an initial rate constant (kin in 

204 min-1) over the first stage of reaction (i.e., 60 min) by plotting a linear regression of -

205 ln([NOR]aq/[NOR]0) versus time, and we found 0.19 min-1 for α-FeOOH and 0.32 min-1 for 

206 MnO2. This behavior has been attributed to the complexity of involved reactions including 

207 formation of precursor complex, dissolution of reduced metal, accumulation of reaction 

208 products and/or a gradual change of the reactivity of surface sites. 

209 In MnO2/NOR system, an increase in dissolved MnII concentration was observed over 

210 time, confirming that NOR has been oxidized by MnO2 under dark conditions (Fig. 1). 

211 However, the measured amount does not correspond to the stoichiometric amount with 
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212 respect to the NOR degradation, most likely due to strong adsorption of MnII ions to MnO2 

213 surfaces at pH 6.5 (see below for more details). In case of goethite, dissolved FeII ion was 

214 below detection limit (i.e. 0.2 µM), probably because of the low amount of generated FeII (low 

215 oxidation extent, Fig. S3), and strong binding of FeII to FeOOH surfaces at pH 6.5 and 

216 subsequent oxidation of adsorbed FeII 10. 

217 Unlike FLU, NOR binding is followed by an electron transfer process resulting in the 

218 concomitant oxidation of NOR and reduction of surface-bound metal. In case of MnO2, one 

219 electron is transferred from ligand to the surface-bound MnIV to yield radical intermediate and 

220 MnIII that can be further reduced to give MnII. Subsequently, the formed radical intermediate 

221 (NOR°) may undergo several different reaction pathways to yield a range of byproducts as 

222 follows: 

223 ≡MnIV + NOR→ ≡MnIV −NORad → ≡MnIII /MnII −NOR+•→ MnII + NORox                                      (4)

224

225 Although both FLU and NOR may form similar surface complexes with metal surfaces (i.e. 

226 metal-bonded complexes with surface sites and/or directly hydrogen-bonded complexes with 

227 surface hydroxo groups) 10,21,27, oxidative transformation was only observed for NOR. Since 

228 FLU does not contain a piperazine ring, we may suppose that the piperazine moiety, the 

229 electron donor group, should play a critical role in the molecular transformation with FeOOH 

230 or MnO2. This phenomenon has been proposed in previous work6 to explain why four 

231 fluoroquinolones all containing a piperazine moiety exhibited a very similar oxidation rate. 

232 The nature of primary oxidation byproducts identified in the present work as a result of 

233 dealkylation and hydroxylation at the piperazine moiety6, further supports this hypothesis. 

234 Indeed, two main byproducts were detected by LC/MS/MS analysis conducted on NOR 

235 solution reacted with MnO2 for 22h (Fig. S4). The first (m/z = 251, M – 69) is supposed to 

236 form through N-dealkylation of the piperazine ring with a final aniline functional group, while 
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237 the second (m/z = 350, M+30) could correspond to C-hydroxylation of the piperazine moiety, 

238 with two additional >C=O groups in the M + 30 product (Fig. S4). 

239
240 3.2. Assessment of radical-based oxidation in presence of H2O2 or PS under UVA 

241 irradiation

242
243 The addition of oxidant to the initial suspension allowed much better removal extent in 

244 MnO2 than in goethite after 300 min of reaction time (Figs. S5 & S6). In all experiments, the 

245 direct photolysis of two pollutants is less than 10 % and the degradation resulting from 

246 photochemical activation of oxidants less than 20 % (Figs. S5 & S6). The removal resulting 

247 upon irradiation of solids (i.e. oxide/UV systems) is depended on the oxide surface and 

248 molecule. For NOR, 90 % with MnO2 and 20% with goethite were observed (Figs. S6), which 

249 are similar to those observed under dark conditions (i.e. through sorption and heterogeneous 

250 redox reactions, Fig. S3), ruling out additional contribution of light. For FLU, almost 30 % of 

251 FLU removal was observed for both solids under UVA irradiation (Fig. S5), which 

252 corresponds to the sorption reaction (Fig. S3), confirming that contribution of ligand to metal 

253 charge transfer is small to negligible under our experimental conditions.  

254 MnO2 exhibited more efficiency for thermal activation of oxidants (H2O2 or PS) than 

255 goethite, while the combination with UVA showed the best performance (i.e. > 95 % of FLU 

256 or NOR were removed). To account for the adsorption on solids (goethite or MnO2), 

257 desorption tests (adding NaOH to reach pH 11) were carried out and total amounts of FLU or 

258 NOR were plotted against time (Figs. S5 & S6). We also monitored the time-trend of TOC in 

259 oxidation systems. About 30 % of mineralization of NOR was obtained for H2O2/MnO2 and 

260 PS/MnO2 systems, while 16 % and 20 % were achieved for H2O2/goethite and PS/goethite, 

261 respectively (Fig. 2). UVA irradiation allowed more TOC removal, but did not achieve 

262 complete mineralization (Fig. 2 for NOR and Fig.S7 for FLU). 
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263 Previous works reported that superoxide radical (O2
●-) is the dominant reactive species 

264 generated in the thermal catalyzed decomposition of H2O2 by MnO2 at neutral pH, and at high 

265 concentration of H2O2 (i.e. > 7.5 mM)14, 28. In the case of MnO2-catalyzed activation of PS, 

266 several works showed that the Mn(IV)-oxides catalytically decompose PS into sulfate radicals 

267 (SO4
•–) and hydroxyl radicals (•OH) 9, 29-30. However, a recent work has identified singlet 

268 oxygen (1O2) as the primary species during PS activation by pyrolusite (β-MnO2), which can 

269 be generated by direct oxidation or recombination of superoxide ions and radicals from a 

270 metastable manganese intermediate at neutral pH 31. In the present work and under UVA 

271 irradiation, insights into degradation pathways with minerals + oxidants + UVA could be 

272 obtained by studying the effects of 2-propanol (2-Pr) and tert-butyl alcohol (t-but), because of 

273 their different selectivity (i.e., second-order rate constants) with hydroxyl and sulfate radicals. 

274 2-Pr reacts with both OH and SO4
 , with the second-order reaction constant  = 𝑘𝐻𝑂•,2 ― 𝑃𝑟

275 1.9×109 M1 s1 and = 4-7.42 107 M1 s1) 32-33, while t-but can be considered to be 𝑘𝑆𝑂• ―
4 ,2 ― 𝑃𝑟

276 more selective toward •OH  = 6.0 x 108 M-1 s-1) than SO4
•- ( = 4-8.4 x 105 𝑘𝐻𝑂•,𝑡 ― but 𝑘𝑆𝑂• ―

4 ,𝑡 ― but

277 M-1 s-1) 32-34. For an accurate assessment of reactivity with radical species, we have also 

278 determined the bimolecular reaction rate constants with OH and SO4
  at different pH values 

279 (Table 1 and Fig. S8). At the working pH (6.5), both protonated and ionized forms of FLU 

280 may co-exist (See Fig. S2 for distribution of species vs pH). Radical scavenging experiments 

281 were only performed with FLU, because of the fast heterogeneous oxidation reaction of NOR 

282 with metal oxides. 

283 According to scavenging experiments, 2-propanol has strongly inhibited the FLU degradation 

284 at 0.5 mM of H2O2 (Fig. S9), suggesting that the OH was by far the dominant reactive species 

285 accounting for almost 95 % of degradation. When PS was used instead of H2O2, inhibition 

286 observed with t-but used as selective scavenger of •OH compared to 2-Pr suggested that the 

287 degradation would prevalently take place upon reaction with SO4
•- (Fig. S9, Table S1). From 
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288 the data, SO4
•- contribution up to 90% of total FLU degradation can be estimated (Table S1). 

289 At pH 6.5, reaction of SO4
•- with HO- in order to generate OH must be of less extent, 

290 because of the low concentration of HO- in solution at this pH value and the low reaction rate, 

291 kHO
- SO4

•-  = 7 x 107 M-1 s-1  29, 35. 

292 Therefore, decomposition of H2O2 or S2O8
2- by FeOOH could proceed through a 

293 reaction chain, which lead to the production of radical species 14, 15, 36:

            ≡FeIII + H2O2           ≡ FeII + HO2
• / O2

•- + H+                                                                                              (5)
294 ≡FeIII  +  O2

•-            ≡FeII + O2                                                                                                                                            (6) 

295 ≡FeII + H2O2           ≡ FeIII + HO- + •OH                                                                               (7)

296   
297 ≡FeII + S2O8

2-           ≡FeIII + SO4
2− + SO4

•-                                                                                                            (9)
298

299 Likewise, Mn could also initiate H2O2 or PS decomposition to generate radical species 

300 following equations 29, 37, 38,39 :

301 ≡MnIV + H2O2                ≡MnIII + HO2
•/ O2

•- + H+                                                      (10)     

302 ≡MnIV/MnIII  +  O2
•-              ≡MnIII/MnII  + O2                                                                                                     (11)        

303 ≡MnIII + H2O2            ≡MnIV + HO- + •OH                                                                          (12)

304 ≡MnII + H2O2            ≡MnIII + HO- + •OH                                                                           (13)

305 ≡MnIV + S2O8
2-             ≡MnIII + S2O8

•-                                                                               (14)

306 ≡MnIII + S2O8
2-             ≡MnIV + SO4

•- + SO4
2-                                                                    (15)     

307 ≡MnII + S2O8
2-            ≡MnIII + SO4

•- + SO4
2-                                                                     (16)                                                      

308

309 Because the conduction bands of MnIV(hydr)oxides are at much lower energies than 

310 those of the FeIII (hydr)oxides (band gaps in Pyrolusite is 1.0 eV vs 2.5 eV for goethite)40, the 

311 photoreductive dissolution of MnIV-oxides is more energetically feasible. However, two one-

312 electron transfer steps or a single two-electron step may be operative during photo-assisted 

           ≡FeIII + S2O8
2-          ≡FeII + S2O8

•-                                                                                                                                                                            (8)
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313 reduction of MnO2, i.e., MnIV can be photochemically reduced to MnIII with or without further 

314 reduction into MnII 43-45.  Waite et al.,43 have reported that the 365-nm light irradiation MnO2 

315 can produce MnII, while other authors reported that photo-generation of MnIII occurs under 

316 400-nm light irradiation of MnO2, with no further reduction into MnII 44. Furthermore, 

317 creation of photoexcited precursor species, which exhibits more facile electron transfer than 

318 occurs thermally, may take place under irradiation40-45.

319 In the present work, MnII aqueous concentration did not exceed 2 µM even after 10h 

320 of irradiation of MnO2 suspension in N2 purging solution at pH 6.5, most likely due to strong 

321 binding of Mn2+ to MnO2 surfaces at pH 6.5.  Consistently, environmental concentrations of 

322 Mn2+ under oxic conditions are found generally very low, particularly in absence of dissolved 

323 organic matter41-43. 

324 Taken together, these results shows that the greater efficiency achieved under 

325 irradiation could be explained by the higher production of active species, i.e., hydroxyl or 

326 sulfate radicals and/or reduced metal ions (Fe (II) or Mn(II)) 35-37. The UVA irradiation may 

327 promote the photo-assisted reduction of FeIII to FeII or MnIV to MnIII and/or MnII, which 

328 subsequently reacts with H2O2 or S2O8
2- generating •OH or SO4

•-.

329

330

331 3.3. Impact of pre-equilibration time on the mineralization extent 

332 As total mineralization is not achieved by UVA and oxidants (H2O2 or PS), we examine 

333 here the implications of the one-electron transfer reaction in enhancing the elimination of 

334 target compounds by hydroxyl/sulfate radical-based technology. For this purpose, we 

335 investigated the impact of pre-equilibration time between antibiotics and metal-oxides on the 

336 mineralization extent. 
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337 When oxidants and solids were simultaneously added to FLU solution under UVA 

338 irradiation (i.e., without pre-equilibration), the mineralization extent increased progressively 

339 and achieved a steady-state after 32 h of reaction time (Fig. S7). An equilibration of solid with 

340 FLU for 24 h before oxidant addition and UVA irradiation did not affect the mineralization 

341 extent (Fig. S10). Note that only adsorption occurs during the pre-equilibration period (solid + 

342 FLU) according to the mass balance. In both cases, the highest mineralization extent was 

343 found for the UVA/MnO2 system whatever the used oxidant.

344 When NOR and solids are allowed for equilibration in aqueous solution over 24 h 

345 before adding the oxidant, the mineralization extent increased from 0 to 23, 32, 44 and 52 % 

346 for H2O2/Goethite, PS/Goethite, H2O2/MnO2 and PS/MnO2 systems, respectively (Fig.3). 

347 UVA irradiation after the pre-equilibration time allowed higher mineralization extent, but the 

348 complete mineralization was only achieved in the PS/UVA/MnO2 system (Fig. 3). 

349 As the electron transfer reaction between NOR and MnO2 was relatively fast, we have 

350 repeated the previous experiments but by lowering the pre-equilibration time to 1h (Fig. 4). 

351 Similar mineralization extents were obtained in the PS/MnO2 and PS/UVA/MnO2 systems, but 

352 within a shorter total time (i.e., 40 h instead of 54 h of total reaction time). On the other hand, 

353 longer pre-equilibration time (i.e., 48 h) was tested for goethite since its reaction kinetic with 

354 NOR was relatively slow (See Fig. S11). Only a slight improvement in TOC removal (i.e., 

355 less than 8%) was observed, suggesting that larger pre-equilibration time does not 

356 significantly affect the mineralization extent in the case of goethite.

357

358 3.4. Role of oxide-bound MnII in mineralization enhancement 

359 The mineralization improvement takes place only when NOR and the metal oxide are 

360 allowed for equilibration before adding the oxidant. The enhancement factor is more 

361 important in presence of MnO2 (more redox active), and more particularly when PS was used 
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362 as an oxidant in the second stage. These results can be explained if the reaction products, i.e. 

363 NOR byproducts and Mn species generating during the first stage, are more reactive than the 

364 starting compounds. To assess the reactivity of NOR byproducts with sulfate radicals, Laser 

365 Flash Photolysis (LFP) experiments were performed for the mother NOR solution (t=0, called 

366 NOR) and those reacted with MnO2 after 1h and 24 h of reaction (called here NORox). The 

367 results showed very similar reactivity constants with sulfate radicals, i.e. k (NOR, SO4
.-) = 

368 1.7.107 L mgC-1 s-1 close to the values determined after oxidation by MnO2 (i.e., k (NORox, SO4
.-

369 )1h = k (NORox, SO4
.-)24h = 1.6.107 L mgC-1 s-1) (See Table S2). This result may rule out the 

370 hypothesis that the higher mineralization rate results from the greater reactivity of NOR 

371 byproducts with radical species.   

372 Reductive dissolution of MnO2 by NOR may lead to generate reduced Mn ions and thus 

373 MnII or MnIII -rich MnO2 system. Because of the great tendency for manganese ions to be 

374 adsorbed at the oxide surface at the working pH, the exact concentration of Mn2+ generated 

375 from the redox reaction MnO2/NOR cannot be determined. However, adsorption isotherm 

376 determined at pH 6.5 indicated a great affinity of Mn2+ to MnO2 with an adsorption capacity 

377 lying at ~0.1 µmol m-² (Fig. S12). In addition, AOS of Mn in the reacted solid decreased to 

378 3.76, thereby underscoring a partial reduction of MnO2 though no structural modification was 

379 observed by XRD (Fig. S13). Only UVA irradiation seems to induce oxygen depletion in the 

380 pyrolusite structure, yet no visible structural change can be determined (Table S3, Fig. S13). 

381 This is in agreement with previous works which showed a great stability (low solubility) of 

382 pyrolusite under well-oxidized conditions. 46-47 

383

384 To assess the contribution of MnII in the advanced oxidation reaction (i.e. the second 

385 stage), we added Mn2+ (24 µM to be equivalent to the stoichiometric amount of NOR) in 

386 MnO2 suspension before adding NOR and starting the oxidation reaction (Fig. S14). The 
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387 results showed a complete mineralization of NOR after 60 h of reaction, while increasing of 

388 MnII concentration to 48 µM led to a complete mineralization within a shorter time (i.e., 44 h 

389 instead of 60 h) (Fig. S14). Therefore, complete NOR mineralization could be achieved either 

390 by performing a pre-equilibration stage between NOR and MnO2 or by adding MnII to the 

391 MnO2 suspension. It is worth noting that MnII ions in homogeneous solution are not active for 

392 PS activation and NOR degradation (Fig. S15), and the mineralization is only achieved when 

393 MnII was added to MnO2 suspension. As it is generally reported for FeII 48, this higher 

394 reactivity of surface-bound MnII compared to aqueous MnII may be ascribed to its bandgap 

395 decrease, which warrants future research.

396 The contribution of the solid was further confirmed by repeating the oxidation 

397 experiment but by removing the solid from solution (e.g., through filtration) after the pre-

398 equilibration period (Fig. S16). Indeed, the mineralization extent of NOR dropped to less than 

399 21 ± 2%. When the same experiment was performed with goethite a slight decrease of 

400 mineralization was observed, 53 ± 2% when goethite was removed from the solution after 24 

401 h of pre-equilibration time against 69 ± 2% in presence of goethite (Fig. S16). 

402 As a further attempt to gain insights into the enhanced reactivity of reacted MnO2 

403 system, Mn oxides with lower valence states (MnIII) as in manganite (γ-MnIIIOOH) were 

404 investigated. 37 % and complete mineralization were obtained with PS/MnOOH and 

405 PS/MnOOH/UVA processes, respectively (Fig. 5), compared to 30 and 65 % with PS/MnO2 

406 and PS/MnO2/UVA processes, respectively (Fig. 2). When NOR and manganite were allowed 

407 for 1h pre-equilibration before starting the oxidation reaction, complete mineralization was 

408 also observed in the PS/MnOOH/UVA system, but only after 35 h of reaction time (Fig. 5). 

409 This implies that the photo-generation of MnII enhances the oxidation performance, regardless 

410 of the starting solid, e.g. MnIVO2 or MnIIIOOH.
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411 Taken together, these results suggest that oxide-bound MnII is key in catalyzing the 

412 oxidation reaction and enhancing the mineralization rate under UVA irradiation through a 

413 redox cycle. MnII species or photogenerated MnII species react first with oxidants to produce 

414 radicals through eqs. 13 and 16.  Then, MnII species could be re-generated via photo-reduction 

415 of active sites on MnOx or MnOOH surfaces, which in turn react with PS or H2O2 to generate 

416 SO4
•- or •OH. The higher fluoroquinolone degradation in the presence of PS compared to 

417 H2O2 can be probably ascribed to the i) higher ability of MnII in PS activation compared to 

418 H2O2 and ii) higher selectivity of generated sulfate radical (e.g. less subjected for scavenging 

419 effects compared to •OH) toward fluoroquinolones. It is worth noting that photo-assisted 

420 generation and/or regeneration of MnII may require a certain time, as TOC removal kinetics 

421 exhibited a two-step behavior, i.e. sharp decay after a first slow phase, particularly in the 

422 PS/UVA system, and regardless of the underlying surface, MnIVO2 (Fig. 4) or MnIIIOOH (Fig. 

423 5).

424 3. Environmental implications

425 We have notably demonstrated that a short pre-equilibration time between redox-active 

426 minerals and antibiotics is crucial to achieve total elimination or mineralization of 

427 compounds. Reduced metal ions generated during the pre-equilibration stage and 

428 contacted/adsorbed to oxide minerals are highly active in triggering oxidation reactions and 

429 achieving complete mineralization. This key promoter of oxidation reaction is generated in 

430 situ with no other reactant added. MnOx system exhibits more reactivity than FeOOH because 

431 (i) of its higher reduction potential (MnIII/MnII being more electron acceptor than FeIII/FeII), 

432 (ii) two one-electron transfer steps or a single two-electron step may be operative during 

433 MnIVO2 reduction, and/or (iii) photoreductive dissolution of MnIVOx is more 

434 thermodynamically favorable, irrespective of the presence or absence of complexing ligands.
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435 In the first stage, the oxidative transformation is attributed to sequential one electron-

436 transfer reactions, i.e., electron transfer within the precursor complex formed between the 

437 molecule and the surface-bound metal, that result in reductive dissolution of the oxide and 

438 oxidation of the molecule. In the second stage, the byproducts are attacked by radical species, 

439 generated upon addition of H2O2 or S2O8
2- under UVA irradiation, which achieved 

440 mineralization via probably ring-opening reactions. If the compound (e.g. FLU) solely 

441 adsorbs to oxide surfaces with no redox reaction during the first stage of reaction, a pre-

442 equilibration period does not impact the mineralization extent regardless of the duration of the 

443 first stage. 

444 Oxide-bound MnII is essential in catalyzing oxidation reaction and then producing greater 

445 amounts of radical species through a photo-assisted redox cycle. Light enhanced the rate of 

446 Mn2+ generation, which in turn reacts with H2O2 or S2O8
2- to produce more radical species and 

447 then oxidize/mineralize target compounds. This shows the greater ability of MnO2 as 

448 compared to iron oxides, in inducing electron transfer reactions with antibiotics, and then 

449 triggering their subsequent radical-based degradation. These results provide a novel strategy 

450 towards the application of redox active minerals in a dynamic two-step treatment process, 

451 where the redox byproducts generated in-situ during the first stage strongly contribute in 

452 achieving total removal of TOC. Because of the great affinity of manganese ions for Mn-

453 oxide surfaces at neutral pH, the Mn2+ leaching from the oxide surface is very limited, and 

454 much below the wastewater discharge limits. Therefore, the developed system will be of 

455 scientific significance in both Mn-based oxidation reactions and practical wastewater 

456 treatment processes.
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608
609
610 Tables
611
612
613
614 Table 1. Second-order rate constants between flumequine (FLU) and norfloxacin (NOR) 
615 determined by laser flash photolysis with hydroxyl and sulfate radicals at different pH values.
616  

Molecule pH (M-1 s-1)𝒌𝑯𝑶• (M-1 s-1)𝒌𝑺𝑶• ―
𝟒

3 1.80 ± 0.17 × 1010 1.86 ± 0.30 × 109FLU
9 6.34 ± 0.13 × 109 1.81 ± 0.12 × 109

3.5 2.09 ± 0.17 × 109

7.5 6.18 ± 0.18 × 109 
(ref.49)

1.36 ± 0.14 × 109
NOR

11 1.31 ± 0.30 × 109

617

618
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619 Figure captions

620

621 Figure 1: Kinetics of NOR removal and Mn2+ release under dark conditions  at pH 6.5 ± 0.1: 

622 [NOR] = 24 µM; [MnO2] = 0.027g L-1 (10 m² L-1). 

623 Figure 2: Removal kinetics of NORtot (empty symbols) and TOCtot (full symbols) with 

624 simultaneous addition of solids and oxidants under dark and irradiation conditions at pH 6.5 ± 

625 0.1. [NOR]o = 24 µM; [H2O2]o =  [S2O8
2-]o = 0.5 mM; [goethite]o = 0.118g L-1 (10 m² L-1); 

626 [MnO2]o = 0.027g L-1 (10 m² L-1).

627 Figure 3: Removal kinetics of NORtot (empty symbols) and TOCtot (full symbols) after 24 h 

628 of pre-equilibration time under dark and irradiation conditions at pH 6.5 ± 0.1: [NOR]o = 24 

629 µM; [H2O2]o =  [S2O8
2-]o = 0.5 mM; [goethite]o = 0.118g L-1 (10 m² L-1); [MnO2]o = 0.027g L-1 

630 (10 m² L-1). The arrow indicates the moment where oxidant addition and/or UVA irradiation 

631 take place.

632 Figure 4: Removal kinetics of NORtot (empty symbols) and TOCtot (full symbols) with MnO2 

633 and S2O8
2- (PS) under dark and irradiation conditions at pH 6.5 ± 0.1: [NOR]o = 24 µM; 

634 [S2O8
2-]o = 0.5 mM; [MnO2]o = 0.027g L-1 (10 m² L-1); Pre-equilibration time = 1h. 

635 Figure 5: Removals kinetic of NORtot (empty symbols) and TOCtot (full symbols) using 

636 MnOOH without or with pre-equilibration time under dark and irradiation conditions and at 

637 pH 6.5 ± 0.1: [NOR]o = 24 µM; [S2O8
2-]o = 0.5 mM; [MnOOH]o = 0.154 g L-1 (10 m² L-1). The 

638 vertical dashed line indicates the moment (1h) where oxidant addition and/or UVA irradiation 

639 take place.

640

641
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