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Abstract. Syntheses and structural elucidations of a series of chalcogen stabilized binuclear 

complexes of group 5 and 6 transition metals have been described. Room temperature reaction of 

[Cp*CrCl]2 (Cp* = η5-C5Me5) with Li[BH3(SePh)] afforded a Se inserted binuclear chromium 

complex, [(Cp*Cr)2(µ-Se2SePh)2], 1. In an attempt to make the analogous complexes with heavier 

group 6 metals, reactions of [Cp*MCl4] (M = Mo and W) with Li[BH3(SePh)] were carried out 

that yielded Se inserted binuclear complexes [(Cp*M)2(µ-Se)2(µ-SePh)2], 2 and 3 (2: M = Mo 

and 3: M = W) along with known [(Cp*M)2B5H9], 4a-b (4a: M = Mo and 4b: M = W). Similarly, 

the reactions of [Cp*NbCl4] with Li[BH3(EPh)] (E = S or Se) followed by thermolysis led to the 

formation of binuclear chalcogen complexes [(Cp*Nb)2(µ-E2)2], 5 and 6 (5: E = S and 6: E = Se) 

and known [(Cp*Nb)2(B2H6)2], 7. All these complexes have been characterized by 1H and 13C 

NMR spectroscopy and mass spectrometry. The structural integrity of complexes 1, 3, 5 and 6 

were established by X-ray diffraction studies. The DFT studies further exemplify the bonding 

interactions present in these complexes, especially the multiple bond character between the 

metals in 1-3. 

Keywords. Chalcogen - binuclear complex - chalcogen-bridged. 

1. Introduction 

Transition metal complexes possessing chalcogen ligands have gained considerable attention due 

to their potential applications in chemical and biological systems.1-2 In parallel to the other 

transition metal-main group complexes,3-4 chalcogenide bridged molecular complexes also 

attracted importance due to their unusual stability, structural variety and catalytic applications.5-7 

Extensive studies unveiled the superior reactivity associated with transition metal sulfido 

complexes towards alkene, alkyne and dihydrogen.8-10 Particularly for early transition metals, the 

“electron sink” properties of the chalcogenide cores associated with their structural and electronic 
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diversity established the interesting aspects of such complexes. In this regard, thio complexes of 

vanadium and molybdenum containing cyclopentadienyl ligands exhibited rich chemistry and 

interesting electronic properties.11-12 Dinuclear cyclopentadienyl-molybdenum and rhenium 

complexes containing bridging sulfido and disulfido ligands such as [(MeCp)2Mo2(µ-S2)(µ-S)2] 

(Cp = η5-C5H5) and [(Cp')2Re2(µ-S2)2]
2+ (Cp' = η5-C5Me4Et) showed interesting structures and 

reactivity.13 The facile reactivity of [Cp2Mo2S4] towards H2 under ambient conditions yielded 

bis(hydrosulfide) complex [Cp2Mo2(µ-S)2(µ-SH)2].
14 The reactions of alkenes or alkynes with 

[Cp2Mo2(µ-S)2(µ-η2-SH)2] generated bis-dithiolate complexes with exciting structural aspects.15
 

Also, the study of the structure and magnetic properties of the mixed-metal chalcogenide-

containing clusters has been a topic of intense research interest for modelling the action of 

natural metallo-enzymes.16 A significant effect of the chalcogen bridge atom on the magnetic 

properties of the cluster have been observed for antiferromagnetic homo- and 

heterochalcogenide complexes. 17 

Among the presently known metal-chalcogen complexes, group 6 metals are well explored, 

especially Mo and W.18a-e Apart from their importance in biology and catalysis,18f-h these 

complexes also demonstrated the presence of unique conformational isomers. Similar to group 6, 

binuclear complexes of group 5 are also known, albeit lesser number.19-20 Not only structural 

point of view, unsupported NbS3 complexes containing {Nb2(µ-S2)(µ-S)} unit found its 

application as catalyst in thiophene hydrodesulfurization.21 Binuclear sulfide complex 

(Et4N)2[Nb2S4((NCS)6(bipy)] coordinated by diimine ligand revealed photocatalytic and optical 

limiting properties.22 However, it is important to note that, although dinuclear complexes of early 

transition metals containing bridging sulfur ligands are well known, structurally characterized 

heavier chalcogen inserted cyclopentadienyl binuclear complexes are relatively less. 

Apart from chalcogen powders or organo-chalcogenides,23-24 we have established that the 

chalcogenated borohydrides can also be used as a potential reagent for the synthesis of binuclear 

chalcogen complexes along with dimetallaheteroboranes.25-27 Hence, to extend this strategy for 

group 5 and 6 metals we have performed the reactivity of [Cp*CrCl]2 and [Cp*MCl4] (M = Mo, 

W and Nb) with Li[BH3(EPh)] (E= S and Se). In this report, we describe the synthesis of various 

chalcogen-bridged binuclear complexes furnishing interesting structural aspects. In addition, 

theoretical studies have been performed on these molecules to elucidate their bonding nature.  

 

 

Acc
ep

ted
 m

an
us

cri
pt



3 

 

2. Experimental 

2.1 General considerations 

All of the operations were conducted under an Ar/N2 atmosphere by using standard Schlenk 

techniques or in a glove box. Solvents were distilled prior to use under Ar atmosphere. 

[LiBH4·THF], [Ph2S2] and [Ph2Se2] were used as received (Aldrich). [Cp*CrCl]2,
28 

[Cp*MoCl4],
29a [Cp*WCl4],

29b [Cp*NbCl4],
30 Li[BH3(EPh)]26b (E = S or Se) and the external 

reference for 11B NMR is [Bu4N(B3H8)]
31 were synthesized according to the literature 

methods available. Thin layer chromatography (TLC) was carried out on 250-µm diameter 

aluminum supported silica gel TLC plates (MERCK TLC Plates) to separate the reaction 

mixtures. The NMR spectra were recorded on 500 or 400 MHz Bruker FT-NMR 

spectrometer. Residual solvent protons were used as reference (CDCl3, δ = 7.26 ppm, C6D6, δ 

= 7.16 ppm), while a sealed tube that contained, [Bu4N(B3H8)] in [D6]-benzene (δB = -30.07 

ppm) was used as an external reference for the 11B{1H} NMR analysis. Mass spectra were 

recorded with a BrukerMicroTOF-II mass spectrometer and Qtof Micro YA263 HRMS 

instrument in ESI ionization mode. Infrared spectra were recorded with a JASCO FT/IR-4100 

spectrometer. Absorption spectra were recorded with Jasco V-650 UV/Vis 

spectrophotometers at 298 K. 

2.2 Synthesis of 1-4 

A suspension of [Cp*CrCl]2 (0.5 g, 1.12 mmol) in 10 mL toluene at -78 ºC was charged 

dropwise with a freshly prepared solution of Li[BH3(SePh)] (2.24 mmol) over 15 min. The 

Li[BH3(SePh)] solution was prepared from the reaction of [Ph2Se2] with LiBH4·THF at ice 

cooled temperature. The reaction mixture was then stirred at room temperature for 20 hrs. The 

solvent was dried and the residue was extracted into n-hexane/CH2Cl2 and passed through 

Celite. After removal of the solvent, the residue was subjected to chromatographic work-up 

by using TLC plates (n-hexane/CH2Cl2, 50:50 v/v) to yield complex [(Cp*Cr)2(µ-Se2SePh)2], 

1 (0.078 g, 7%), as violet solid. Along with 1 few air and moisture sensitive complexes are 

also formed which we were unable to isolate. 

Under the similar experimental conditions, treatment of Li[BH3(SePh)] (2.16 mmol) with 

[Cp*MoCl4] (0.2 g, 0.54 mmol) and reaction of Li[BH3(SePh)] (1.72 mmol) with [Cp*WCl4] (0.2 

g, 0.43 mmol) for 4 hrs yielded [(Cp*Mo)2(µ-Se)2(µ-SePh)2], 2 (0.02 g, 8%) and [(Cp*W)2(µ-

Se)2(µ-SePh)2], 3 (0.024 g, 10%) as blue and purple solids respectively. 

Note that complexes 2 and 3 have been isolated along with the metallaborane [(Cp*Mo)2B5H9], 

4a32a,b,d (0.008 g, 6%) and [(Cp*W)2B5H9], 4b32c,d (0.012 g, 8%). 
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1: MS (ESI+): m/z calculated for C32H41Cr2Se4: 844.4 [M-2Se+H]+, found: 844.7; 1H NMR (500 

MHz, C6D6, 22 ºC): δ = 7.52-6.87 (m, C6H5), 2.12 (s, 30H, Cp*).  

2: HR-MS (ESI+): m/z calcd for C32H40Mo2KSe4: 978.7536 [M+K]+, found: 978.7532; 1H NMR 

(500 MHz, CDCl3, 22 ºC): δ = 7.01-6.89 (m, C6H5), 2.20 (s, 30H, Cp*); 13C{1H} NMR (125 

MHz, CDCl3, 22 ºC): δ = 135.8-126.5 (C6H5), 110.8 (s, C5Me5), 14.9 ppm (s, C5Me5). 

3: MS (ESI+): m/z calcd for C32H40W2Se4: 1111.8 [M]+, found: 1111.8; 1H NMR (500 MHz, 

CDCl3, 22 ºC): δ = 6.99-6.89 (m, C6H5), 2.53 (s, 30H, Cp*); 13C{1H} NMR (125 MHz, CDCl3, 22 

ºC): δ = 135.1-125.4 (s, C6H5), 107.1 (s, C5Me5), 14.9 ppm (s, C5Me5). 

2.3. Synthesis of 5-7 

A suspension of [Cp*NbCl4] (0.5 g, 1.3 mmol) in 10 mL toluene at -78 ºC was charged dropwise 

with a freshly prepared solution of Li[BH3(SPh)], (5.4 mmol) over 15 min. The Li[BH3(SPh)] 

solution was prepared from the reaction of [Ph2S2] with LiBH4·THF at ice cooled temperature. 

The reaction mixture was warmed to room temperature over 1 hour and then heated to 90 ºC for 

48 hrs. The solvent was dried and the residue was extracted in n-hexane and passed through 

Celite. After removal of the solvent, the residue was subjected to chromatographic work-up by 

using TLC plates (n-hexane/CH2Cl2, 70:30 v/v) to yield complex [(Cp*Nb)2(µ-S2)2], 5 (0.024 g, 

6%) as orange solid. Under similar reaction conditions the treatment with Li[BH3(SePh)], (5.4 

mmol) yielded [(Cp*Nb)2(µ-Se2)2], 6 (0.047 g, 9%) as purple solid.  

Note that the complexes 5 and 6 have been isolated along with [(Cp*Nb)2(B2H6)2], 7
33 (0.027 g, 

8%) and several air and moisture sensitive complexes which we were unable to isolate. 

5: HR-MS (ESI+): m/z calcd. for C20H31Nb2S4: 584.9436 [M+H]+, found 584.9451; 1H NMR (500 

MHz, CDCl3, 22 ºC): δ = 2.07 (s, 30H, Cp*); 13C{1H} NMR (125 MHz, CDCl3, 22 ºC): δ = 

111.0, (s, C5Me5), 11.8 ppm (s, C5Me5). 

6: HR-MS (ESI+): m/z calcd for C20H30KNb2Se4: 814.6773 [M+H]+, found 814.6790; 1H NMR 

(500 MHz, CDCl3, 22 ºC): δ = 2.26 (s, 30H, Cp*), 13C{1H} NMR (125 MHz, CDCl3, 22 ºC): δ = 

111.3 (s, C5Me5), 13.3 ppm (s, C5Me5). 

2.4 X-ray structure determination 

The crystal data for 1, 3, 5 and 6 were collected and integrated using a Bruker kappa apex II CCD 

diffractometer with graphite-monochromated MoKα (λ = 0.71073 Å) radiation at 296 K. The 

structures were solved by heavy atom methods using SHELXS-2016 and refined by using 

SHELXL-2016/SHELXL-2017 (Sheldrick, G.M., University of Göttingen).34 
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Table1. Crystal data and structural refinement for complexes 1, 3, 5 and 6  

 1 3 5  6 

CCDC no. 1915156 1868351 1868348 1868349 

Empirical formula C32H40Cr2Se6 C32H40Se4W2 C20H30S4Nb2 C20H30Se4Nb2 

Formula weight 1002.40 1108.18 584.50 772.10 

Crystal system Triclinic Monoclinic Triclinic Triclinic 

Space group P-1 P21/n P-1 P-1 

a/Å 8.3131(11) 8.3913(9) 8.056(2) 8.100(2) 

b/Å 9.5788(11) 13.7365(14) 8.565(2) 8.597(2) 

c/Å 11.3227(15) 14.3308(14) 10.302(2) 10.254(2) 

α/° 73.104(5) 90 105.954(5) 105.117(5) 

β/° 85.784(5) 105.642(2) 99.915(6) 100.801(6) 

γ/° 75.344(4) 90 110.982(6) 110.227(6) 

Volume/Å3 834.63(19) 1590.7(3) 608.5(3) 615.7(3) 

Z 1 2 1 1 

ρcalcg/cm3 1.994 2.314 1.595 2.082 

μ/mm-1 7.214 11.823 1.288 6.846 

F(000) 484 1032 296 368 

2θ range for data 

collection/° 

2.533 to 54.984 4.184 to 

56.666 
5.474 to 52 

5.398 to 

56.612 

Reflections collected 14944 29404 12243 12995 

Independent 

reflections 

3831 
3976 12243  

12995 

Goodness-of-fit on F2 1.026 1.046 1.066 1.056 

Final R indexes 

[I>=2σ (I)] 

R1 = 0.0776, 

wR2 = 0.1689 

R1 = 0.0339, 

wR2 = 0.0769 

R1 = 0.0792, 

wR2 = 0.1756 

R1= 0.0977; 
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2.5 Computational details 

The Quantum chemical calculations were performed on the simplified model complexes 1', 2', 3', 

5' and 6' (Cp analogues of 1, 2, 3, 5 and 6) and I-IV using the Gaussian 09 program package.35 

Geometry optimization were conducted in the gaseous state (no solvent effect) without any 

symmetry constraints using the BP8636 functional paired with a mixed basis set: 

Stuttgart/Dresden double−ζ(SDD) effective core potentials (ECPs)37 for Nb, Ta, Mo and W; 

6−31g* basis set for the other atoms. The optimized geometries were characterized as true 

minima by using analytical frequency calculations. Wiberg bond indices (WBIs)38 were obtained 

from a natural bond orbital (NBO)39 analysis. All the optimized structures and orbital graphics 

were generated by using the Chemcraft.40  

3. Results and Discussion 

3.1. Reactivity of [Cp*CrCl]2 with Li[BH3(SePh)] 

From our recent studies, it was proved that Li[BH3(EPh)] (E = S, Se) is a potential reagent for the 

synthesis of metallachalcogenoboranes.25-27 Among group 6 metals, the examples of chromium 

heteroborane complexes are very few.41 In this context, we have performed the room temperature 

reaction of [Cp*CrCl]2 with two equivalents of Li[BH3(SePh)] with an aim to synthesize 

dichromaselenaboranes. Surprisingly, the reaction led to the formation of a unique complex, 

[(Cp*Cr)2(µ-Se2SePh)2], 1 (Scheme 1). Complex 1 was isolated as violet crystals, which were 

characterized by 1H, mass spectrometry and by single crystal X-ray crystallography. The 1H 

NMR spectrum showed the presence of Cp* and phenyl protons. The 11B NMR showed no 11B 

chemical shift confirming the absence of boron in 1. Although the 11B NMR of the reaction 

mixture indicates formation of several metallaborane species, due to low yield and sensitive 

nature, their isolation could not be carried out. The mass spectrometric analysis of 1 shows 

molecular ion peaks at m/z 844.7 which is equivalent to the mass of 1 minus two Se atoms. The 

complete structure of 1 is identified by single crystal X-ray crystallography as shown in Figure 1.  

 

Scheme 1: Synthesis of 1  
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Figure 1. Molecular structure and labelling diagram for 1. Selected bond distances (Å) and angle (°): Cr1-Cr1 

2.588(2), Se1-Se2 2.6794(10), Se2-Se3 2.5065(11), Cr1-Se1 2.4211(13); Se1-Cr1-Se2 80.63(4), Cr1-Se2-Se3 

111.30(4), Se1-Cr1-Cr1 57.76(5), Se2-Cr1-Cr1 58.40(4).  

Single crystals of 1 was obtained by slow diffusion of hexanes into a dichloromethane 

solution. The X-ray diffraction analysis confirmed that 1 is a chalcogen-bridged bimetallic Cr 

complex with two [Se2SePh]3- units having close similarity with lanthanide-chalcogen cluster, 

[(pyridine)8Yb4(SeSe)2(Se)2(µ2-SPh)2(SPh)2].
42 Although triple bridged chalcogen stabilized 

binuclear complexes of chromium are known in literature,43 quadruple bridged heavier chalcogen 

rich binuclear complexes of chromium like 1 are sporadic. The molecular structure of 1 is 

symmetrical and has a direct Cr-Cr bond (2.588 (2) Å), which is significantly shorter as compared 

to normal Cr-Cr single bond found in related binuclear complexes [2.950(2) Å for [CpCr(µ-

SPh)(NO)]2,
44 and 2.906(3) Å for [Cp2Cr2(NO)2(µ-SCMe3)(µ-S-SCMe3)]

45. Based on the Cr-Cr 

bond distance, we assume that there lies a double bond character. The presence of Cr-Cr double 

bond has been earlier identified in [{CpCr(µ-SPh)}2S], a well-known binuclear chromium 

chalcogen complex that exhibited antiferromagnetic properties.45b. The core geometry of Cr2Se4 

can also be considered as fusion of two tetrahedral (Cr2Se2) through Cr-Cr edge. One of the 

interesting features of 1 is that two SeSe2Ph units adopt perfectly symmetric disposition 

perpendicular to the metal-metal axis and parallel to Cp* planes. The average bond angle for Cr1-

Se2-Se3 is 110.45° and for Cr1-Se1/2-Cr1 is 64.05°. There are two different Se-Se bonds 

present in [µ2-η2-η2-SeSeSePh]3-, Se(1)-Se(2) (2.6794(10) Å) and Se(3)-Se(2) (2.5065(11) Å). 

Although they are considerably longer than the usual Se-Se single bond,47 they are 

comparable to those of [(pyridine)8Yb4(SeSe)2(Se)2(µ2-SPh)2(SPh)2].
42

 The Cr metal centre 

follows 18e rule in 1 (6e from the metal, 5e from Cp*, 1 each from the Se atom connected to 
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SePh and 3 from the other Se atoms). Moreover, the oxidation state of Cr is +4 due to the 

presence of anionic Cp*- and [Se2SePh]3- ligands, making it as a d2-d2 homo-bimetallic complex.  

3.2. Reactivity of [Cp*MCl4] (M = Mo, W) with Li[BH3(SePh)] 

In an attempt to isolate analogous complex of 1 composed of heavier group 6 metals we have 

carried out the reaction of [Cp*MCl4] (M = Mo and W) with Li[BH3(SePh)]. Unexpectedly, the 

reaction did not form analogue of 1, instead it led to the formation of similar kind of binuclear 

chalcogen clusters [(Cp*Mo)2(µ-Se)2(µ-SePh)2], 2 and [(Cp*W)2(µ-Se)2(µ-SePh)2], 3 (Scheme 

2). Although chalcogen stabilized binuclear complexes of molybdenum are well known,18a 

structurally characterized diselenolato complexes of tungsten are scarce. In parallel to the 

formation of 2 and 3, the reaction also yielded known [(Cp*M)2B5H9], 4a-b (4a: M = Mo; 4b: M 

= W).32 The 1H NMR spectra of 2 and 3 show single peak at δ = 2.20 and 2.53 ppm respectively 

for the Cp* ligand. The 13C NMR spectra also furnishes the presence of one kind of Cp* ligand 

for these complexes. Based on the spectroscopic data along with mass spectrometric analysis, 

complex 2 was characterized as [(Cp*Mo)2(µ-Se)2(µ-SePh)2], in comparison with earlier reported 

[(CpMo)2(µ-Se)2(µ-SePh)2].
46 On the other hand, complex 3 shows molecular ion peak at m/z = 

1111.8 that indicates the formation of C32H40W2Se4.  

 

Scheme 2. Synthesis of binuclear complexes 2-4 

The molecular structure of 3 has been unequivocally determined by X-ray diffraction analysis 

(Figure 2). The crystal structure of 3 envisions the molecule as a chalcogen-bridged binuclear 

complex stabilized in the coordination sphere of two µ-selenido and µ-selenolato ligands. The 

molecule possesses a crystallographic inversion symmetry consists of a linear Cp*-W-W-Cp* 

unit in which the π-bonded Cp* ligands lies perpendicular to the W-W bond. The W-W bond 

length of 2.6595(5) Å is significantly shorter than in [W2(CO)4(µ-SePh)6],
47 [W2(µ-

S2)2Cl6(SeCl2)2]
48 and [W2(µ-S2)2(S2CNR2)4]

2+ 49 However, it is found to be longer than those 

observed in [Cp*WCl2(µ-H)]2
50 and dithiolato-bridged complex of tungsten, [(Cp*W)2(µ-S)2(µ-

η2-S2CH2)].
51 The short W-W bond distance indicates a double bond interaction similar to Mo-
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Mo double bond (2.653(2) Å) identified in [(CpMo)2(µ-Se)2(µ-SePh)2].
46 The short W–W 

distance is compatible with sharp acute W–S–W bite angles in the range of 61.79–64.53°. The W-

W double bond is bridged across by two alternate pairs of monoselenido and phenylselenolato 

ligands. The W atoms lie in plane with both the Sel (phenylselenolato bridge) atoms on one side 

and both Se2 (selenido bridge) on the other side with an interplanar angle of 84.36°. Short 

contacts between the Se atoms, Se1-Se2 (2.917 (1) and 3.218 (1) Å) are observed which are in 

between the sum of the van der Waal’s radius of two Se atoms (3.8 Å) indicating the existence of 

nonbonding interactions between the bridging Se atoms in 3. The W-Se bond lengths differ to a 

significant extent that may be due to the coordination of bridging (µ-Se) and (µ-SePh) ligands to 

the metal centers. In case of bridging µ-selenido ligands, the W-Se bond distances lie in between 

2.489-2.492 Å, comparable to W-Se distances observed in [(CpW)2O2(µ-Se)2]
52. However, the 

bond length increases when the metal centers are coordinated to µ-selenolato ligands that can be 

compared with [W2(CO)4(µ-SePh)4(SePh)2].
47 All the W–Se bonds are much shorter than the sum 

of the covalent radii of W and Se (2.82 Å) indicating a stronger bonding interaction. 

.  

Figure 2. Molecular structure and labelling diagram of [(Cp*W)2(µ-Se)2(µ-SePh)2], 3. Selected bond distances 

(Å) and angle (°): W1-W1 2.6595(5), W1-Se2 2.4893(7), W1-Se1 2.5850(7); W1-Se1-W1 61.513(17), W1-Se2-

W1 64.531(18) Se2-W1-Se1 78.08(2), Se1-W1-Se1 118.488(17). 

The crystal structure further revealed that the complex 3 is a trans/anti isomer (Figure 2) with 

the similar ligands are trans to each other and the Ph group is in the anti-orientation with respect 

to the W2Se2 (selenato) ring. The four-bridged atoms in the complex constitute a plane, which is 

parallel to the two substituted cyclopentadienyl ring planes and bisects the W-W vector 

perpendicularly. The molecule can also be visualized as a [W2Se4] paddle wheel like complex. 

Considering the two connected (µ-Se) and (µ-SePh) ligands as two and three electron donors, 3 

displays a chalcogen-bridged 36-electron bimetallic-selenium complex (18e to each metal) 

Acc
ep

ted
 m

an
us

cri
pt



10 

 

probably with the existence of the W-W double bond. On the other hand, taking the Cp* ligands 

as monoanions and two diverse selenium ligands as dianions [Se2- and (SePh)-], each of the W 

atoms possess a +IV oxidation state with d2 configuration similar to complex 1.  

3.3. Reactivity of Cp*NbCl4 with Li[BH3(EPh)] (E = S and Se) 

To extend the same approach to synthesize group 5 chalcogen complexes similar to 1-3, we have 

carried out the reactivity of [Cp*NbCl4] with Li[BH3(EPh)] (E = S and Se). Thermolysis of 

[Cp*NbCl4] with Li[BH3(EPh)] at 90°C afforded [(Cp*Nb)2(µ-E2)2], 5 and 6 (5: E = S and 6: E = 

Se) (Scheme 3) in 6-9% yields along with the formation of known [(Cp*Nb)2(B2H6)2],
33 7. It is 

important to mention that these reactions also yielded several air and moisture sensitive 

complexes which could not be isolated from the reaction mixture. Complexes 5 and 6 were 

characterized by spectroscopic as well as crystallographic analysis. The 1H NMR spectra of both 

5 and 6 show single peak at δ = 2.07 and 2.26 ppm for Cp* ligand respectively, which in turn 

predicts the static symmetric structures. The 13C NMR also supports the presence of one kind of 

Cp* ligand for each of these complexes. In addition, the peak in the mass spectra at m/z = 

584.9451 and 814.6790 for 5 and 6 respectively is consistent with their composition.  

 

Scheme 3 Synthesis of binuclear complexes 5-7 

To authorize the spectroscopic assignments and to elucidate the solid-state X-ray structures of 

5 and 6, X-ray diffraction structure analyses were performed. Single crystals suitable for X-ray 

diffraction studies of 5 and 6 were obtained from a hexane/CH2Cl2 solution at -10°C that allowed 

structural interpretation. The molecular structures of these complexes shown in Figure 3a-b, can 

be depicted as chalcogen-bridged binuclear complexes where each metal is coordinated to a η5-

Cp* ligand and four µ-bridging chalcogen atoms (S/Se). Interestingly complexes 5 and 6 possess 

the central [Nb2(µ-E2)2] (E = S, Se) core, where the coordination between disulfur and diselenide 

ligands with the metal centers provides η2-η2-µ2 coordination of acetylene type. Similar kind of 

coordination modes have been well explicated in [Nb2(μ-S2)2(NCS)8]
4- 19a and [Nb2(μ-

S2)2(H2O)8]
4+] 19a complexes.  
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The calculated Nb-Nb bond distance of 2.780 Å in 5 is found to be considerably shorter than 

[Nb2(μ-S2)2(NCS)8]
4- 19a (2.913(2) Å), [Nb2(μ-S2)2(H2O)8]

4+ 19a (2.898(11) Å) and 

[Nb2S4(Et2NCS2)4] (2.892(9) Å).53 The Nb-Nb bond length gets elongated when S is substituted 

by Se in 5. Nevertheless, the calculated Nb-Nb distance of 2.805 Å in 6 is considerably shorter as 

compared to the Nb-Nb distances having Nb2Se4 core in [Nb2Se4(Et2NCS2)4]
54 and 

[Nb2Se4][Te2I6]2.
54 In that context, some of the typical structural parameters of 5 and 6 have been 

compared with reported binuclear complexes owning similar structural core (Table 1), that shows 

significant difference in bond distances of 5 and 6 in presence of cyclopentadienyl ligands. The 

solid-state X-ray structures of 5 and 6 can also be represented as a paddle-wheel like complex 

comprising of [Nb2S4] and [Nb2Se4] in which all the four sulphur and the selenium atoms of the 

paddle are linked to the Nb metals.55 

 

Figure 3 . Molecular structure and labelling diagrams for 5 and 6. Selected bond distances (Å) and angle (°): (a) 

5: S1-Nb1 2.481(14), S2-Nb1 2.304(17), S1-S2 2.39(3); S2-S1-Nb1 56.5(6), Nb1-S2-S1 63.8(5). (b) 6: Nb1-Se2 

2.439(5), Se1-Se2 2.364(10); Se2-Se1-Nb1 59.97(19), Se1-Se2-Nb1 63.0(2).  

Table 1. Selected structural parameters of 5 and 6 with related binuclear complexes 

Binuclear complexes dNb-Nb [Å] dNb-E [Å]
a dE-E [Å], 

(E = S, Se) 

Ref. 

[Nb2(μ-S2)2(NCS)8]
4- 2.913 2.51 2.012 19a 

[Nb2(μ-S2)2(H2O)8]
4+ 2.898 2.497 2.004 19a 

[(Cp*Nb)2(µ-S2)2], 5 2.780 2.398 2.386 b 

[(Cp*Nb)2(µ-Se2)2], 6 2.805 2.476 2.363 b 
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[Nb2S4(Et2NCS2)4] 2.892 2.564 2.033 53 

[Nb2Se4(Et2NCS2)4] 2.974 2.639 2.303 54 

[Nb2Se4][Te2I6]2 2.926 2.613 2.310 54 

a average Nb-E distances; b this work. 

 

3.4. Electronic structure analysis of complexes 1-3, 5 and 6: 

Even though many structurally characterized metal-chalcogen complexes, similar to 1-3, 5 and 6 

are known, theoretical aspects of these complexes have not been explored to a significant extent 

to understand their bonding and electronic structure. Hence, in order to illustrate the electronic 

structure and bonding of 1-3 and 5-6, the DFT studies were performed. The Cp analogues, 1'- 3', 

5' and 6' are optimized with BP86/SDD, 6-31g* level of theory. The structure of 1 is slightly 

different from 2 and 3 even though the metals belong to same group. The bond parameters of 2 

and 3 are in good agreement with the theoretical values (Table S1) whereas 1 is in moderate 

agreement. The M-M bond distance is slightly shortened and Se1-Se2 bond distance increased in 

the calculated structure, 1'. In general, the energy gap between the frontier molecular orbitals 

(FMO) signifies the hardness / stability of the complexes. Here, the FMO analysis shows slightly 

higher HOMO (higher highest occupied molecular orbitals)-LUMO (lowest unoccupied 

molecular orbitals) energy gap for 2' (2.30 eV) than 3' (2.26 eV), where 1' shows the least energy 

gap (2.04 eV), indicates their relative hardness or thermodynamic stability. Among the chalcogen 

analogues the hardness decreases in the order of S>Se>Te (Table S2). Furthermore, molecular 

orbitals show the accumulation of electron density of HOMO on metals and Se3 atoms in 1 and 

only on metals in 2 and 3 where in case of LUMO it is localized on both metals and Se1 in 1-3 

(Figure S20).  

The observed M-M bond distances of 2.51, 2.67 and 2.70 Å, in 1', 2' and 3' respectively 

signify a double bond. In addition, high WBI value of 0.77, 0.91 and 0.94 further elucidates the 

presence of a strong M-M bonding in 1'-3' respectively. Further, the NBO analysis displays the 

existence of two M-M bond formed by dz
2 σ bond and d(x

2
-y

2
)
  bond with the occupancy of 1.47 

and 1.09, 1.46 and 1.04 (Figure 4) and 1.51 and 0.82 respectively in 1'-3' (Figures S21 and S22), 

consistent with the double bond. Surprisingly, the NBO and Wiberg bond index analysis shows a 

weak bonding between Se1-Se2 in 1 due to the elongation of bond, whereas two μ-Se ligands in 2 

and 3 shows a bonding interaction even though they are far in distance, through a π-bond (Figure 

S23). Among the two different type of Se ligands, μ-Se and μ-SePh, the earlier one has stronger 
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bonding towards the metals than later in (Table S4). In case of 1 there is an additional strong 

covalent bond exist between Se2-Se3.  

 

Figure 4. Molecular orbitals showing (a) Mo-Mo σ bond and (b) π bond in 2'. 

The optimized geometries of 5' and 6' appeared to be very different from that observed in the 

crystal structure. The E-E interaction (E = S, Se) in one of the E2
2- unit became weaker to form 

two (μ-E) units which results the entire bond parameters to be different from the crystallographic 

structures. These changes can be described as valence isomerization where Nb(III) is oxidised to 

Nb(IV) by oxidation of (μ-E2)
2- to two (μ-E)2- so that the final structure corresponded to 

[Cp*2NbIV
2{(μ-E2)

2-}{(μ-E)2-}2] similar to the case of [Cp*2MoV
2(μ-Se3

4-)2] which optimized to 

[Cp*2MoIII
2(μ-Se3

2-)2].
56 That means that the structure of 5 and 6 are metastable with respect to 5' 

and 6', but there must be a significant kinetic barrier for its conversion which can attribute to their 

isolation from a reaction under drastic reaction conditions. In literature, similar geometry as that 

of 5' and 6' is identified in the case of molybdenum chalcogen complex.14b In the optimized 

geometry of 5' and 6' the M-M bond gets even shorter that signify a partial double bond nature57 

which makes the complex a stable 18 electron species. The molecular orbital displaying M-M 

bonding interactions also suggest the existence of double bond (Figure S25). In addition, the 

Wiberg bond indices ca. 1 shows a very strong interaction between the metals in 5' and 6' (Table 

S4). 

The molecular orbital study of 5' and 6' shows that the HOMO-LUMO energy gap increases 

in the order of 6'<5'. Inspection of the electron density of the FMOs of 5' and 6' reveals that the 

HOMOs are mainly localized on the chalcogen atom and LUMOs are on metal atoms (Figure 

S24). Even though, the bond between one of the (μ-E2)
2- is getting elongated, there is a special 

bonding interaction between them which is clearly visible in HOMO-11 (Figure S25). Natural 

charge analysis further displays the accumulation of more positive charge on Se atom in 6' in 
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comparison with the S atom in 5' that provides more donation of electron towards the metal. 

(Table S3).  

3.5. UV-Vis absorption spectroscopic study of complexes 2, 3, 5 and 6  

In order to elucidate the colour associated with these complexes, the UV-Vis absorption spectra 

of complexes 2, 3, 5 and 6 were recorded in dichloromethane (Figure S18 and S19). 

(Unfortunately, we could not perform the UV-Vis absorption spectroscopy of 1 due to its highly 

sensitive behaviour in solution state, especially in chlorinated solvents. Complexes 2 and 3 show 

their absorption bands at 450, 586 and 769 and 415, 519 and 764 nm respectively. Complexes 5 

and 6 show weak absorption band at about 314 and 358 nm respectively which corresponds to π-

π* transition of the cyclopentadienyl ligands. In addition to that, low energy absorption bands at 

483 and 500 nm have been identified which may be attributed to the significant intramolecular 

charge transfer interactions.  

To understand the nature of the electronic transitions, we performed time-dependent DFT 

calculations of excitation energies (see Tables S5-S9 and Figure S26-S30). Even though we were 

unable to get the UV-Vis spectra of 1, the theoretical calculated result shows peaks shifted to 

higher wavelength region of the UV-Vis spectral region (700-800 nm). The peaks mainly arise 

due to the excitation from HOMO-2 and HOMO-3 to LUMO indicates the LMCT (ligand to 

metal charge transfer) and intramolecular charge transfer from Se3 to Se1. The profile of the TD-

DFT simulated absorption spectra of 2 and 3 agree well with experiment and thus allow 

assignment of the absorption bands. The strongest peak in the visible region (∼586 and 519 nm) 

can be primarily assigned to the excitations from LMCT transition from nonbonding lone pairs on 

the bridging selenium atoms (HOMO-1) to predominantly metal-cantered MOs (LUMO), in 

contrast the less intense excitations at 760 nm which is due to MLCT (metal to ligand charge 

transfer) from MO of metal (HOMO) to non-bonding Se orbital in LUMO. The weak absorption 

in the 410-450 nm is primarily related to transitions from the Se ligand non-bonding MOs 

(HOMO-7, HOMO-5) to metal orbitals of LUMO. As there is a difference between the 

experimental and theoretical calculated geometry of 5 and 6, the exact comparison of electronic 

spectra was not possible. However, from the analysis it is well understood that the major 

contributing factor for the strong band around 400-500 nm is due to the LMCT. 

4. Conclusions 

This work describes a new synthetic strategy that enables us to isolate and characterize a series of 

chalcogen-bridged binuclear complexes of early transition metals. The crystal structures of the 

synthesized complexes represent three different types of chalcogen-bridged bimetallic complexes 
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of groups 5 and 6 metals, such as, [(Cp*Nb)2(µ-E2)2] (E = S and Se), [(Cp*Cr)2(µ-Se2SePh)2] and 

[(Cp*M)2(µ-Se)2(µ-SePh)2] (M = Mo and W). In addition, combined theoretical and experimental 

studies ensure the presence of multiple bonds in these complexes.  

 

Supplementary Information (SI) 

Supplementary data contains the X-ray crystallographic files in CIF format for 1, 3, 5 and 6 

CCDC 1915156 (1), 1868351 (3) 1868348 (5) and 1868349 (6) for this work. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_-request/cif. All additional information pertaining to characterization 

of the complexes 1-3, 5 and 6 using ESI-MS technique and multinuclear NMR spectra, 

computational details are given in the Supplementary Information available at 

www.ias.ac.in/chemsci. 
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 The syntheses and structural characterizations of three chalcogen-bridged 

bimetallic complexes of group 5 and 6 metals, such as [(Cp*Nb)2(µ-E2)2] (E = S 

and Se) (right), [(Cp*Cr)2(µ-Se2SePh)2] (centre) and [(Cp*M)2(µ-Se)2(µ-SePh)2], ( 

M = Mo and W) (left) are reported. 
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