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Abstract: In this paper we propose a role for the CDC6 protein in the entry of cells into mitosis. This
has not been considered in the literature so far. Recent experiments suggest that CDC6, upon entry
into mitosis, inhibits the appearance of active CDK1 and cyclin B complexes. This paper proposes
a mathematical model which incorporates the dynamics of kinase CDK1, its regulatory protein cyclin
B, the regulatory phosphatase CDC25 and the inhibitor CDC6 known to be involved in the regulation
of active CDK1 and cyclin B complexes. The experimental data lead us to formulate a new hypothesis
that CDC6 slows down the activation of inactive complexes of CDK1 and cyclin B upon mitotic entry.
Our mathematical model, based on mass action kinetics, provides a possible explanation for the
experimental data. We claim that the dynamics of active complexes CDK1 and cyclin B have a similar
nature to diauxic dynamics introduced by Monod in 1949. In mathematical terms we state it as the
existence of more than one inflection point of the curve defining the dynamics of the complexes.

Keywords: cell cycle; M-phase entry; mathematical model; dynamical system; diauxic dynamics;
CDC6; CDK1; Xenopus laevis embryo

1. Introduction

The mitotic cell cycle is an ordered sequence of events, grouped into four phases: G1, S, G2 and M,
during which the eukaryotic cell doubles its content, and divides into two daughter cells. The classical
models for studies of cell cycle molecular machinery are oocytes and early embryos. These have the
distinguishing property of being transcriptionally silent. This implies that the molecular machinery
governing oocyte maturation and early embryo development is based on the maternal information
accumulated during oocyte growth. While many different proteins regulate the progression of the
cell cycle and the transitions between cell cycle phases, the major regulatory mechanisms are based
on similar processes in all phases. Two main classes of proteins involved in cell cycle control are
cyclins and enzymes called cyclin dependent kinases—CDKs. During individual phases a specific cyclin
accumulates in the cell, associates with an appropriate kinase and with the help of other enzymes
activates the kinase/cyclin complex. The appropriate level of an active complex triggers the transition
to the next phase of the cell cycle.
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A protein complex responsible for the transition from G2 to M is formed from CDK1 kinase
and cyclin B, the latter being abbreviated as CYC B [3,4]. The complex of CDK1 and CYC B, denoted
by CDK1/CYC B, can be in one of two states, inactive or active, abbreviated as CDK1/CYC BN and
CDK1/CYC BA, respectively [3]. CDK1/CYC BN is dephosphorylated by active CDC25 phosphatase, denoted
by CDC25A (inactive phosphatase CDC25 is denoted by CDC25N). CDC25A has the ability to pull away the
phosphoryl group from two amino acids Tyr15 and Thr14 of the CDK1/CYC BN complex, making
it active. This dephosphorylation results in the creation of CDK1/CYC BA. CDK1/CYC BA induces
a cascade of phosphorylation of numerous substrates that change the character of cellular proteins
from interphase to mitotic. These changes—necessary for mitotic progression—modify structures such
as the cytoskeleton, membranes and DNA (condensation). Moreover, activation of CDC25 phosphatase
occurs due to its interaction with active CDK1/CYC BA complexes resulting in very powerful positive
feedback between CDK1 and CDC25 that governs the CDK1 activation upon the entry into M-phase.

Summarising, a subtle equilibrium between CDC25 and CDK1 enzymes is maintained at the
beginning of the G2 to M-phase transition process. The association of CDK1 molecules with constantly
synthesised CYC B results in the formation and accumulation of CDK1/CYC BN. This complex is inactive
because it is phosphorylated on Tyr15/Thr14 since CDC25 remains inactive. It was believed for a long
time that, at some point, a spontaneous activation of the first molecules of CDK1/CYC B triggers a positive
feedback between CDK1 and CDC25. Active molecules of CDK1/CYC B start CDC25 activation. Active
CDC25, denoted as CDC25A, activates new molecules of CDK1/CYC BN. This in turn triggers a dramatic
acceleration of biochemical events leading to full activation of the whole pool of CDK1/CYC B complexes
present in the cell. Moreover, recently Vigneron et al. [5] have shown that another complex containing
CDK1, namely, CDK1/CYC A, triggers the activation of CDK1/CYC B.

A number of mathematical models have been proposed to describe and understand mitotic cell
cycle progression. For instance, some have used the stochastic approach to capture non-deterministic
aspects of the process and emphasised that noise is an important factor influencing cell dynamics [6–12].
The common approach, however, is the deterministic one that usually is based on systems of ordinary
differential equations. Some authors considered large systems of that type in order to investigate
transitions between cell cycle phases. Such systems describing the dynamics of different proteins and
enzymes were usually analysed only numerically, e.g., [13–20]. Some models have considered the
activation of CDK1, e.g., [21–23]. There are cell cycle models based not only on standard ordinary
differential equations, but also on delay differential equations [24,25]. For example, Busenberg
et al. [24] contains a rigorous analysis of the model. Interesting analytic results can be found in
other papers [26–30]. We emphasise the analytic results obtained by Ferrell et al. who described the
cell cycle using ordinary differential equations and proved the existence of oscillatory dynamics of the
cell cycle, switch-like behaviour of activity of CDK1 and a bistability system [31,32].

The purpose of our work is to deepen the understanding of the cell cycle process. We are
particularly focused on the G2 to M-phase transition process and we aim at investigating the role of the
CDC6 protein in entering into the M-phase of the cell cycle. CDC6, up to now, was known as an essential
ATPase active in the S phase and responsible for the initiation of DNA replication.

Recent experiments made in Xenopus laevis one-cell embryo cell-free extract suggest that CDC6

has an important role in the delay of G2 to M-phase transition [1]. This experimental system, however,
simplified, as no nuclear DNA is present and all genetic information, both proteins and RNA, are
of maternal origin and were accumulated in oocytes before the embryo development was triggered,
allowed us to analyse the core molecular mechanisms of the cell cycle. We formulate a new hypothesis
that explains this delay in terms of diauxic-like activation of CDK1/CYC B. In a different context, diauxic
behaviour was introduced by Monod [2] in 1949. We propose a new mathematical model that captures
this new hypothesis. We present the analysis and numerical simulations of this new model, suggesting
how CDC6 regulates the dynamics of CDK1/CYC B activation upon M-phase entry.

The structure of the paper is as follows. In Section 2 we present the material and methods used to
obtain experimental results that inspired our subsequent research. In Section 3, at first, we introduce the
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biochemical model describing the basic events occurring when a cell enters mitosis. Then, we present
the experimental results on the CDC6 protein that motivate our work. We show both the data reprinted
from El Dika et al. [1] in Figure 1 and original results in Figure 2. We formulate a new hypothesis that
captures the role of CDC6 in the process and the mathematical model corresponding to the biochemical
one. Next, we present the numerical simulations of the proposed model and finally, Section 4 provides
conclusions and directions for further research. In Appendix A we present the mathematical analysis
of the presented model.

2. Material and Methods

2.1. Egg Collection and Activation

Spawn Xenopus laevis eggs were dejellied with 2% L-cysteine pH 7.81 in XB buffer (100 mM KCl,
1 mM MgCl2, 50 mM CaCl2, 10 mM HEPES and 50 mM sucrose pH 7.6). Next, they were washed in
XB buffer, activated with 0.5 mg/mL calcium ionophore A23187 and extensively washed in XB.

2.2. Cell Free Extracts

Cytoplasmic extracts from calcium ionophore-activated one-cell embryos before the first
embryonic mitosis were prepared according to El Dika et al. [1]. In short, embryos were cultured at
21◦C in XB buffer for 60–70 min postactivation, transferred into 5 mL ultraclearTM centrifuge tubes
(Beckman Coulter, Roissy, France) in 0.5 mL of XB buffer containing 0.1 mM AEBSF, a protease inhibitor,
at 4◦. They were subjected to three consecutive centrifugations: The first short spin to remove XB excess
and pack the embryos, the second 10,000× g spin at 4◦C for 10 min to separate the cell-free fractions,
and the final 10,000× g clarification spin of the supernatant at 4◦C for 10 min. The supernatant was
then incubated at 21 ◦C. Aliquots were taken out every 4 min and stored at −80 ◦C.

2.3. CDK1 Activity Measurements

Samples of cell-free extracts were diluted in MPF buffer supplemented with: 0.5 mM sodium
orthovanadate, 5 µg/µL of leupeptin, aprotinin, pepstatin and chymostatin, 0.4 mg/mL H1 histone
(type III-S), 1µCi [γ32P] ATP (specific activity: 3000 Ci/mmol; Amersham Biosciences, UK) and
0.8 mM ATP. After incubation at 30 ◦C for 30 min, phosphorylation reactions were stopped by
adding Laemmli sample buffer and heated at 85 ◦C for 5 min. Histone H1 was separated by
SDS-PAGE and incorporated radioactivity was measured by autoradiography of the gel using a STORM
phosphorimager (Amersham Biosciences, Buckinghamshire, UK) followed by data analysis with
ImageQuant 5.2 software.

2.4. CDC6 Immunodepletion

Immunodepletion of CDC6 from egg extracts was carried out using AffiPrep Protein A beads
(Sigma, USA) conjugated with the anti-CDC6 or with the preimmune serum overnight in 4 ◦C; 200 mL
of beads were washed four times with XB buffer (pH 7.6) and incubated with 400 mL of extracts. After
30 min of incubation at 4 ◦C, extracts were centrifuged, beads were removed and supernatant was
recovered. Two consecutive runs of immunodepletion were required to remove 90% of CDC6, as shown
in El Dika et al. [1].

3. Results

3.1. Biochemical Model and the New Hypothesis

CYC B concentration gradually increases during the G2 phase (cf. Equation (5)). CYC B pairs with
protein kinase CDK1 creates an inactive (phosphorylated) complex—CDK1/CYC BN (cf. Equation (1)).
Inactive complex CDK1/CYC BN upon its interaction with phosphatase CDC25A becomes activated, thus
the concentration of active complexes CDK1/CYC BA increases (cf. Equation (2)). Conversely, complex
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CDK1/CYC BA activates phosphatase CDC25N causing the appearance of more CDC25A (cf. Equation (3)).
Summarising, CDC25A and CDK1/CYC BA form a positive feedback loop. The M phase begins when the
concentration of active CDK1/CYC BA exceeds the threshold value.

Recent experimental studies provoke intriguing questions about the role of the CDC6 protein
in slowing down the activation of CDK1/CYC BN complexes. Figure 1 shows the concentration of
CDK1/CYC BA (from a biochemical point of view, simply the CDK1 activity) obtained on the basis of
molecular experiments in two cases: (a) With CDC6; and (b) without CDC6 (after removal of CDC6 from
the experimental system) [1]. In the experimental setting with CDC6, one can notice a slower increase
in the concentration of CDK1/CYC BA. Therefore, in the experimental system with CDC6 the entry into
mitosis is delayed. Our main goal is to explain the role of CDC6 in the observed phenomenon.

Figure 1. CDK1/CYC BA activity in the control extract containing physiological amounts of CDC6 (a)
and in the extract immunodepleted of CDC6 (b). Note a slow and diauxic growth of CDK1/CYC BA

activity in the control extract (a) and the very rapid activation in the absence of CDC6 (b). Curves
reprinted from El Dika et al. [1].

The diauxic growth of CDK1 activity was clearly noticed in previous studies of Xenopus laevis
one-cell embryo cell-free extracts ([33]: Figure 1A bottom, Figure 2A right, Figure 3A right, [34]:
Figure 2A bottom and [28]: Figure 1V). Furthermore, in our own research, we always observed the
same type of behaviour of CDK1 ([35]: Figures 1A, 2A, 3A and 6A, [36]: Figures 2A, 3A, 6A and 7A,B
and [37]: Figures 6A and 7B). Moreover, the diauxic growth of CDK1 activity is not an artefact due to
the cell-free system because it was also observed in individual Xenopus laevis one-cell embryos ([38]:
Figure 1A); however, it is more clear in the vegetal hemisphere where the CDK1 activation is delayed
and proceeds with lower dynamics ([38]: Figure 1B). The precise dynamics of the diauxic growth of
CDK1, i.e., inflection times and slope of the curve, varies form one experiment to another. For this
reason, the average curves showing the dynamics of CDK1 activation upon the M-phase entry in Xenopus
laevis one-cell embryos do not preserve the diauxic character ([35]: Figure 4B), where the average curve
of 16 independent experiments does not show any inflection points. In Figure 2 in the current paper
we show two examples of the fast and slow growth of CDK1 activity in two independent experiments
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illustrating this problem well. The average curve of these two experiments also does not show the
inflection points clearly visible in each experimental curve (data not shown).

Figure 2. Differences in dynamics of CDK1/CYC BA activation curves in control extracts containing
physiological amounts of CDC6. Two extreme examples are shown: Rapid activation taking 16 min (a)
and slow activation taking 28 min (b). Note that the inflection points of the curves appear at different
moments in relation to the maximum activity.

We hypothesise that CDC6 binds to CDK1/CYC BN and creates a new CDK1/CYC B/CDC6 complex,
preventing CDK1/CYC BN from being activated by CDC25A phosphatase (cf. Equation (4)). The resulting
CDK1/CYC B/CDC6 complexes constantly break down into CDC6 and CDK1/CYC BN that constantly
associate again. The more CDK1/CYC BN accumulate in the cell, the more CDK1/CYC BN complexes
are activated by residual CDC25A. The formation of CDK1/CYC B/CDC6 prolongs a very slow increase
in the appearance of CDK1/CYC BA complexes. A slowdown in CDK1/CYC BA increase is visible as the
flattening of the curve in Figure 1a. The experimental data leads to a new hypothesis on the mutual
interaction between CDC6 and CDK1/CYC BN, which determines the dynamics of CDK1/CYC BA upon
mitotic entry. Our mathematical model, based on the law of mass action, bolsters this hypothesis.
We suggest that the dynamics of CDK1/CYC BA are similar to diauxic dynamics introduced by Monod [2].
In mathematical terms, we state it as the existence of more than one inflection point on the curve
defining the dynamics of the complexes, cf. Figure 3. Indeed, in the present model, we observe three
or four inflexion points.

The second part of our hypothesis is that the reaction speed of CDK1/CYC BN and CDC6 binding
depends on active CDK1/CYC BA in a switch like mode. This means that when the concentration of
CDK1/CYC BA is less than the concentration value, then the reaction speed of CDK1/CYC B/CDC6 formation
is low. When the CDK1/CYC BA is higher than the threshold value the reaction speed becomes much
faster resulting in a two-step CDK1 activation visible in biological experiments as an inflection of the
activation curve of CDK1. Experimental data show clearly that this activation depends on the presence
of CDC6 [1].
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Summarising, we consider the biochemical model that takes into account eight species,
the descriptions of which are provided in Table 1, whereas the scheme of their mutual interactions is
provided in Figure 4.

Figure 3. The smoothed curve obtained on the basis of experimental data presented in Figure 1a.
Red circles indicate approximate location of inflection points for the setting with CDC6 upon
M-phase entry.

Table 1. Species of the biochemical model involved in Equations (1)–(5).

Species Description

CDK1 cyclin-dependent kinase 1
CYC B cyclin B
CDK1/CYC BA active complex of CDK and CYC B
CDK1/CYC BN inactive complex of CDK and CYC B
CDC25A active phosphatase CDC25
CDC25N inactive phosphatase CDC25
CDC6 cell division cycle 6 ATPase
CDK1/CYC B/CDC6 complex of CDK1/CYC BN and CDC6

We consider the following five reactions (i.e., Equations (1)–(5)).

CDK1 + CYC B
α1−−−→ CDK1/CYC BN, (1)

CDK1/CYC BN + CDC25A
α2−−−→ CDK1/CYC BA + CDC25A, (2)

CDK1/CYC BA + CDC25N
α3−−−→ CDK1/CYC BA + CDC25A, (3)

hyp: CDK1/CYC BN + CDC6 ↽−−−−−−−−−−−
δ

α4· f (CDK1/CYC BA)−−−−−−−−−−−−−⇀ CDK1/CYC B/CDC6, (4)

∅ ↽−−
β

β·KcycB−−−−⇀ CYC B (5)

We want to emphasise that Equations (1)–(3) and (5) correspond to the current state of knowledge.
Equation (4) reflects the new hypothesis and is our contribution to understanding the phenomenon.
In summary, taking Equation (4) into account is the first part of the new hypothesis. The speed of
Equation (4) described by the function f is the second part of the hypothesis.
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Figure 4. The schematic diagram of the considered system. Colours of arrows and dots correspond to
colours of Equations (1)–(5). For simplicity we do not consider the potential marginal separation of the
complex CDK1/CYC BN into CDK1 and CYC B. On the diagram we indicate this by "∗".

3.2. Mathematical Model

Assuming mass action kinetics for Equations (1)–(5) we transform the biochemical model into the
system of eight ordinary differential equations (ODEs) with the following notation

x = CDK1 , xa = CDK1/CYC BA , xn = CDK1/CYC BN , ya = CDC25A ,

yn = CDC25N , z = CDC6 , w = CDK1/CYC B/CDC6 , c = CYC B .

We have
ẋ = −α1xc ,
ẋa = α2xnya ,
ẋn = α1xc− α2xnya − α4 f (xa)xnz + δw ,
ẏa = α3xayn ,
ẏn = −α3xayn ,
ż = −α4 f (xa)xnz + δw ,
ẇ = α4 f (xa)xnz− δw ,
ċ = −α1xc + β(KCYC B − c) ,

(6)

where α1, α2, α3, α4, β, δ are positive parameters and f (x) = ω + νxk

vk
th+xk . The function f is the Hill

function that describes switch-like behaviour, where ν is a positive coefficient, k is a Hill coefficient,
vth is the threshold value of the switch and ω is the basic rate when xa = 0. The function f describes
the reaction rate of CDK1/CYC BN associated with CDC6 resulting in the formation of CDK1/CYC B/CDC6

complexes (cf. Equation (4)). In the system of ordinary differential equations, Equation (6) appears in
the 7th equation describing the dynamics of CDK1/CYC B/CDC6 and, due to the law of mass action, in the
3rd and 6th equations describing the dynamics of CDK1/CYC BN and CDC6, respectively. The process of
CDK1/CYC B/CDC6 formation seems to be highly nonlinear and we assume its rate to be CDK1/CYC BA

dependent. There exists a similar mechanism governing interactions between CDK1 and CDC6 in S-phase.
If CDK1/CYC BA is low then the majority of CDC6 is not phosphorylated. However, with an increase of
CDK1/CYC BA more phosphorylated CDC6 appears in the cell [39]. The function f is bounded as it plays
the role of a rate coefficient. The typical way of modelling such a nonlinear dependence is based on
the Hill function, see, e.g., [40].
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Taking into consideration the biological constraints, we propose the following initial data

x(0) = KCDK1 − εxa − εxn − εw > 0 ,
xa(0) = εxa � KCDK1 ,
xn(0) = εxn � KCDK1 ,
ya(0) = εya � KCDC25 ,
yn(0) = KCDC25 − εya ,
z(0) = KCDC6 − εw ,
w(0) = εw � min{KCDK1, KCDC6} ,
c(0) = 0 .

(7)

Equation (6) have the following conservation laws

xa + xn + x + w = KCDK1 ,

ya + yn = KCDC25 , (8)

z + w = KCDC6 ,

where KCDK1, KCDC25, KCDC6 denote constants given at the initial time. In Appendix A we provide
the mathematical analysis of the model.

We provide the standard non-dimensionalisation of Equation (6). In other words we relate all
considered variables to their characteristic values. With the substitution

x∗ = x
KCDK1

, x∗a = xa
KCDK1

, x∗n = xn
KCDK1

, w∗ = w
KCDK1

,

y∗a = ya
KCDC25

, y∗n = yn
KCDC25

, z∗ = z
KCDK1

, c∗ = c
KCYC B

,

t∗ = β t , γ = KCDC6
KCDK1

, ν∗th = νth
KCDK1

, δ∗ = δ
β ,

α∗1 = α1KCYC B
β , α∗2 = α2KCDC25

β , α∗3 = α3KCDK1
β , α∗4 = α4KCDK1

β ,

ε∗xa =
εxa

KCDK1
, ε∗xn = εxn

KCDK1
, ε∗ya =

εya
KCDC25

, ε∗w = εw
KCDK1

,

(9)

and omitting the stars for simplicity, we obtain

ẋ = −α1xc ,
ẋa = α2xnya ,
ẋn = α1xc− α2xnya − α4 f (xa)xnz + δw ,
ẏa = α3xayn ,
ẏn = −α3xayn ,
ż = −α4 f (xa)xnz + δw ,
ẇ = α4 f (xa)xnz− δw ,
ċ = −α1xc + (1− c) .

(10)

By Equation (8) it follows
xa + xn + x + w = 1,
ya + yn = 1,
z + w = γ .

(11)
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By Equation (7) we obtain

x(0) = 1− εxa − εxn − εw > 0 ,
xa(0) = εxa � 1 ,
xn(0) = εxn � 1 ,
ya(0) = εya � 1 ,
yn(0) = 1− εya ,
z(0) = γ− εw ,
w(0) = εw � min{1, γ} ,
c(0) = 0 .

(12)

From the mathematical analysis presented in Appendix A we deduce that if the system contains
even a small amount of CDK1/CYC BA or CDC25A then CDK1/CYC BA and CDC25A converge to full
activation. This result is consistent with biological observations, because if the initial concentration
of CDK1/CYC BA or CDC25A is positive then the positive feedback loop starts and the biological system
tends to its equilibrium state (called S2) defined by the maximal concentrations of CDK1/CYC BA and
CDC25A. If the initial concentrations of CDK1/CYC BA or CDC25A are equal to zero, then the positive
feedback loop does not start and the biological system tends to another equilibrium state (called S1)
defined by the concentrations of CDK1/CYC BA and CDC25A equal to 0. Small perturbations of the initial
concentrations from zero to positive values change the equilibrium points, and this is the biological
reason for S1 being unstable and S2 being asymptotically stable.

We note that a further simplification of the reduced model, Equation (A3), considered in
Appendix A is reasonable. For example taking x = 0 and c = 1 we may reduce this system to
a system of three equations

ẋa = α2(1− γ + z− xa)ya ,
ẏa = α3xa(1− ya) ,
ż = −α4 f (xa)(1− γ + z− xa)z + δ(γ− z) .

(13)

3.3. Numerical Simulations

To carry out the numerical simulations we use the Runge-Kutta 4th order method provided by
Matlab. Parameters values used to carry out the numerical simulations are given in Table 2. Figure 5
shows the concentrations of CDK1, CDK1/CYC BA, CDK1/CYC BN, CDK1/CYC B/CDC6. The most interesting
curve is CDK1/CYC BA, where we observe three inflection points. The concentrations of species containing
CDK1 are shown in Figure 6 with the concentration of CDC6 set to zero. Figure 7 shows the difference in
activation: The timing and dynamics of the activation of CDK1/CYC BA in the presence and absence of
CDC6. When CDC6 is present the activation has more than one inflection point, and mitosis starts later,
whereas when CDC6 is absent, the activation is fast. In Figures 5 and 7 we observe diauxic-type behaviour
for the curve of CDK1/CYC BA. According to our hypothesis, this is related to the mutual interaction
between CDC6 and CDK1/CYC BN. We link this kind of behaviour with the existence of multiple (three
or four in this case) inflection points in the curve of CDK1/CYC BA. The rigorous investigation of this
fact leads to the analysis of behaviour of the second derivative of CDK1/CYC BA and more precisely its
number of zeros. Figure 8 presents the graphs of the second derivative of xa obtained for the reduced
system of three equations, Equation (13).
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Figure 5. Concentration of CDK1, CDK1/CYC BA, CDC6 in the presence of CDC6.

Figure 6. Concentration of CDK1, CDK1/CYC BA, CDC6 in the absence of CDC6.

Figure 7. Comparison between concentration of CDK1/CYC BA in the absence and presence of CDC6.
Solid line—system with CDC6; dotted line—system without CDC6.
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(a) (b)

Figure 8. Graphs presenting second derivatives of xa showing the number of zeros, which indicates
the number of inflection points. (a) corresponds to the case with the second derivative starting from
a positive value and having three zeros. (b) corresponds to the case with the second derivative starting
from a negative value and having four zeros.

Table 2. Values of parameters used in simulations.

Parameter Value Parameter Value Parameter Value

α1 1 δ 4 εxa 0.001
α2 30 k 20 εxn 0.001
α3 1 ν 8 εya 0
α4 7 νth 0.25 εw 0
γ 1 ω 0.6

We may note that the numerical result given in Figure 8 has a rigorous nature as is visible by
a careful estimation of the error of Matlab approximation. For example, considering Equation (13),
we may provide (following the idea of [41]) the detailed analysis of the error

En = yn − y(tn) ,

where y(tn) is the value of the true solution at point tn and yn is the approximation of the solution at
point tn, showing that

|En| < 4.5 · 1010 · h4 .

Taking h = 1
1000 the error is smaller than the variation in the second derivative. Moreover,

the rounding error can be neglected because the machine epsilon (see [42]) is sufficiently small
compared with h. The details of the estimation are not reported here. This leads to the conclusion that
the result stating the number of zeros of the second derivative has a rigorous nature and there the
number of inflection points of the variable xa is either three or four, which give diauxic behaviour.

4. Discussion

The proposed model captures the most important characteristics of the diauxic growth of CDK1

activation observed in biochemical experiments. Based on our previous experimental results [1]
we claim that CDC6 is the most important factor which causes the inflection of the CDK1 activation
curve. We have shown for the first time that CDC6 is an inhibitory protein acting on CDK1 during
M-phase. Making use of our modelling setting, we hypothesise that CDC6 binds to CDK1/CYC BN forming
CDK1/CYC B/CDC6. CDK1/CYC B/CDC6 formation results in slower activation of CDK1 and consequently
a delayed entry into M-phase. From a biochemical perspective our results, both experimental and
modelling, are particularly interesting because the inhibitory effect of CDC6 on CDK1 activation during
M-phase was not shown previously.

The second part of our hypothesis stands for the switch-like dependence of the reaction
rate of CDK1/CYC BN binding to CDC6 resulting in the formation of CDK1/CYC B/CDC6 (Equation (4)).
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Our assumption that the mentioned reaction rate depends on CDK1/CYC BA provides a good qualitative
explanation of the observed diauxic dynamics of CDK1 activation. Further biological research is needed
to investigate what molecular modification is necessary for this switch-like pattern of CDK1 activation.
We can postulate that CDK1, at some threshold, phosphorylates CDC6 triggering the abrupt increase
in CDC6 affinity to CDK1/CYC BN. From a more general perspective, the slow rate of CDK1 activation is
very likely important for the physiological course of mitotic processes such as chromatin condensation
or spindle formation in such a large cell as the Xenopus laevis one-cell embryo.

One of the main goals of the paper was to describe mathematically the diauxic behaviour of CDK1

activation in the presence of CDC6 protein. However, this kind of approach has a wide spectrum of use
and may be applied to a large variety of problems. Usually such complex biological systems are very
difficult to treat rigorously from a mathematical point of view. The analysis of the error gives a chance
for a rigorous statement based on the numerical simulations. We leave the details of this approach for
a forthcoming paper.

Our results may affect the understanding of the process of cancerogenesis since CDC6 and its
interactions with CDK1 play an important role in mitotic regulation and in cancer etiology [43,44].
The CDC6 role in M-phase regulation is not limited only to the mitotic cell cycle as shown in the current
paper and in El Dika et al. [1], but also to the meiotic regulation in oocytes [45–48]. The requirement of
CDC6 for the meiotic spindle formation in mice and Xenopus laevis oocytes suggests that it can also be
involved in mitotic spindle formation. The diauxic growth of CDK1 activity determined by CDC6 may be
in relation to the proper dynamics of spindle assembly not only through the fine tuning of microtubule
dynamics, but also by the proper coordination with other players like actin filaments [49,50].
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Appendix A. Mathematical Analysis of the Model

The global existence, uniqueness, positiveness and boundedness of the solutions follow directly
from the form of Equation (10). Keeping in mind Equation (12), we obtain

x(t), xa(t), xn(t), ya(t), yn(t), c(t) ∈ [0, 1],
z(t) ∈ [0, γ], w(t) ∈ [0, min(1, γ)],

(A1)

for all t > 0. From Equation (11) we obtain

xn = 1− xa − x− w,
yn = 1− ya,
w = γ− z.

(A2)

Using Equation (A2) we reduce Equation (10) to

ẋ = −α1xc,
ẋa = α2(1− γ + z− xa − x)ya,
ẏa = α3xa(1− ya),
ż = −α4 f (xa)(1− γ + z− xa − x)z + δ(γ− z)
ċ = −α1xc + (1− c).

(A3)

Referring to equilibrium points we formulate the following proposition.
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Proposition A1. In the set [0, 1]3 × [0, γ]× [0, 1] there exist only two equilibrium points of Equation (A3):

(1) S1 =

0, 0, 0, 1
2

(
γ− 1− δ

α4ω +

√(
1− γ + δ

α4ω

)2
+ 4 δγ

α4ω

)
, 1

 ,

(2) S2 = (0, 1, 1, γ, 1) .

Proof. Let the equilibrium point of Equation (A3) be denoted by (x̄, x̄a, ȳa, z̄, c̄). We have

−α1 x̄c̄ = 0,
α2(1− γ + z̄− x̄a − x̄)ȳa = 0,
α3 x̄a(1− ȳa) = 0,
−α4 f (x̄a)(1− γ + z̄− x̄a − x̄)z̄ + δ(γ− z̄) = 0,
−α1 x̄c̄ + (1− c̄) = 0.

(A4)

From the fifth equation of Equation (A4) we obtain c̄ 6= 0, and from the first and fifth equations of
Equation (A4) we obtain x̄ = 0, c̄ = 1. Analysing the second equation of Equation (A4) we consider
two cases

• ȳa = 0. Then from the third equation of Equation (A4) we get x̄a = 0. Putting these results into
the fourth equation of Equation (A4), with f (0) = ω, we obtain

−α4ω(1− γ + z̄)z̄ + δ(γ− z̄) = 0 . (A5)

Equation (A5) is a quadratic equation and has two solutions

z̄1 =
1
2

γ− 1− δ

α4ω
−

√(
1− γ +

δ

α4ω

)2
+ 4

δγ

α4ω

 ,

z̄2 =
1
2

γ− 1− δ

α4ω
+

√(
1− γ +

δ

α4ω

)2
+ 4

δγ

α4ω

 .

Solution z̄1 is negative because

γ− 1− δ

α4ω
−

√(
1− γ +

δ

α4ω

)2
+ 4

δγ

α4ω
<

< γ− 1− δ

α4ω
−
∣∣∣γ− 1− δ

α4ω

∣∣∣ ≤ 0.

Solution z̄2 is positive because

γ− 1− δ

α4ω
+

√(
1− γ +

δ

α4ω

)2
+ 4

δγ

α4ω
>

> γ− 1− δ

α4ω
+
∣∣∣γ− 1− δ

α4ω

∣∣∣ ≥ 0.

We may note that z̄2 ≤ γ. Taking into consideration Equation (A1) we obtain the equilibrium point

(
x̄, x̄a, ȳa, z̄, c̄

)
=

0, 0, 0,
1
2

γ− 1− δ

α4ω
+

√(
1− γ +

δ

α4ω

)2
+ 4

δγ

α4ω

 , 1

 .
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• ȳa 6= 0. From the second equation of Equation (A4) we get 1− γ + z̄− x̄a − x̄ = 0. Substituting
this to the fourth equation of Equation (A4) we obtain z̄ = γ. Now by x̄ = 0 we have x̄a = 1. Then
from the third equation of Equation (A4) we obtain ȳa = 1. We have the following equilibrium
point (

x̄, x̄a, ȳa, z̄, c̄
)
= (0, 1, 1, γ, 1) .

Referring to the stability of the equilibrium points.

Proposition A2. The equilibrium points S1 and S2 are unstable and asymptotically stable, respectively.

Proof. The Jacobi matrix J of Equation (A3) has the form

J =


−α1c 0 0 0 −α1x
−α2ya −α2ya α2(1− γ + z− xa − x) α2ya 0

0 α3(1− ya) −α3xa 0 0
α4 f (xa)z A1 0 A2 0
−α1c 0 0 0 −1− α1x

 ,

where

A1 = −α4 f ′(xa) (1− γ + z− xa − x) z + α4 f (xa)z,

A2 = −α4 f (xa) (1− γ + z− xa − x)− α4 f (xa)z− δ.

We study the stability of the equilibrium point S1. For convenience we denote S1 = (0, 0, 0, z̄, 1),

where z̄ = 1
2

(
γ− 1− δ

α4ω +

√(
1− γ + δ

α4ω

)2
− 4 δγ

α4ω

)
. The corresponding Jacobi matrix is

J(S1) =


−α1 0 0 0 0

0 0 α2(1− γ + z̄) 0 0
0 α3 0 0 0

a4ωz̄ α4ωz̄ 0 −α4ω(1− γ + 2z̄)− δ 0
−α1 0 0 0 −1 ,

 ,

because f (0) = ω, f ′(0) = 0. J(S1) is a block matrix, so we have

det
(

J (S1)− λI
)
= det (P1 − λI) · det (P2 − λI) · det (P3 − λI) , (A6)

where
P1 =

[
− α1

]
,

P2 =

 0 α1(1− γ + z̄) 0
α3 0 0

α4ωz̄ 0 −α4ω (1− γ + 2z̄)− δ

 ,

P3 =
[
− 1
]
.

The characteristic polynomial wP2(λ) of matrix P2 is

wP2(λ) = λ2
(
− α4ω(1− γ + 2z̄)− δ− λ

)
+

+
(

α4ω(1− γ + 2z̄) + δ + λ
)

α1α3(1− γ + z̄),
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wP2(0) = α1α3(1− γ + z̄)
(

α4ω(1− γ + 2z̄) + δ
)

.

Now we examine the sign of 1− γ + z̄.

1− γ + z̄ =
1
2

(
1− γ− δ

α4ω
+

√(
γ− 1 +

δ

α4ω

)2
+

4δ

α4ω

)
>

>
1
2

(
1− γ− δ

α4ω
+
∣∣∣γ− 1 +

δ

α4ω

∣∣∣) ≥ 0,

It follows that 1− γ + 2z̄ > 1− γ + z̄ > 0, then wP2(0) > 0 and wP2(∞) = −∞. Therefore, there
exits λ0 > 0 such that wP2(λ0) = 0. The matrix J(S1) has a positive eigenvalue; thus, the equilibrium
point S1 is unstable.

Next we study the stability of the point S2. The corresponding Jacobi matrix is

J(S2) =


−α1 0 0 0 0
−α2 −α2 0 α2 0

0 0 −α3 0 0
α4 f (1)γ α4 f (1)γ 0 −α4 f (1)γ− δ 0
−α1 0 0 0 −1

 .

J(S2) is a block matrix; thus, we have

det
(

J (S1)− λI
)
= det (R1 − λI)det (R2 − λI)det (R3 − λI) , (A7)

where
R1 =

[
− α1

]
,

R2 =

 −α2 0 α2

0 −α3 0
α4 f (1)γ 0 −α4 f (1)γ− δ

 ,

R3 =
[
− 1
]
.

The characteristic polynomial wR2 of matrix R2 is:

wR2(λ) = −λ3 + v2λ2 + v1λ− α2α3δ,

where

v1 = −(α3α4 f (1)γ + α2δ + α3δ + α2α3) < 0,

v2 = −(α4 f (1)γ + δ + α2 + α3) < 0.

Each coefficient of polynomial wR2 is negative, so each root has a negative real part. Matrices R1

and R3 have eigenvalues −α1 and −1, respectively, which are negative. Each eigenvalue of matrix
J(S2) has a negative real part, so the stationary state S2 is asymptotically stable.
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We may note that from Equation (A3) we easily obtain the following remark.

Remark A1.

(a) If xa(0) = 0 = ya(0), then
(

x(t), xa(t), ya(t), z(t), c(t)
)
→ S1 as t→ ∞.

(b) If xa(0) > 0 or ya(0) > 0, then
(

x(t), xa(t), ya(t), z(t), c(t)
)
→ S2 as t→ ∞.
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