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Abstract 16 

To assess human health risks related to the environment, it is necessary to aggregate exposure 17 

from multiple sources. The objective of this paper was to propose a relevant approach to 18 

combine data from heterogeneous populations and methodologies. Five different methods 19 

based on Monte-Carlo simulations were tested and compared. Differences were: taking into 20 

account or not stratification variable, timeline to assign exposure factors and concentration 21 

and way to account for concentration correlations. The methods were applied to estimate lead 22 

exposure from food, dust, soil, air, and tap water or French children aged between six months 23 

and three years old.  24 

Comparing results’ uncertainty, it is recommended to 1) select a reference population 25 

representative of the target population, 2) select stratification variables to combine surveys, 26 

and 3) simulate a new population by randomly sampling individuals in the reference 27 

population and simultaneously assigning human exposure factors and environmental 28 

concentrations from other surveys in integrating correlations (MC1S). No difference was 29 

observed when taking into account correlations using vectors of determinist data from one 30 

survey or rank of correlations with the Iman-Conover method. Regardless the methods used to 31 

combine data, dust was the main exposure source, followed by soil and in a less extent by 32 

food. Exposures from air and tap water were found to be insignificant for most children.  33 

 34 

Highlights 35 

• Five calculation processes were tested to combine dietary and environmental surveys 36 

• Resampling individuals and variables decrease the uncertainty 37 

• Use stratification variables to combine surveys limits risk of error 38 

• The tested methods to account for correlations between exposure factors gave similar 39 

results 40 

• Dust and soil were main exposure sources of children in France 41 

 42 
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Abbreviations 46 

BDQA: French database for air quality 47 



BEBE-SFAE: French database of children dietary 48 

BW: Body weight 49 

DL: Dust load 50 

MC: Monte Carlo 51 

MC1: Monte Carlo in first step 52 

MC1S: Monte Carlo in first step with the use of stratification variables 53 

MC2: Monte Carlo in second step 54 

MC2S: Monte Carlo in second step with the use of stratification variables 55 

MCIC: Monte Carlo with the method of Iman and Conover 56 

PH: French database for lead concentration in dwellings 57 

UI: Uncertainty intervals 58 
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1 Introduction 65 

Aggregate exposure can be defined as the sum of several sources of exposure (air, dust, food, 66 

water, etc.) via different exposure routes (ingestion, inhalation and dermal absorption). To 67 

perform human health risk assessments based on total exposure, it is important to consider 68 

aggregate exposure. By nature, biomonitoring data considers aggregate exposure, but this data 69 

does not enable the contribution of exposure sources to be assessed. In order to determine 70 

management options to mitigate exposure and the associated risks, the identification of 71 

exposure sources and factors contributing to total exposure is currently essential. However, 72 

the modelling of aggregate exposure is complex from several standpoints. Except in specific 73 

cases (Cao et al., 2016), complete surveys seldom collect all exposure sources for the same 74 

individual. Therefore, performing aggregate exposure assessments often requires considering 75 

data from different databases with different populations and methodologies. In addition, 76 

exposure can be expressed at the individual level, which is generally the case for food, or at 77 

the population level, which is more common for environmental exposure.  78 

Even though the definition of “aggregate exposure” is soon to be standardised, some authors 79 

have recently proposed “aggregate exposure” when considering only one source and one route 80 

of exposure. This was the case of Cowan-Ellsberry and Robison (2009), Delmaar et al. (2015) 81 

and Gosens et al. (2014) who studied dermal exposure to parabens and phthalates from 82 

cosmetics. Other authors have tried to be as exhaustive as possible in the calculation of 83 

aggregate exposure. For example, Beko et al. (2013) considered two sources of exposure (dust 84 

and air) for phthalates and extrapolated dietary exposure from internal measurements. 85 

Pelletier et al. (2017) took into account three routes of indoor residential exposure to semi-86 

volatile organic compounds. Furthermore, Glorennec et al. (2016) assessed aggregate 87 

exposure to metals and metalloids in children between three and six years of age in France, 88 

considering several sources of exposure in a Monte Carlo (MC) simulation via various 89 

surveys. However, in these studies, the strategy used to combine data from different surveys 90 

with different levels (individual vs population) to assess aggregate exposure was not 91 

discussed. Some tools have been developed in the last few years to assess exposure via 92 

different routes and sources. The European projects EuroMix, HBM4EU or SOLUTIONS 93 

developed methodologies and guidance for assessing risks in mixture from combined 94 

exposure to multiple chemicals for different regulatory sectors. In these projects, mixture risk 95 

assessment is limited by the difficulties in considering aggregate exposures from different 96 

sources with dietary source combined with non-dietary sources (Bopp et al., 2018). Exposure 97 



tools addressing multiple exposure routes were embedded in the EuroMix toolbox, Monte 98 

Carlo Risk Assessment software (van der Voet et al., 2015) by adding to diet exposure results 99 

from MCRA to non-dietary exposure sources from other software as PACEM for personal 100 

care products (Karrer et al., Submitted). Kennedy et al. (2012) developed the Bystander and 101 

Residential Exposure Assessment Model (BREAM) to evaluate non-dietary exposure. They 102 

then proposed options to develop an aggregate exposure model combining BREAM with the 103 

MCRA platform (Kennedy et al., 2015a; Kennedy et al., 2015b). However, this work was 104 

restricted to pesticide exposure via agricultural activities and thus only involved workers, 105 

bystanders and residents living near agricultural areas. Two software applications for 106 

Stochastic Human Exposure and Dose Simulation (SHEDS-Multimedia and SHEDS-107 

Residential) developed by the US. EPA only take into account specific scenarios of non-108 

dietary exposure with no link to dietary exposure. A new tool, SHEDS-High-Throughput 109 

(SHEDS-HT), based on SHEDS-Multimedia, combines direct dermal exposure, inhalation 110 

and accidental ingestion with the ingestion of food and drinking water by MC simulation 111 

(Isaacs et al., 2014). However, SHEDS-HT mainly focused on aggregate exposure from diet 112 

and consumer product sources, and the scenario of exposure sources by dust and soil is not 113 

clearly developed. Moreover, individual intakes are specified for the American population 114 

only. Thus, a harmonised consistent approach for aggregate exposure in case of different 115 

sources of exposure is still lacking.  116 

The aim of this work was to set out general principles for assessing aggregate exposure of a 117 

target population  from various sources (diet, dust, air, soil and tap water) when data come 118 

from heterogeneous surveys. Five different calculation processes were tested and compared. 119 

The different methods were based on the general principle which consists in creating a 120 

simulated population from the individuals of the different surveys via MC simulations. MC 121 

simulations are often used to combine risk assessment data (Kennedy et al., 2012; Kennedy et 122 

al., 2015a; Kennedy et al., 2015b; Paustenbach, 2000; Safford et al., 2015; Zartarian et al., 123 

2017). They make it possible to draw random samples from distributions of datasets in order 124 

to reconstruct the sources of exposure for each individual. These methods, which take into 125 

account inter-individual variability as well as uncertainty, provide a more realistic estimate of 126 

aggregate exposure for individuals across a population (Paustenbach, 2000).  127 

Lead exposure for the target population of French children between the ages of six months 128 

and three years was chosen as a case study to test these methods.    129 

 130 



2 Materials and Methods 131 

 Exposure factors 132 

2.1.1 Food consumption (QFood) and quantities of ingested tap water (QWater) 133 

Food consumption (QFood) and quantities of ingested tap water (QWater) for children were 134 

evaluated in the national cross sectional survey named BEBE-SFAE (Fantino and Gourmet, 135 

2008) which was conducted in France from January to March 2005 in the population of 136 

children aged 15 days to three years. Individual consecutive three-day weighed food was 137 

recorded in non-breastfed infants. More than 1260 food products specifically made for 138 

toddlers and young children were notified in the database with 850 “specific baby foods” 139 

(Fantino and Gourmet, 2008). To be representative of the child population, sampling weights 140 

were assigned to each infant. A total of 706 children were recorded in BEBE-SFAE using 141 

proportionate quota sampling based on the child’s age, the mother’s occupation and the 142 

family’s socioeconomic strategy. 143 

 144 

2.1.2 Inhalation rates (IRs) 145 

Inhalation rates were evaluated based on the U.S. EPA recommendations in the Exposure 146 

Factors Handbook (2011). For each age group (zero- to one-year old, one- to two-years old, 147 

two- to three-years old), mean, 95th percentile and maximum inhalation rate values were 148 

available. From these statistics, the mean and standard deviation of a normal truncated 149 

distribution were adjusted for each age group. 150 

 151 

2.1.3 Dust loads (DLs)  152 

Dust loads were estimated from the publication by Giovannangelo et al. (2007) who studied 153 

the distribution of dust loads collected from the floor in 46 German homes, 42 Dutch homes 154 

and 34 Swedish homes. Since the data from Sweden were only collected from rugs, they were 155 

excluded. The parameters of a truncated lognormal distribution were determined from the 156 

logarithms of the geometric means and geometric standard deviations calculated from the 157 

German and Dutch results weighted by the number of samples per country.  158 

 159 



2.1.4 Quantities of ingested soil (QSoil) and dust (QDust) 160 

Quantities of ingested soil (QSoil) and dust (QDust) were derived from the Exposure Factors 161 

Handbook (U.S. EPA, 2011) for children under the age of one year and between the ages of 162 

one and three years. A truncated lognormal distribution of QSoil and QDust, as proposed by 163 

Özkaynak et al. (2011), was fitted.  164 

 165 

 Lead contamination surveys 166 

Table 1 summarises the available data from the different surveys, the distributions used, and 167 

descriptive statistics for lead concentrations for the various investigated exposure sources and 168 

factors. A middle-bound scenario that consists in replacing values below the limit of detection 169 

(LOD) or the limit of quantification (LOQ) with LOD/2 or LOQ/2 (EFSA, 2012) was used in 170 

the case of censored data for concentrations in food, soil, dust and tap water.   171 



Table 1. Summary of input variables used for the calculation of aggregate exposure to lead for children aged six months to three years.  172 

Input variables Age References Distribution Mean SD Median P95 Min Max 

Concentration in food (µgPb.kg-1) CFood 0 months – 3 years Guerin et al. (2017) Empirical*       

Consumption of food (g.d-1) QFood 6 months – 3 years Fantino and Gourmet (2008) Empirical*       

Dietary exposure (µgPb.kgbw
-1.d-1) EDietary 6 months – 3 years BEBE-SFAE survey in this study Empirical** 0.208 0.095 0.194 0.381 0.020 0.632 

Body weight (kg) BW 6 months – 3 years BEBE-SFAE survey in this study Empirical 10.4 2.6 10.0 15.0 3.4 20.0 

Consumed quantity of tap water (mL.d-1) QWater 6 months – 3 years BEBE-SFAE survey in this study Empirical 65.3 159.8 0 250- 0 47.0 

Inhalation rate (m3.d-1) IR 

6 - 12 months 

U.S. EPA (2011) 

Normal 5.4 1.6 - 8.0 0 26.25 

1 - 2 years Normal 8.0 2.9 - 12.8 0 24.77 

2 - 3 years Normal 8.9 2.9 - 13.7 0 28.17 

Ingested soil (mg.d-1) QSoil 
6 - 12 months 

U.S. EPA (2011) 
Lognormal - - 30 200 0 1000 

1 - 3 years Lognormal - - 50 200 0 1000 

Ingested dust (mg.d-1) 

 
QDust 

6 - 12 months 
U.S. EPA (2011) 

Lognormal - - 30 100 0 1000 

1 - 3 years Lognormal - - 60 100 0 1000 

Dust load (mg.m-2) 
DLGermany 

- Giovannangelo et al. (2007) 
Lognormal*** 194 4.1 - - 0 2000 

DLNetherlands Lognormal*** 151 5.5 - - 0 2000 

Concentration in dust (µgPb.m-2) CDust - PH survey in this study  Empirical  25.4 61.8 9.0 109.6 1.00 694.8 

Concentration in tap water (µgPb.L-1) CWater - PH survey in this study Empirical  2.5 5.4 0.826 12.5 0 47.0 

Concentration in soil (µgPb.g-1) CSoil - PH survey in this study Empirical  70.7 106.8 34.8 273.4 2.4 830.9 

Concentration in air (µgPb.m-3) CAir - BDQA survey in this study Empirical  7.8 5.6 6.6 17.1 1.4 41.4 

*Not given since CFood and QFood mainly depend on the food.  173 

**Individual dietary exposure, Ei Dietary, had previously been estimated in the report by ANSES (2014) and was included in the BEBE-SFAE 174 

survey in this study by combining concentration data from the French infant Total Diet Study (Guerin et al., 2017) with the consumed quantities 175 

and body weights available in the BEBE-SFAE survey (Fantino and Gourmet, 2008).  176 

***The geometric mean and geometric 177 



9 

 

2.2.1 Food contamination by lead (CFood) 178 

Food contamination by lead (CFood) was recorded in 2011, from the first infant Total Diet 179 

Study (iTDS), conducted in non-breastfed children under three years of age (Hulin et al., 180 

2014). In iTDS, more than 500 chemical substances were analysed in foods. These included 181 

substances naturally found in the environment and those originating in human activities (e.g. 182 

industrial, agricultural, domestic, etc.). Food items were selected using the results of the 183 

BEBE-SFAE survey, enabling home cooking practices to be considered. Overall, the iTDS 184 

contained more than 5500 items as consumed foods, including foods such as vegetables, fruits 185 

and cakes as well as specific children’s food products. To limit censored data, a more 186 

sensitive inductively coupled plasma mass spectrometry method was developed and validated 187 

for lead in 291 samples (Guerin et al., 2017). With this method, the LOQ was 0.6 or 0.9 188 

µgPb.kg-1 for solid and liquid samples respectively. Lead was detected in most samples, where 189 

the highest concentrations were mainly found in foods containing chocolate, and a maximum 190 

value of 16 µgPb.kg-1 was observed (Guerin et al., 2017).  191 

 192 

2.2.2 Child home and environmental contamination (CDust, CSoil and CWater) 193 

The “Plomb-Habitat” (PH) survey recorded lead concentration data for tap water, soil and 194 

dust in 472 homes of children aged from six months to six years in France between October 195 

2008 and August 2009 (Glorennec et al., 2015; Lucas et al., 2012). Population sample weights 196 

were available, to be representative of French dwellings. Lead concentrations in tap water 197 

(CWater) were measured in kitchens. The LOQ for lead in tap water was 1 µg.L-1. The average 198 

lead load in dust (CDust) for each dwelling was evaluated in µg.m-². The LOQ for lead in dust 199 

was 2 µg.m-² for total lead. For concentrations in soil (CSoil), in cases of children playing 200 

outside on soft ground (for 315 dwellings), samples were collected from the outdoor 201 

playground. The LOQ for lead in soil was 1.3 µg.g-1 for total lead.  202 

 203 

2.2.3 Air contamination (CAir) 204 

Lead concentrations in outdoor air were collected from the regulatory monitoring network 205 

(BDQA, the French database for air quality). Air quality monitoring has been implemented in 206 

each France region in more than 650 rural, urban, suburban areas or linked to the traffic road 207 

including more than 3 000 instruments. In this study, annual mean concentrations of lead in 208 

outdoor air were considered from 2007 to 2011  no representative French survey exists on air 209 
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concentrations in inside dwellings, outdoor air lead concentration were used to estimate  210 

concentrations in  indoor air of children’s homes (CAir). Data were not included when the 211 

measurements were too low to calculate the annual mean, specifically when annual coverage 212 

did not exceed 14% or when it exceeded 100%. Thus, a total of 176 measurements were 213 

considered in rural, urban and suburban areas.  214 

 Aggregate exposure model 215 

Daily aggregate exposure to lead was calculated for each individual by combining exposure 216 

from the various sources (food, water, soil, dust and air) and via the various routes (ingestion 217 

and inhalation). Dermal lead exposure was considered as insignificant compared to the two 218 

other routes (EFSA, 2010). In the case of censored data, we applied a middle-bound scenario 219 

that consisted in replacing all values below the LOD and LOQ with either LOD/2 or LOQ/2.  220 

Ei,Aggregate = (Ei,Dietary + Ei,Soil +Ei,Dust + Ei,Water) × τingestion + EiAir  × τinhalation (1) 221 

To aggregate the various sources, absorption factors are commonly used for the two routes of 222 

exposure: ingestion (τingestion) and inhalation (τinhalation). In this case study, the two absorption 223 

factors were equal to one.   224 

Ei,Dietary = ∑(Qi,Food × CFood) / BWi (2) 225 

Ei,Dietary was the dietary exposure to lead of an individual i, expressed in µgPb.kgbw
-1.d-1 and 226 

was assessed by the sum of all products between  Qi,Food, the quantity of food consumed by 227 

individual i (g.day-1), and CFood, the associated level of lead contamination for the food 228 

(µgPb.g-1 food). BW� denoted the body weight of the individual i.  229 

 230 

Ei,Water = Qi,Water ×  CWater / BWi  (3) 231 

Ei,Water was the lead exposure via tap water of an individual i and was expressed in µgPb.kgbw
-232 

1.d-1 with the quantity consumed (Qi,Water, in L.d-1) and the level of tap-water contamination 233 

(CWater ,in µgPb.L-1).  234 

Ei,Soil  = Qi,Soil ×  CSoil × 103 / BWi (4) 235 

Ei,Soil  was the lead exposure via soil of an individual i (µgPb.kgbw
-1.d-1) where Qi,Soil was the 236 

ingested quantity for the individual i (mgSoil.d-1) and CSoil was the level of lead contamination 237 

in the soil (µgPb.g-1 soil). 238 

Ei,Dust = (Qi,Dust / DL)×  CDust / BWi (5) 239 



11 

 

Ei,Dust was the lead exposure via dust of an individual i (µgPb.kgbw
-1.d-1) where Qi,Dust was the 240 

quantity of dust ingested by the individual i (mgDust.d-1) and CDust was the level of lead 241 

contamination in the dust (µgPb.m-2 dust). DL was a dust load factor expressed in mg.m-2. 242 

Ei,Air = IRi ×  CAir / BWi  (6) 243 

Ei,Air was the lead exposure via air of an individual i (µgPb.kgbw
-1.d-1) where IRi was the 244 

inhalation rate for the individual i (m3.d-1) and CAir was the air concentration of lead (ngPb.m-245 

3). 246 

 Methods for combining surveys 247 

A three-step process was proposed to answer the following underlying questions (Fig. 1): (1) 248 

How to choose a reference population? (2) Did the different surveys have common variables? 249 

If common variables were observed, did they influence concentrations for the different 250 

sources? Could these variables be considered as stratification variables and divided into 251 

several classes to link the surveys to the reference population? (3) Did the surveys contain 252 

sampling weights to correct for under- or over-represented individuals?   253 

Regarding the answers to the above questions, five methods, namely MC1, MC2, MC1S, 254 

MC2S and MCIC were tested and compared. These five different methods were based on the 255 

general principle which consisted in creating a simulated population from the individuals of 256 

the different surveys using second-order MC simulations (Fig. 1). Missing values, which are a 257 

common issue in statistical analyses but are not specific to aggregate exposure, were treated 258 

by replacement using the mean value.  259 

 260 

2.4.1 Step 1: reference population 261 

A reference population was defined as the most representative population of the target 262 

population considering major characteristics (age, region, gender, etc.). Then, the 263 

characteristics of the reference population had been reproduced in the simulated population. 264 

The five tested methods had the same population of reference. 265 

 266 
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2.4.2 Step 2: selection of stratification variables 267 

Stratification variables were defined as population characteristics (like age, sex, region, etc.) 268 

that would be used to link the surveys. Stratification variables were selected in a two-step 269 

process: 270 

1. The first step was to identify sociodemographic variables shared between surveys that 271 

could influence the input variables.  272 

2. The second step was to test, via a statistical analysis, the significance of the 273 

correlations between shared sociodemographic variables and the concentrations for 274 

each survey. In case of significant correlations, it proves the importance to integrate 275 

the stratification variables when sampling the concentration values in the different 276 

surveys.  277 

The impact of using or not stratification variables was tested in comparing the MC1S, MC2S 278 

methods which included stratification variables with the MC1, MC2 methods which did not.  279 

The MCIC did not include stratification variables.  280 

 281 

2.4.3 Steps 3&4: Monte Carlo simulation strategies 282 

The five methods used second-order MC simulations and integrated sampling weights. Values 283 

of exposure factors (e.g. quantity of ingested soil/dust or inhalation rate) were randomly 284 

selected based on the age of each individual from respective distributions presented in Table 285 

1. Concentration values were assigned to each individual in the newly simulated population 286 

using an observed value from the other surveys.  287 

One major difference between the methods was the timeline of assigning exposure factors and 288 

concentrations in the simulation process. The two MC1 and MC1S (MC in first step) methods 289 

created a simulated population of 100,000 individuals taken randomly from the reference 290 

population and assigned exposure factors and concentration values from the other surveys. 291 

The MC2 and MC2S (MC in second step) methods first assigned exposure factors and 292 

concentration values from the other surveys to each individual in the reference population. 293 

Next, 100,000 individuals were randomly sampled from the combined data to create a 294 

simulated population. The difference between MC1S/MC2S and MC1/MC2 was that MC1S 295 

and MC2S used stratification variables to combine surveys, while this was not the case of 296 

MC1 and MC2.  297 
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Furthermore, it is possible that surveys include several variables of interest, as for example 298 

concentrations of lead in tap water, in dust and in soil for one dwelling in the PH survey, 299 

which are highly correlated. In this case, the three concentrations need to be selected together 300 

to be assign to individuals in the simulated population. To keep correlations, one proposal 301 

applied in MC1S/MC1 and MC2S/MC2 methods was to select vectors of these three 302 

concentration variables.  303 

Another method consisted in reproducing correlations between the concentration variables 304 

during simulation process This is proposed by the method named MCIC, based on the method 305 

of Iman and Conover (Iman and Conover, 1982) which used observed rank correlations and 306 

marginal distributions of concentrations.  307 

To quantify the uncertainty associated with each method, the process was repeated 100 times. 308 

Thus, for each method, 100 simulated populations of 100,000 individuals were created, and an 309 

uncertainty interval was estimated. 310 

 311 
 312 

 313 

Figure 1. Diagram of different methodologies for combining surveys in order to evaluate 314 

aggregate exposure. Step 1: Choice of reference population; Step 2: Choice of stratification 315 

variables; Step 3: Simulation of a new population (3A: MC1S, 3C: MC1, 3E: MCIC) or 316 
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assignment of values from other surveys with a concentration vector (3B: MC2, 3D: MC2S); 317 

Step 4: Assignment of values from other surveys using a concentration vector (4A: MC1S, 318 

4C: MC1) or reproducing correlation with the Iman and Conover method (4E: MCIC) or 319 

simulation of a new population (4B: MC2S, 4D: MC2).     320 

 321 

 Computation with the R program 322 

MC simulations, distribution fitting and statistical testing were performed in the R program (R 323 

Core Team, 2017). The msm R package (Jackson, 2011) and the EnvStat R package (Millard, 324 

2013) were used to adjust normal and lognormal truncated distributions, respectively. For the 325 

selection of stratification variables, Wald tests were performed with univariate general linear 326 

models by considering sampling weights using the survey R package (Lumley, 2004). The 327 

MCIC method was implemented with the mc2d R package (Pouillot et al., 2016). 328 

For each exposure source and each of the 100 new populations, descriptive statistics (mean, 329 

median, standard deviation and percentiles) were estimated from population results. Mean 330 

contributions to aggregate exposure for each exposure source were calculated using the mean 331 

of the individual ratios for each exposure source and aggregate exposure multiplied by 100. 332 

Contribution values were recorded for the 50%, 10% and 5% of individuals with the highest 333 

aggregate exposure. From the 100 values calculated for each statistic, the median and the 2.5th 334 

and 97.5th percentiles were displayed in result tables to give estimates with credible intervals 335 

reflecting uncertainty. Significant differences were observed when confidence intervals did 336 

not overlap. 337 

Furthermore, to evaluate the sensitivity of the various parameters to the evaluation of 338 

aggregate exposure, Spearman correlations were computed. 339 

 340 

3 Results 341 

 Reference population 342 

Five hundred eleven children aged six months to three years were selected from the BEBE-343 

SFAE survey, as well as 214 dwellings from the PH survey. Two hundred eleven samples for 344 

lead contamination were recorded for tap water and dust, as well as 101 samples for soil. In 345 

this case study, the BEBE-SFAE population was chosen as the reference population. Firstly, it 346 
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had the highest number of studied children. Secondly, children were the core issue in BEBE-347 

SFAE survey, with physiological and sociodemographic data for each child. Thus, BEBE-348 

SFAE was considered more representative than PH of the target population of children aged 349 

between 6 months and 3 years old in France. BDQA was not specific to a population group 350 

and thus could not be used as the reference population. 351 

 352 

 Selection of stratification variables 353 

The variables common to the BEBE-SFAE and PH surveys were age, gender and region. The 354 

only variable they had in common with BDQA was region. Two region classifications were 355 

studied: the first corresponded to the 22 administrative regions of France (before they were 356 

modified in 2016) and the second had five classes: Paris region, North-West, North-East, 357 

South-East, and South-West.  358 

Table 2 shows p-value results for the weighted univariate general linear models with the 359 

survey package. Regarding the univariate analysis, a relationship clearly appeared between the 360 

22-class region variable and all input variables (p-value < 0.001***). A significant 361 

relationship with the five-class region variable was only observed with air concentrations. 362 

Age was significantly correlated with all factors except dust concentrations. The gender of the 363 

children did not appear to be related to any input variables.  364 

Thus, it was decided to stratify the reference population according to the two common 365 

variables of the BEBE-SFAE and PH surveys, which were age and region (22-class regions). 366 

Stratification between BEBE-SFAE and BDQA was performed considering the 22-class 367 

regions. If a class of the stratification variable (age-region here) was present in the reference 368 

population but absent from PH or BDQA, it was decided to assign data from younger age 369 

within the same region or, if that was not possible, to take the mean of the whole population. 370 

 371 

Table 2. Results for the selection of the age, region (22-class and five-class) and gender 372 

stratification variables, for the input variables used in the various surveys. P-value results 373 

under 0.05 were considered significant and are notified in bold.  374 

Input variables Survey 
Sociodemographic parameters 

Age 22 Regions 5 Regions Sex 

Dietary exposure BEBE-SFAE <0.001 <0.001 0.218 0.204 
Tap water concentration PH 0.002 <0.001 0203 0.115 

Dust concentration PH 0.559 <0.001 0.448 0.223 
Soil concentration PH 0.040 <0.001 <0.001 0.372 
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Air concentration BDQA - <0.001 <0.001 - 
 375 

 Comparison of methods for combining surveys 376 

To simplify, details for the method comparisons were displayed only for aggregate 377 

exposure. Similar results were obtained for the various exposure sources with the exception of 378 

dietary exposure.  379 

 380 

3.3.1 Monte Carlo in first step or in second step?  381 

Regarding the median estimates at the P50 and P95 levels for aggregate exposure, the 382 

different methods produced values between 0.85 and 0.95 µgPb.kgbw
-1.d-1 and between 8.7 and 383 

10 µgPb.kgbw
-1.d-1, respectively (Fig. 2, Table 3). The lowest standard deviation values were 384 

9.8 and 11 µgPb.kgbw
-1.d-1, meaning that variability was lower with method 2 (MC2S and 385 

MC2).  386 

The results showed no significant difference between the two methods, as the uncertainty 387 

intervals (UIs) of the methods with MC in first step and MC in second step overlapped 388 

(MC1S vs MC2S, and MC1 vs MC2). However, it was observed that the MC2 methods had 389 

larger UIs, especially for highly exposed children (Fig. 2 and Fig. 3). At the 99th percentile, 390 

the upper bound of the UI was twice as high with MC in second step (greater than or equal to 391 

88 µgPb.kgbw
-1.d-1 for MC2S and MC2) than with MC in first step (around 40 µgPb.kgbw

-1.d-1 392 

for MC1S and MC1). This higher uncertainty could also be observed for the contribution of 393 

the various sources to aggregate exposure, especially for higher percentiles (Table 4). For 394 

example, for the 5% of children with the highest exposure levels from soil, the upper bound of 395 

contribution for MC2S reached 16% while it was 6% for the MC1S method. 396 
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 397 

 398 

Figure 2. Distributions of aggregate exposure (µgPb.kgbw
-1.d-1) to lead in children between the 399 

ages of six months and three years in France with methods using stratification variables (on 400 

the left) and methods without stratification (on the right). Ninety-five percent uncertainty 401 

intervals appear in grey. 402 

 403 

3.3.2 Stratification or no stratification?  404 

Significant differences were observed between results for aggregate exposure and the 405 

percentiles of other exposure taking into account stratification with MC in first step (MC1S vs  406 

MC1, Table 3). Methods without stratification produced around 10% higher significant values 407 

of aggregate exposure (e.g. P50 observed at 0.86 µgPb.kgbw
-1.d-1 and 0.95 µgPb.kgbw

-1.d-1 for 408 

the MC1S and MC1 methods respectively). For tap water, the values were around 50% lower 409 

with MC1 than with MC1S (0.07 µgPb.kgbw
-1.d-1 vs 0.14 µgPb.kgbw

-1.d-1 for the 95th percentile). 410 

The same significant differences were observed for contributions (Table 4).  411 
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Table 3. Descriptive statistics for aggregate lead exposure as well as lead exposure via food, soil, dust, tap water and air (µgPb.kgbw
-1.d-1) in 412 

children aged six months to three years in France. Estimates are expressed as median values and 95% uncertainty intervals presented in square 413 

brackets.  414 

Exposure 

sources  
Methods  

Mean SD P25 P50 P75 P90 P95 P99 

Aggregate 

exposure 

MC1S 3.1 [3.0 - 3.3] 22 [17 - 58] 0.49 [0.48 - 0.49] 0.86 [0.85 - 0.86] 1.9 [1.9 - 1.9] 4.6 [4.6 - 4.7] 8.8 [8.6 - 9.0] 37 [36 - 39] 

MC2S 2.8 [2.0 – 5.6] 9.8 [4.8 - 55] 0.48 [0.45 - 0.52] 0.85 [0.78 - 0.95] 1.9 [1.6 - 2.2] 4.6 [3.8 - 5.7] 8.7 [5.9 - 12] 36 [18 - 88] 

MC1 3.5 [3.3 - 3.8] 27 [19 - 77] 0.55 [0.54 - 0.55] 0.95 [0.94 - 0.96] 2.0 [2.0 - 2.0] 5.1 [5.0 - 5.1] 10 [9.7 - 10] 42 [40 - 44] 

MC2 3.2 [2.4 - 8.2] 11 [4.9 - 89] 0.55 [0.50 - 0.59] 0.95 [0.86 - 1.1] 2.0 [1.8 - 2.4] 5.2 [4.0 - 6.4] 9.4 [6.5 - 15] 42 [20 - 105] 

MCIC 3.5 [3.3 - 3.7] 26 [19 - 55] 0.55 [0.54 - 0.56] 0.95 [0.94 - 0.96] 2.0 [2.0 - 2.0] 5.1 [5.0 - 5.1] 10 [9.7 - 10] 42 [40 - 44] 

Food 

MC1S 0.22 [0.22 - 0.22] 0.09 [0.09 - 0.09] 0.16 [0.16 - 0.16] 0.21 [0.21 - 0.21] 0.27 [0.27 - 0.27] 0.34 [0.33 - 0.34] 0.38 [0.38 - 0.39] 0.52 [0.52 - 0.53] 

MC2S 0.22 [0.22 - 0.22] 0.09 [0.09 - 0.09] 0.16 [0.16 - 0.16] 0.21 [0.21 - 0.21] 0.27 [0.27 - 0.27] 0.34 [0.34 - 0.34] 0.38 [0.38 - 0.39] 0.52 [0.52 - 0.53] 

MC1 0.22 [0.22 - 0.22] 0.09 [0.09 - 0.09] 0.16 [0.16 - 0.16] 0.21 [0.21 - 0.21] 0.27 [0.27 - 0.27] 0.34 [0.33 - 0.34] 0.38 [0.38 - 0.39] 0.52 [0.52 - 0.54] 

MC2 0.22 [0.22 - 0.22] 0.09 [0.09 - 0.09] 0.16 [0.16 - 0.16] 0.21 [0.21 - 0.21] 0.27 [0.27 - 0.27] 0.34 [0.33 - 0.34] 0.38 [0.38 - 0.39] 0.52 [0.52 - 0.52] 

MCIC 0.22 [0.22 - 0.22] 0.09 [0.09 - 0.09] 0.16 [0.16 - 0.16] 0.21 [0.21 - 0.21] 0.27 [0.27 - 0.27] 0.34 [0.33 - 0.34] 0.38 [0.38 - 0.39] 0.52 [0.52 - 0.54] 

Soil  

MC1S 0.39 [0.39 - 0.40] 0.77 [0.75 - 0.80] 0.06 [0.06 - 0.06] 0.15 [0.15 - 0.15] 0.39 [0.38 - 0.39] 0.95 [0.93 - 0.96] 1.6 [1.5 - 1.6] 3.6 [3.5 - 3.7] 

MC2S 0.39 [0.33 - 0.45] 0.72 [0.53 - 1.0] 0.06 [0.06 - 0.07] 0.15 [0.13 - 0.17] 0.39 [0.34 - 0.46] 0.95 [0.80 - 1.2] 1.5 [1.2 – 1.9] 3.3 [2.3 - 5.3] 

MC1 0.43 [0.42 - 0.43] 0.86 [0.80 - 0.96] 0.09 [0.09 - 0.09] 0.22 [0.21 - 0.22] 0.46 [0.46 - 0.47] 0.92 [0.91 - 0.94] 1.4 [1.4 - 1.5] 3.5 [3.4 - 3.6] 

MC2 0.43 [0.36 - 0.53] 0.73 [0.49 - 1.7] 0.09 [0.08 - 0.12] 0.22 [0.19 - 0.25] 0.46 [0.40 - 0.54] 0.92 [0.77 - 1.2] 1.4 [1.1 - 1.8] 3.5 [2.2 - 5.4] 

MCIC 0.43 [0.42 - 0.43] 0.86 [0.81 - 0.93] 0.09 [0.09 - 0.09] 0.22 [0.21 - 0.22] 0.46 [0.46 - 0.47] 0.93 [0.91 - 0.93] 1.4 [1.4 - 1.4] 3.5 [3.4 - 3.6] 

Dust  

MC1S 2.5 [2.3 - 2.7] 22 [17 - 57] 0.07 [0.07 - 0.07] 0.26 [0.25 - 0.26] 0.97 [0.95 - 0.99] 3.5 [3.4 - 3.6] 7.7 [7.6 – 7.9] 36 [35 - 39] 

MC2S 2.2 [1.4 - 4.9] 9.8 [4.7 - 55] 0.08 [0.06 - 0.09] 0.26 [0.21 - 0.33] 0.94 [0.77 - 1.2] 3.4 [2.5 - 4.6] 7.7 [4.9 - 11.4] 35 [18 - 87] 

MC1 2.8 [2.6 - 3.1] 27 [19 - 77] 0.08 [0.08 - 0.08] 0.28 [0.28 - 0.29] 1.1 [1.1 - 1.1] 4.0 [3.9 - 4.1] 8.9 [8.6 - 9.1] 41 [39 - 43] 

MC2 2.6 [1.7 - 7.6] 11 [4.8 - 89] 0.08 [0.06 - 0.10] 0.29 [0.23 - 0.38] 1.2 [0.78 - 1.5] 4.1 [2.9 - 5.7] 9.0 [6.0 - 15] 41 [19 - 105] 

MCIC 2.8 [2.6 - 3.1] 26 [19 - 55] 0.08 [0.08 - 0.08] 0.28 [0.28 - 0.29] 1.1 [1.1 - 1.1] 4.0 [3.9 - 4.1] 8.9 [8.6 - 9.1] 41 [39 - 43] 

Tap water 

MC1S 0.03 [0.03 - 0.03] 0.16 [0.16 - 0.17] 0 [0 - 0] 0 [0 - 0] 0.007 [0.006 - 0.007] 0.04 [0.04 - 0.04] 0.14 [0.13 - 0.15] 0.64 [0.64 - 0.69] 

MC2S 0.03 [0.03 - 0.04] 0.16 [0.10 - 0.20] 0 [0 - 0] 0 [0 - 0] 0.007 [0.006 - 0.009] 0.04 [0.03 - 0.05] 0.14 [0.07 - 0.22] 0.64 [0.48 - 1.2] 

MC1 0.02 [0.02 - 0.02] 0.09 [0.09 - 0.10] 0 [0 - 0] 0 [0 - 0] 0.007 [0.007 - 0.007] 0.03 [0.03 - 0.03] 0.07 [0.07 - 0.07] 0.34 [0.32 - 0.35] 

MC2 0.02 [0.01 - 0.03] 0.08 [0.04 - 0.17] 0 [0 - 0] 0 [0 - 0] 0.007 [0.006 - 0.008] 0.03 [0.02 - 0.04] 0.07 [0.05 - 0.11] 0.34 [0.17 - 0.62] 
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MCIC 0.02 [0.02 - 0.02] 0.09 [0.08 - 0.10] 0 [0 - 0] 0 [0 - 0] 0.007 [0.007 - 0.007] 0.03 [0.03 - 0.03] 0.07 [0.07 - 0.07] 0.34 [0.32 - 0.35] 

Air  

MC1S 0.005 [0.005 - 0.005] 0.005 [0.005 - 0.005] 0.002 [0.002 - 0.002] 0.003 [0.003 - 0.003] 0.006 [0.006 - 0.006] 0.009 [0.009 - 0.009] 0.012 [0.012 - 0.012] 0.025 [0.025 - 0.026] 

MC2S 0.005 [0.004 - 0.005] 0.005 [0.004 - 0.006] 0.002 [0.002 - 0.002] 0.003 [0.003 - 0.004] 0.006 [0.005 - 0.006] 0.009 [0.008 - 0.010] 0.012 [0.010 - 0.015] 0.025 [0.018 - 0.034] 

MC1 0.005 [0.005 - 0.005] 0.005 [0.005 - 0.005] 0.003 [0.003 - 0.003] 0.004 [0.004 - 0.004] 0.007 [0.007 - 0.007] 0.010 [0.010 - 0.010] 0.013 [0.013 - 0.013] 0.024 [0.024 - 0.025] 

MC2 0.005 [0.005 - 0.006] 0.005 [0.004 - 0.006] 0.003 [0.002 - 0.003] 0.004 [0.004 - 0.004] 0.007 [0.006 - 0.007] 0.010 [0.009 - 0.011] 0.013 [0.011 - 0.016] 0.024 [0.018 - 0.032] 

MCIC 0.005 [0.005 - 0.005] 0.005 [0.004 - 0.005] 0.003 [0.003 - 0.003] 0.004 [0.004 - 0.004] 0.007 [0.007 - 0.007] 0.010 [0.010 - 0.010] 0.013 [0.013 - 0.013] 0.024 [0.024 - 0.025] 
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3.3.3 Taking into account correlations by using a vector of observations or 415 

reproducing correlations 416 

The different methods for taking into account concentration correlations (MCIC vs MC1) 417 

produced similar results, as the UIs overlapped.  418 

 419 

Table 4. Mean contributions (%) of the various sources of exposure for the 50%, 10% and 5% 420 

of children (aged six months to three years) with the highest aggregate lead exposure. 421 

Estimates are expressed as median values and 95% uncertainty intervals presented in square 422 

brackets.    423 

  
  

50% most 

exposed 

10% most 

exposed 

5% most 

exposed 

Food 

MC1S 13 [13 - 13] 2.5 [2.5 - 2.6] 1.3 [1.3 - 1.4] 

MC2S 13 [11 - 14] 2.5 [1.5 - 3.5] 1.3 [0.8 - 2.0] 

MC1 12 [12 - 12] 2.3 [2.3 - 2.3] 1.2 [1.2 - 1.2] 

MC2 12 [10 - 13] 2.3 [1.5 - 3.2] 1.2 [0.61 - 1.9] 

MCIC 12 [12 - 12] 2.3 [2.2 - 2.3] 1.2 [1.1 - 1.2] 

Soil 

MC1S 27 [27 - 27] 12 [12 - 13] 5.7 [5.2 - 6.1] 

MC2S 27 [24 - 30] 12 [3.8 - 20] 5.3 [1.3 - 16] 

MC1 28 [28 - 28] 10 [9.8 - 11] 5.5 [5.1 - 6.0] 

MC2 28 [24 - 32] 9.5 [5.1 - 15] 5.0 [1.1 - 14] 

MCIC 28 [27 - 28] 10 [9.7 - 11] 5.6 [5.1 - 6.0] 

Dust 

MC1S 57 [57 - 58] 84 [84 - 85] 93 [92 - 93] 

MC2S 57 [53 - 62] 84 [75 - 94] 93 [82 - 98] 

MC1 59 [58 - 59] 87 [87 - 88] 93 [93 - 94] 

MC2 59 [54 - 64] 87 [82 - 93] 94 [85 - 98] 

MCIC 59 [58 - 59] 87 [87 - 88] 93 [93 - 94] 

Tap water 

MC1S 2.3 [2.3 - 2.4] 0.93 [0.85 - 1.0] 0.29 [0.26 - 0.34] 

MC2S 2.4 [1.6 - 3.2] 0.61 [0.03 - 2.4] 0.21 [0.01 - 1.3] 

MC1 1.2 [1.1 - 1.2] 0.33 [0.28 - 0.37] 0.14 [0.12 - 0.17] 

MC2 1.2 [0.66 - 1.9] 0.24 [0.04 - 1.1] 0.10 [0.005 - 0.64] 

MCIC 1.3 [1.2 - 1.4] 0.25 [0.17 - 0.34] 0.11 [0.07 - 0.19] 

Air 

MC1S 0.25 [0.25 - 0.26] 0.06 [0.05 - 0.06] 0.03 [0.03 - 0.03] 

MC2S 0.25 [0.20 - 0.29] 0.05 [0.03 - 0.09] 0.03 [0.02 - 0.05] 

MC1 0.28 [0.27 - 0.28] 0.05 [0.05 - 0.06] 0.03 [0.03 - 0.03] 

MC2 0.28 [0.22 - 0.33] 0.05 [0.03 - 0.08] 0.03 [0.01 - 0.05] 

MCIC 0.28 [0.27 - 0.28] 0.06 [0.05 - 0.06] 0.03 [0.03 - 0.03] 

 424 
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 Contribution of exposure sources to aggregate lead exposure 425 

Results obtained with the MC1S method are presented in this section.  426 

3.4.1 Aggregate exposure  427 

The 50th percentile of aggregate exposure was 0.86 µgPb.kgbw
-1.d-1, the 95th percentile was 8.8 428 

µgPb.kgbw
-1.d-1, and the 99th percentile was 37 µgPb.kgbw

-1.d-1 (Table 3). Lead exposure levels 429 

in children varied considerably between the different exposure sources with a low 430 

contribution of air and water and a high contribution of soil and dust. More specifically, 431 

exposure via dust contributed the most to aggregate exposure, in particular for the most 432 

exposed children, as it reached up to 93% of aggregate exposure at the P95 level. It was 433 

followed by exposure via soil, food, tap water and air (Table 4). 434 

CDust and DL were the exposure factors most influencing aggregate exposure, followed by 435 

Csoil, Qsoil and QDust (Table 5). Aggregate exposure was weakly sensitive to body weight 436 

(BW). 437 

 438 

3.4.2 Exposure via dust  439 

Dust exposure values varied from 0.26 µgPb.kgbw
-1.d-1 for the 50th percentile to 7.7 for the 95th 440 

percentile (Table 3). The contribution of dust ingestion to total exposure was 57% for median 441 

aggregate exposure (Table 4). Regarding the top 10% most exposed children, the contribution 442 

to aggregate exposure was 84%. CDust was positively correlated, at 0.572, with total exposure 443 

(Table 5). Conversely, DL was negatively correlated, at -0.531.  444 

 445 

3.4.3 Exposure via soil  446 

Exposure via soil was the second largest factor contributing to aggregate exposure (Table 4). 447 

The observed soil exposure values ranged from 0.15 µgPb.kgbw
-1.d-1 for the 50th percentile to 448 

1.6 µgPb.kgbw
-1.d-1 for the 95th percentile, reaching 3.6 µgPb.kgbw

-1.d-1 for the 99th percentile 449 

(Table 3). The contribution of exposure via soil decreased from 27% for the top 50% of the 450 

population to 5.7% for the top 5% most exposed children (Table 4). Aggregate exposure was 451 

moderately sensitive to CSoil (0.387) and QSoil (0.287) (Table 5).  452 
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Table 5. Correlations between exposure factors and lead concentrations with aggregate lead exposure in children aged six months to three years. 453 

  MC1S MC2S MC1 MC2 MCIC 

Body weight BW 0.048 [0.041 - 0.055] 0.047 [-0.017 - 0.121] -0.046 [-0.051 - -0.039] -0.046 [-0.126 - 0.043] -0.046 [-0.052 - -0.039] 

Soil 

QSoil 0.287 [0.282 - 0.292] 0.291 [0.180 - 0.361] 0.324 [0.317 - 0.329] 0.323 [0.226 - 0.399] 0.325 [0.319 - 0.335] 

CSoil 0.387 [0.382 - 0.391] 0.385 [0.305 - 0.457] 0.331 [0.326 - 0.336] 0.316 [0.230 - 0.407] 0.341 [0.270 - 0.393] 

Dust 

QDust 0.190 [0.185 - 0.190] 0.188 [0.098 - 0.188] 0.169 [0.164 - 0.169] 0.168 [0.089 - 0.168] 0.170 [0.165 - 0.170] 

CDust 0.572 [0.567 - 0.576] 0.576 [0.502 - 0.633] 0.559 [0.554 - 0.563] 0.560 [0.494 - 0.622] 0.546 [0.518 - 0.570] 

DL -0.531 [-0.535 - -0.527] -0.532 [-0.611 - -0.468] -0.536 [-0.541 - -0.532] -0.533 [-0.608 - -0.457] -0.541 [-0.550 - -0.533] 

Tap water 

QWater 0.037 [0.032 - 0.037] 0.035 [-0.036 - 0.035] 0.042 [0.037 - 0.042] 0.048 [-0.048 - 0.048] 0.046 [0.040 - 0.046] 

CWater 0.032 [0.037 - 0.043] -0.036 [0.035 - 0.105] 0.037 [0.042 - 0.049] -0.048 [0.048 - 0.136] 0.040 [0.046 - 0.054] 

Air  

IR 0.136 [0.131 - 0.143] 0.146 [0.057 - 0.223] 0.087 [0.081 - 0.094] 0.084 [-0.005 - 0.159] 0.096 [0.013 - 0.157] 

CAir -0.039 [-0.045 - -0.032] -0.037 [-0.111 - 0.058] 0.004 [-0.001 - 0.011] -0.004 [-0.088 - 0.100] 0.004 [-0.002 - 0.011] 

 454 
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3.4.4 Exposure via food 455 

The 50th and 95th percentiles of exposure from food were observed respectively at 0.21 and 456 

0.34 µgPb.kgbw
-1.d-1, reaching up to 0.52 µgPb.kgbw

-1.d-1 for children in the top 1% for lead 457 

exposure (Table 3). Dietary exposure moderately contributed to aggregate exposure, with its 458 

contribution decreasing from 13% for the top half of the child population to 1.3% when 459 

children were more heavily exposed to lead (Table 4). 460 

 461 

3.4.5 Exposure via air and tap water  462 

Exposure levels via air and tap water in children were very low compared to the other 463 

exposure sources (Table 3). Exposure via air was observed at 0.012 µgPb.kgbw
-1.d-1 at the 95th 464 

percentile and accounted for 0.03% of aggregate exposure (Table 4). As with exposure via air, 465 

exposure from tap water did not significantly contribute to the evaluation of aggregate 466 

exposure, with values reaching 0.14 µgPb.kgbw
-1.d-1 and with a contribution below 0.29% for 467 

the top 5% of children most exposed to lead.  468 

  469 
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 470 

Figure 3. Histogram of the medians estimated for the 50th percentile (above) and the 95th 471 

percentile (below) of exposure (µgPb.kgbw
-1.d-1) to lead for children aged six months to three 472 

years, for aggregate exposure and for the various sources with the five implemented methods. 473 

Error bars show the P5 and P95 of the uncertainty intervals.  474 

 475 

4  Discussion 476 

 Recommendations for aggregate exposure 477 

To estimate aggregate exposure from different sources, it is ideal to have all exposure 478 

information for the same group of individuals with the same consistency regarding the units 479 

and methods, but this is rare in practice (Kennedy et al., 2015a). Thus, the main difficulty in 480 

the assessment of aggregate exposure involves combining data from several independent 481 

surveys and populations. Scientific articles related to aggregate exposure generally used 482 

different methodologies based on pre-existing models (Safford et al., 2015) or different 483 

softwares (MCRA, SHEDS, PACEM, BROWSE, etc.) with probabilistic simulations. 484 
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SHEDS-HT for example, combines dietary exposure from individual data with theoretical 485 

values concentrations from distributions fitted on data for the other exposure sources. In the 486 

case of MCRA, the software combines dietary exposure individual data with non-dietary 487 

exposure data (empirical or theoretical) evaluated first by another software. Thus, providing a 488 

harmonized method for combining different surveys with empirical data in case of aggregate 489 

exposure was the main aim of this paper. It can also be applied to reconstruct the information 490 

for the whole dataset for an existing study where different level of information was studied for 491 

different sub-populations. This is the case for some biomonitoring surveys, where 492 

measurements of chemicals are performed for sub-populations. It may also be applied for 493 

researchers and practitioners to combine data as a unique database to have a unique survey for 494 

different purposes. 495 

To establish general steps to  aggregate exposure from several surveys, five methods for 496 

combining data were compared using children (6 month to 3 years old) lead exposure case 497 

study in integrating uncertainties. They combined surveys focused on dietary exposure 498 

(BEBE-SFAE combined with TDSi), contamination in homes (PH surveys) and in air (BDQA 499 

survey). All methods provided consistent results and showed that dust was the main exposure 500 

source although there were some significant differences between exposure levels due to the 501 

difference in the methodology to combines these surveys. Moreover, uncertainties 502 

considerably varied between methods. Bonnel et al. (2015) also concluded that combining 503 

surveys with different populations and methodologies increased the probability to include 504 

biases due to sampling or measurements. Thus, it is primordial to consider and follow the 505 

recommended steps to decrease biases and uncertainties.  506 

The first step consists in selecting a reference population between the three surveys to 507 

simulate a new population of 100 000 individuals. It is an important step as its 508 

sociodemographic characteristics and parameters will be duplicated in the simulated 509 

population. Thus, the reference of the population needs to be the most representative of the 510 

target population to considerably decrease these biases.  511 

In the second step, it is recommended to consider stratification variables when 512 

sociodemographic variables shared between the reference population and the other survey 513 

variables are significantly correlated with concentration/exposure levels. Indeed, specific 514 

parameters such as sociodemographic variables, especially when they influence the quality of 515 

the other variables, may decrease the inclusion of biases when they are used to combine data 516 

(Bayart and Bonnel, 2015). When stratification variables was not considered, as with MC1 517 



26 

 

and MC2 methods, aggregate exposure values tended to be overestimated (around 11% for 518 

P50), compared to the methods considering stratification. The selection of stratification 519 

variables is thus an important step in the calculation of aggregate exposure allowing to merge 520 

appropriate exposure values for a specific sub-population. Stratification variables should be 521 

carefully selected, with the presence of classes in sufficient but not too high numbers. Indeed, 522 

the variables should not contain too many classes, otherwise it will be difficult to find 523 

connections between surveys and the probability of drawing the same value will increase. 524 

Conversely, when the number of classes is too low, there is a risk of not reproducing the 525 

observed correlations. To define the number of classes, it is recommended to test their impact 526 

when making statistical tests of the correlation significance between possible stratification 527 

variables and the concentration levels. In this study, the age and the region variables were 528 

used as stratification variables. Although gender is often used to combine data (Biesterbos et 529 

al., 2013; Comiskey et al., 2017; Kennedy et al., 2015a; Kennedy et al., 2015b), this 530 

parameter was not used as a stratification variable because it was not correlated with the 531 

concentrations in soil, dust and tap water. Furthermore, combining different consumption 532 

surveys with stratification variables are very current on the case of personal care products and 533 

cosmetics (Biesterbos et al., 2013; Comiskey et al., 2017) due to the lack of data for product 534 

usage for the subjects. Biesterbos et al. (2013) recommended for the combination of data to 535 

use gender, age and the level of education as they are important factors in the case of 536 

exposure assessment of personal care product. Comiskey et al. (2017) also merged data by 537 

pairing subjects with similar demographics (age range, gender, and geography) assuming that 538 

they will have similar habits and practices.  539 

The last step is to combine data using MC simulations. Our results showed that the UIs of the 540 

methods with MC in second step (MC2 and MC2S) were very large. These two methods 541 

showed high uncertainty in exposure values through the 100 new populations, especially for 542 

the most heavily exposed children. A difference of around 20% in the aggregate exposure 543 

values was observed at the 50th percentile between one simulation and the next. This 544 

difference could reach more than 50% for the 95th percentile. This meant that the exposure 545 

values were not stable from one simulation to the next. Moreover, the variability within a 546 

population simulated with MC in second step was lower than with MC in first step. Thus, 547 

high exposure values were given less consideration with MC in second step. Consequently, it 548 

is recommended to use the MC1S method which randomly samples individuals in the 549 

reference population and simultaneously assigns exposure factors and concentration values 550 
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from other surveys. In this study, this resulted in consistent and stable exposure values 551 

between the 100 simulations.  552 

In the case of multiple and independent data sets, correlations are often observed for analysis 553 

process. In this study, PH survey included several variables of interest, i.e. concentrations of 554 

lead in tap water, in dust and in soil for one dwelling, which were highly correlated between 555 

them. To keep these correlations, we selected vectors of these three concentration variables in 556 

MC1S/MC1 and MC2S/MC2 methods, and reproduced correlations between the 557 

concentration variables during simulation process by the Iman-Conover method (Iman and 558 

Conover, 1982) with the MCIC method. In astrophysics field, methods treats correlations 559 

between multiple data sets and give appropriate relevant weights of multiple data sets with 560 

mutual correlations by the creation of a hyperparameter matrix. The marginalization can be 561 

carried out with a brute-force grid evaluation of the hyperparameters, or it can be explored by 562 

using MC methods which directly sample the posterior distribution (Ma and Berndsen, 2014). 563 

Other methods such as copula methods (Haas, 1999), or principal component analysis 564 

(Cowan-Ellsberry and Robison, 2009)  can be used to take into account correlations during 565 

simulations. Regarding ways of taking into account correlations during simulation processes, 566 

there was no significant difference between MCIC method and the selection of a vector of 567 

concentrations (MC1). MC1 has the advantage to avoid additional uncertainty related to the 568 

choice of simulation correlations, while MCIC has the advantage of being easier to implement 569 

with popular commercial add-ins to Excel® such as @risk, Cristal Ball.  570 

 Aggregate children lead exposure in France 571 

In this paper, dust and soil were found to be the most significant sources of exposure to lead 572 

in France for children under the age of three years. Similar results were observed in France 573 

(Glorennec et al., 2016) and the USA (Zartarian et al., 2017) for the most heavily exposed 574 

children between the ages of three and six years. Indeed, between soil and dust, dust is more 575 

likely to accumulate trace metals (Acosta et al., 2015; Gabarron et al., 2017). The ingestion of 576 

lead from soil and dust is very significant in children due to their more intense hand-mouth 577 

behaviour (Gabarron et al., 2017; Glorennec et al., 2012). Contaminated soil and especially 578 

dust have been identified as contributors to blood lead levels in children in France (Etchevers 579 

et al., 2014; Etchevers et al., 2015; Glorennec et al., 2010; Oulhote et al., 2013). Exposure via 580 

dust in this paper is six times higher than observed by Glorennec et al. (2016) in children aged 581 

three to six years. This is due to some differences in exposure factors and in concentration 582 
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data used to evaluate exposure. Indeed, Glorennec et al. (2016) used for dust and soil 583 

ingestion a lognormal distribution with a standard deviation of 3.2 and truncated to the highest 584 

observed value whereas in this study, the lognormal distribution was simulated with a 585 

standard deviation of around 26, allowing a larger range of possible values as shown in 586 

original data. This difference emphasises the importance of carefully choosing exposure 587 

parameters in order to increase the confidence level of the analysis. As exposure factors came 588 

from studies with different periods and regions, error could appeared in exposure estimates. 589 

For example, QSoil and QDust which moderately impacted aggregate exposure have often been 590 

discussed (Dor et al., 2012; Moya and Philips, 2014; Özkaynak et al., 2011; U.S. EPA, 2011; 591 

von Lindern et al., 2016; Wilson et al., 2013). In the present study, QSoil and QDust were taken 592 

from the Exposure Factors Handbook (U.S. EPA, 2011) which derived distributions from 12 593 

key studies mainly conducted in North America between the 1980s and 1990s. However, 594 

since the 90’s,  activity patterns, micro-environments and hygiene practices have been 595 

improved (Moya and Philips, 2014). Furthermore, these data came from studies conducted in 596 

North America, while this case study focused on the French population. Soil ingestion 597 

quantities can vary depending on the geographic location, climate, season, or soil 598 

characteristics. To our knowledge, no data on quantities of ingested soil and dust and on 599 

inhalation rate, are available for children in Europe. Thus, there is a need of further research 600 

on exposure factors to improve data quality and exposure assessment in Europe. 601 

After the ingestion of soil and dust, food ingestion was the source that most contributed to 602 

total exposure to lead from the half of the most exposed children. For low exposure (25th 603 

percentile), dietary exposure is higher than other sources of exposure. As dietary exposure 604 

values were directly recorded in the reference population (i.e. BEBE-SFAE survey), it had 605 

already been aggregated by construction with sample pooling, leading to low variations in 606 

exposure in the simulated population. Consequently, no significant differences between 607 

methods were observed for dietary exposure. Dietary exposure were relatively similar with 608 

the median and 95th percentile values  observed at 0.21 and 0.38 µgPb.kgbw
-1.d-1 in this study, 609 

while values for older children were found at 0.37 and 0.42 µgPb.kgbw
-1.d-1. Similarly, dietary 610 

exposure was the main contributor to aggregate lead exposure for older children for the half of 611 

the population exposed to lead, with notable contributions by milk, fresh soft drinks, 612 

vegetables and bread (Glorennec et al., 2016), and then was overtaken by the exposure of dust 613 

and soil for the most exposed children. Lower exposure values from food and higher from 614 

dust and soil were observed in the present work compared to results at European level from 615 
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(EFSA, 2010). The differences may come that dust and soil concentrations from the PH study 616 

were higher (35mg/kg in mean to 831 in max for soil for ex.) than the single mean value used 617 

by EFSA 2010 (23mg par kg, for soil). Moreover, EFSA used single mean value for ingestion 618 

rate (100 mg per day) and body weight (12.5 kg) whereas we used probabilistic distributions. 619 

In that way, the ingestion rate can reach 1000 mg per day in the present work.  620 

The contribution of tap water and air to aggregate exposure was very low for children under 621 

the age of three years. This is consistent with findings for older French children (Glorennec et 622 

al., 2016) as well as for the exposure in air children in the USA (Zartarian et al., 2017). Lead 623 

concentrations inside dwellings were extrapolated from outdoor measurements despite they 624 

can be influenced by environmental tobacco smoke (Etchevers et al., 2014; Lucas et al., 625 

2014). Consequently, the extrapolated inhalation exposure was a weaker part due to lack of 626 

relevant data.  627 

 628 

EFSA (2010) estimated that the external dose corresponding to the BMDL01 of 12 µg/L 629 

(blood lead level) for developmental neurotoxicity was 0.50 µg.kg-1 bw.d-1. All values of the 630 

margin of exposure from aggregate sources were low and below to 10, which meant that a risk 631 

could not be excluded for all children. Furthermore, biomonitoring studies (Etchevers et al., 632 

2014) showed that most children under 6 years old exceed the BMD01. Consequently, current 633 

levels of lead exposure, are a public health concern in France.  634 

 635 

5 Conclusion 636 

This work proposed a step-by-step approach for performing aggregate exposure assessments 637 

by comparing different methods for combining heterogeneous surveys. The first step 638 

consisted in selecting a representative reference population of the target population. In the 639 

second step, it was recommended to consider stratification variables when combining surveys 640 

to prevent exposure values from being overestimated. In the last step, it was recommended to 641 

create a simulated population from the reference population and to simultaneously assign 642 

exposure factors and concentration values from the other surveys using the stratification 643 

variables. This timeline approach lowers the uncertainty of aggregate exposure. The 644 

methodology was implemented to evaluate aggregate exposure to lead in the population of 645 

children between the ages of six months and three years in France. Dust was the main 646 

exposure source, followed by soil and food in a lesser extent.  647 
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This work is a first application of the proposed methodology which needs to be applied in 648 

other case studies. 649 
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