Trans-generational effects on diapause and life-history-traits of an aphid parasitoid - Université de Rennes Access content directly
Journal Articles Journal of Insect Physiology Year : 2020

Trans-generational effects on diapause and life-history-traits of an aphid parasitoid


Transgenerational effects act on a wide range of insects’ life-history traits and can be involved in the control of developmental plasticity, such as diapause expression. Decrease in or total loss of winter diapause expression recently observed in some species could arise from inhibiting maternal effects. In this study, we explored transgenerational effects on diapause expression and traits in one commercial and one Canadian field strain of the aphid parasitoid Aphidius ervi. These strains were reared under short photoperiod (8:16 h LD) and low temperature (14 °C) conditions over two generations. Diapause levels, developmental times, physiological and morphological traits were measured. Diapause levels increased after one generation in the Canadian field but not in the commercial strain. For both strains, the second generation took longer to develop than the first one. Tibia length and wing surface decreased over generations while fat content increased. A crossed-generations experiment focusing on the industrial parasitoid strain showed that offspring from mothers reared at 14 °C took longer to develop, were heavier, taller with wider wings and with more fat reserves than those from mothers reared at 20 °C (8:16 h LD). No effect of the mother rearing conditions was shown on diapause expression. Additionally to direct plasticity of the offspring, results suggest transgenerational plasticity effects on diapause expression, development time, and on the values of life-history traits. We demonstrated that populations showing low diapause levels may recover higher levels through transgenerational plasticity in response to diapause-induction cues, provided that environmental conditions are reaching the induction-thresholds specific to each population. Transgenerational plasticity is thus important to consider when evaluating how insects adapt to changing environments.
Fichier principal
Vignette du fichier
Tougeron et al-2020-Trans-generational effects on diapause and life-history-traits.pdf (1.4 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02440758 , version 1 (25-03-2020)



Kévin Tougeron, M Devogel, Joan van Baaren, Cécile Le Lann, T Hance. Trans-generational effects on diapause and life-history-traits of an aphid parasitoid. Journal of Insect Physiology, 2020, 121, pp.104001. ⟨10.1016/j.jinsphys.2019.104001⟩. ⟨hal-02440758⟩
76 View
137 Download



Gmail Facebook Twitter LinkedIn More