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In this paper, we present a novel method for salient object detection in videos.

Salient object detection methods based on background prior may miss salient region when the salient object touches the frame borders. To solve this problem, we propose to detect the whole salient object via the adjunction of virtual borders. A guided filter is then applied on the temporal output to integrate the spatial edge information for a better detection of the salient object edges. At last, a global spatio-temporal saliency map is obtained by combining the spatial saliency map and the temporal saliency map together according to the entropy.

The proposed method is assessed on three popular datasets (Fukuchi, FBMS and VOS) and compared to several state-of-the-art methods. The experimental results show that the proposed approach outperforms the tested methods.

Introduction

The human vision system has an effective ability to easily recognize interesting regions from complex scenes, even if the focused regions have similar colors or shapes as the background. Salient object detection aims to detect the salient object that attracts the most the visual attention. The output of the salient 5 object detection is a saliency map where the pixel values indicate the probability of each pixel of belonging to the salient object. Higher value represents higher saliency. This topic has gained much attention for its wide applications, such as image registration [START_REF] Qin | Registration of images with outliers using joint saliency map[END_REF][START_REF] Qin | Joint-saliency structure adaptive kernel regression with adaptive-scale kernels for deformable regis-485 tration of challenging images[END_REF], object segmentation [START_REF] Zhi | Saliency driven region-edge-based top down level set evolution reveals the asynchronous focus in image segmentation[END_REF][START_REF] Wang | Saliency-aware video object seg-490 mentation[END_REF], person identification [START_REF] Zhao | Person re-identification via integrating patchbased metric learning and local salience learning[END_REF], spectral-spatial reconstruction [START_REF] Xie | High-quality spectral-spatial recon-495 struction using saliency detection and deep feature enhancement[END_REF] and etc.

Existing salient object detection methods can be roughly divided into two categories: traditional methods and deep learning-based methods, which are interesting and useful for different applications. For a given database, deep learning-based methods have a better performance than many recent traditional methods. But the premise is it should be trained with huge and rich training 15 datasets, which is impossible for some applications where the available data is small. Traditional methods are however intrinsically unassailable from such limitation. In this study, we will focus on the traditional approach, but we will also show how the performance of our proposed model can be further improved by integrating a deep learning-based method. [START_REF] Yan | Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement[END_REF] According to the type of source information, salient object detection approaches can be broadly grouped into two categories: image salient object detection models and video salient object detection models. Image salient object detection models the visual input viewing process based on the appearance of the scene. Since the human vision system is sensitive to motions, video salient 25 object detection detects the salient object using cues in both spatial domain and temporal domain and becomes much popular. However, due to the limitation of leverage of the saliency cues from two domains, video salient object detection is still challenging. In this paper, we focus on video salient object detection.

The "background prior" [START_REF] Borji | Salient object detection: A survey[END_REF] assumption is widely used in salient object detec-2 A c c e p t e d m a n u s c r i p t Frame [START_REF] Tu | Real-time salient object detection with 500 a minimum spanning tree[END_REF] [9]

[10] Ours Ground truth tion approaches. It assumes that a narrow border of the image is the background region. This assumption is normally true because the important object is often located in the frame center by the photographers. Based on this assumption, the distance transform has been widely used for saliency computation. Traditionally, the distance transforms measure the distance of a pixel and the seed 35 set using different path cost functions. Since background regions are assumed to be connected to image borders, the border pixels are initialized as the seed set and the distance transform detects a pixel's saliency by computing the shortest path from the pixel to the seed. The larger the shortest path is, the higher the saliency is. It has achieved a success in salient object detection, but a few 40 commonly observable issues still exist. In the background prior, all the border pixels are regarded as background. Thus, in the distance transform, all the border pixels are set to be seed and their saliency values are thus zeros. When the salient object pixels appear in the border, their saliency values are consequently set to zeros. Though some methods [START_REF] Tu | Real-time salient object detection with 500 a minimum spanning tree[END_REF][START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF][START_REF] Jiang | Saliency detection via absorbing markov chain[END_REF] can alleviate this problem, but not 45 enough. Fig. 1 illustrates this problem by showing the saliency maps of some existing methods on one example image.

Video salient object detection detects the salient object from both spatial domain and temporal domain. How to combine these two saliencies together during the detection is complex. One usual way (called "Feature fusion") is to The existing simple linear or non-linear way is still insufficient to decide the confidence weight for each saliency map. In order to employ more video saliency information, these two techniques are used together recently. However, in complex scenes, the methods still could not fully make use of detected saliency from 60 the two domains. Some examples are shown in Fig. 2. For models [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF][START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF][START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF],

the salient object has been located but still with blur edges. Thus, the fusion 2) the Feature fusion problem by using an edge-aware filter, called the guided filter [START_REF] He | Guided image filtering[END_REF]. It is introduced to preprocess the virtual border-based color optical 75 flow map for enhancing object edges.

3) the Map fusion problem by computing the entropy and the standard deviations to decide the confidence level of the spatial saliency map and the The remaining of this paper is organized as follows. Section 2 briefly de-80 scribes the related work. Section 3 presents the proposed method in detail. In Section 4, we conduct comparison experiments to evaluate the performance of the proposed method. Section 5 concludes the paper.

RELATED WORK

This section introduces the recent works related to the video salient object 85 detection (SOD). SOD in videos is closely related to SOD in images. Recent traditional methods for image SOD and video SOD are introduced respectively.

Then, deep learning-based methods are summarized.

Traditional image SOD methods

Image SOD methods are fully exploited in recent years. We will give ex-90 amples of some important categories, including graph-based approaches, probabilistic models and cognitive methods. propose a tree-structured sparsity-inducing norm, and introduce a Laplacian 105 regularization, and employ the high-level prior to detect the salient object.

A c c e p t e d m a n u s c r i p t

Traditional video SOD methods

According to different types of spatial and temporal information to be fused, we roughly divide the traditional methods into three categories: "Feature fusion", "Map fusion" and "Hybrid fusion".
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As a "Feature fusion" method, Wang et al. [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF] fuses the color gradient magnitude and optical flow gradient magnitude in a non-linear way. Wang et al. [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF] fuse the spatial edge to temporal optical flow by using guided filter. learning and video-based SOD has not been studied widely yet. This is due to the lack of the large-scale video salient object dataset and the complexity of the spatial and temporal fusion.

PROPOSED ALGORITHM

The block-diagram of the proposed Virtual Border and Guided Filter-based 160 (VBGF) method is shown in Fig. 3. Given an input video sequence, in spatial saliency detection (SD), the virtual border is built for each frame. Then, the saliency is computed to get the spatial saliency map (SSM). Secondly, in temporal saliency detection (TD), the motion information is extracted from the input video. Then the virtual border building, the Feature fusion and the saliency computation are applied to obtain the temporal saliency map (TSM).

At last, the two saliency maps are fused to get the spatio-temporal saliency map (STSM). The method is detailed in the following parts.

Spatial saliency detection (SD)

In this section, the virtual border-based distance transform in spatial domain 170 is designed.

Virtual border building

We propose to add the virtual border around the original frame to obtain with-virtual-border frame. The virtual border is built as shown in Fig. 4.

a) Frame Border Selection: one frame border is selected to build the virtual 175 border by two steps:

• FastMBD [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF] is applied to frame α to obtain the map M .

• The frame border nearest to the non-zero region in the map M is selected to build the virtual border.

b) Frame Border Division: after one border selected, the corresponding di- (with size v) with representative pixel value, four virtual borders: virtual up border (VUB), the virtual down border (VDB), the virtual left border (VLB) and the virtual right border (VRB), are shown in four different textures.

Fig. 4. The reason lying behind this division is that: the region in the frame corner is often connected with two borders and its feature is also related to 185 these two borders. Thus, the irregular shape connecting three borders is used to calculate the virtual border. The parameters u and l are selected empirically.

In this paper, u is set to 5 and l is set to 18%. Preliminary experiments showed that these values make the algorithm robust to various background complexities. c) Representative Pixel Selection: for the generated divided border, the sum of absolute differences (SAD) is computed for each pixel by summing all the absolute differences between this pixel and other pixels in the divided border:

SAD(x) = x ∈DB |I(x) -I(x )| (1) 
where DB ∈ DLB, DUB, DUB, DDB , I is the feature channel. The pixel
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having the minimum SAD is selected to represent the divided border. For color images, the SAD is computed by summing the three color channels: colorSAD(x) =

x ∈DB i∈{r,g,b}

I i (x) -I i (x ) (2) 
We have also considered using the mean or median value of the borders to 5, which helps the proposed "virtual border building" to be applied to other distance transform based saliency detection methods. 

Saliency computation

After the "virtual border building", the spatial saliency map SSM is obtained by apply the FastMBD [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF] to the with-virtual-border frame D and then remove the virtual border region from the resulted map. One example is given to show the process of spatial saliency detection in Fig. 5. 

Temporal saliency detection (TD)

Given an input video sequence, the movement information is extracted from the whole video and then the salient object is detected from this movement information.

A c c e p t e d m a n u s c r i p t 

Movement extraction 215

The optical flow vectors between pairs of successive frames are obtained using a fast optical flow method [START_REF] Hu | Efficient coarse-to-fine patch match for large displacement optical flow[END_REF]. Then the optical flow vector is mapped to Munsell color system to produce the color optical flow map E (an example image can be found in Fig. 6).

Virtual border building 220

Based on the background cue, the global motion is usually connected to E borders. The global motion is mainly generated by the background and camera motion. The distance of each pixel to the border pixels of E calculated by the FastMBD [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF] can indicate its temporal saliency. The larger the distance, the higher the temporal saliency value. As the same problem in the spatial 225 saliency detection, when the salient object touches frame borders, its movement information also touches E borders. If we directly apply the FastMBD [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF] on E, the salient object movement part connected to E borders is hard to be detected.

Thus, we add virtual borders on E using the same procedure as described in Section 3.1.1 to obtain the with-virtual-border color optical flow map F . edges will be enhanced. The pixel's distance in blur edges will be increased if the pixel belongs to the salient object or decreased if the pixel belongs to the background. Thus we performed the guided image filtering. The guided filter [START_REF] He | Guided image filtering[END_REF] is a linear filtering process, which involves a guidance image C 1 , an input image C 2 and an output image C 3 . The C 3 at a pixel i is computed using the filter kernel K which is a function of C 1 but independent of C 2 .

C 3 i = j K ij (C 1 )C 2 j , (3) 
where i and j are pixel indexes, and

K ij (C 1 ) = (|ω k |) -2 (i,j)∈ω k (1 + (C 1 i -µ k )(C 1 j -µ k )(σ k 2 + ) -1 ), (4) 
where ω k is the square window centered at the pixel k in C 1 , |ω k | is the number of pixels in ω k , is a regularization parameter, and µ k and σ 2 k are the mean and the variance of C 1 in ω k . The main assumption of the guided filter is a local linear model between C 1 and C 3 . Thus, C 3 has an edge if C 1 has an edge.
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The proposed method use with-virtual-border frame D as the guidance image and with-virtual-border color optical flow map F as the input image to get the filtered image G as Eq [START_REF] Zhao | Person re-identification via integrating patchbased metric learning and local salience learning[END_REF],

G i = j |ω k | -2 (i,j)∈ω k (1 + (D i -µ k )(D j -µ k )(σ k 2 + ) -1 )F j , (5) 
where i and j are pixel indexes, ω k is the square window centered at the pixel k in D i , µ k and σ k are the mean and the variance of D i in ω k . is set to be 10 -6 . 

|ω k | is

Saliency computation

The FastMBD [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF] is applied on the filtered image G and then the virtual border region is removed to obtain the temporal saliency map TSM. One ex-A c c e p t e d m a n u s c r i p t ample is given to show the process of the temporal saliency detection in Fig. 6. 

Map fusion

Given the spatial saliency map SSM and the temporal saliency map TSM, the fusion is made to obtain spatio-temporal saliency map STSM by four steps:

• SSM and TSM are firstly fused as Eq [START_REF] Xie | High-quality spectral-spatial recon-495 struction using saliency detection and deep feature enhancement[END_REF], where ratio 1 = mu T /(mu S + mu T ),

ratio 2 = 1 -ratio 1 . STSM = ratio 1 × SSM + ratio 2 × TSM (6) 
where mu S and mu T are respectively the mean entropies of all the spatial saliency maps and all the temporal saliency maps for a video sequence (with κ the number of frames) as Eq [START_REF] Borji | Salient object detection: A survey[END_REF].

mu S = κ j=1 (- 255 j =1 (P rob S j j × log(P rob S j j )))/κ mu T = κ j=1 (- 255 j =1 (P rob T j j × log(P rob T j j )))/κ (7) 
A c c e p t e d m a n u s c r i p t

where P rob S j j and P rob T j j are respectively the normalized histogram of j th spatial saliency map and j th temporal saliency map: P rob j = num j /(h 1 × 250 w 1 ), num j is the number of pixel (equal to j ) in saliency map. Here, the idea is that mu i (i = S, T ) are used to decide the confidence of SSM and TSM. The disorder degree of saliency map reflects the difficulty degree to detect the salient objects. If mu i (i ∈ S, T ) is larger, the saliency detection in this domain is worser.

255

• STSM is optimized using Eq (8)

STSM = SSM if mu S < mu T ( 8 
)
The frame is often more complex than the color optical flow map, which results in that the disorder degree of SSM is usually larger than that of TSM. If mu S is smaller than mu T , it means it is difficult to detect the salient object in TSM. Thus, SSM has a high confidence.

• STSM is optimized using Eq (9)

STSM = SSM if σ S > σ T (9) 
σ S and σ T are respectively the standard deviations of non-zero regions in two grayscale images H S and H T , which are generated by the following steps: firstly, converting frame α from RGB to HSI color space, then eliminating the hue and saturation information while retaining the luminance to get the grayscale images α ; secondly, using a threshold δ to neglect the pixels with low saliency value from the images SSM and TSM as in Eq (10)

H Sij =    0 if SSM ij < δ α ij otherwise H Tij =    0 if TSM ij < δ α ij otherwise (10) 
where i and j are pixel indexes in the images. The appearance of the 260 wrongly detected background is mostly different from the salient object in the grayscale image, which results in that H i (i ∈ S,T ) contains more • Low saliency value (lower than δ) in STSM is decreased to 0.1 times.

265

The pixels with low saliency value in saliency map are unimportant for visual saliency but have a large influence in computing the detection confidence. Thus, δ is used to decrease their affection and set to 70 in all this paper.

Experiments and analyses 270

In this section, the performance of the proposed method is assessed and discussed.

Performance evaluation

Three metrics are used to measure the similarity between the generated saliency map (SM) and the Ground truth (GT):

275

• Precision-recall (P-R) curve [START_REF] Borji | Salient object detection: A survey[END_REF]: the saliency map is normalized to [0, 255] and converted to a binary mask (BM) via a threshold that varies from 0 to 255. The precision and the recall are:

Precision = BM GT /|BM|, Recall = BM GT /|GT| (11) 
For each threshold, a pair of (Precision, Recall) values are computed and used for plotting P-R curve. The curve closest to the top right corner (1.0, 1.0) corresponds to the best performance.

• F-measure [START_REF] Borji | Salient object detection: A benchmark[END_REF]: higher F-measure means better performance.

F -measure = (1 + β 2 ) × (Precision × Recall)(β 2 × Precision + Recall) -1 (12) 
β 2 is often set to 0.3. Average precision (the average of precision values at all ranks) and average recall (the average of recall values at all ranks)

A c c e p t e d m a n u s c r i p t

• Mean Absolute Error (MAE) [START_REF] Borji | Salient object detection: A survey[END_REF]: smaller MAE means higher similarity and better performance.

MAE = (h1 × w1) -1 h1×w1 i=1 |GT(i) -SM(i)| (13) 
For each tested dataset, we compute the average metric for each video sequence and then compute the average metric for all the videos.

Test datasets

Three datasets with various contents and various conditions are used for 285 models' performance evaluation and comparison.

Datasets with many salient objects connected to the frame border

Fukuchi dataset [START_REF] Fukuchi | Saliency-based video segmentation with graph cuts and sequentially updated priors[END_REF] includes 10 sequences. The salient object touches the frame border in most video sequences. All tested methods hardly detect the salient object for the video "BR128T". As in [START_REF] Chen | Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[END_REF], the video "BR128T" is ex-290 cluded in the test.

Datasets with complex backgrounds

FBMS dataset [START_REF] Li | benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection[END_REF] is with 59 heterogeneous video sequences. The GT is available for only a part of frames. We use the test set that contains 30 videos with provided GT for evaluation. The global motion with high complexity exists 295 in most of the video sequences.

Datasets with large daily videos

VOS dataset [START_REF] Li | benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection[END_REF], proposed for video salient object detection, contains 200 indoor/outdoor videos (64 minutes, 116,103 frames). The GT is available for part of frames. VOS-E and VOS-N are two subsets: VOS-E contains 97 easy 300 videos and VOS-N contains 103 videos (the background is cluttered and salient object is highly dynamic). This large-scale dataset is used to benchmark models with the evaluation metrics: MAE, Precision, Recall and F-measure. Note that for the calculation of metrics, an adaptive threshold (computed as the minimum A c c e p t e d m a n u s c r i p t value between "maximum pixel value of saliency map" and "twice the average values of saliency map") is used for converting the saliency map to a binary mask (BM). Except for MAE, the author denotes other three metrics in the benchmark [START_REF] Li | benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection[END_REF] as the mean Average Precision (MAP), mean Average Recall (MAR) and FBeta.

Results and discussions 310

Two experimental parts with assorted aims are shown for analysis. Firstly, the proposed method (based on traditional image-based salient object detection [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF]) in Section 3, denoted as VBGF, is evaluated in Section 4. 

Performance of the VBGF

Nine state-of-the-art saliency models are tested: MST16 [START_REF] Tu | Real-time salient object detection with 500 a minimum spanning tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF],

AMC13 [START_REF] Jiang | Saliency detection via absorbing markov chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF],

325 FD17 [START_REF] Chen | Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[END_REF] on Fukuchi and FBMS dataset. For all the methods, the experimental results are obtained using the source codes or saliency results provided by the authors.

1) Contributions of each proposed component to the performance a) Contribution of the proposed virtual border building 330

The method (based on the "background prior") may miss the salient object connected to the image borders and the proposed virtual border aims to improve this problem. Since MST16 [START_REF] Tu | Real-time salient object detection with 500 a minimum spanning tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF] and AMC13 [START_REF] Jiang | Saliency detection via absorbing markov chain[END_REF] detect the F-measure scores over Fukuchi F-measure scores over FBMS F-measure scores over Fukuchi F-measure scores over FBMS in the spatial domain make the spatial saliency detection inaccurate. Though 360 the global motion is intricacy, the temporal saliency map is still better than the spatial saliency map. The proposed fusion method takes advantages of results from both domains and gives a higher overall performance.

2) Comparison of the proposed method with state-of-the-art methods

20
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We compare our proposed method with several video salient object detection models with the Fukuchi dataset and the FBMS dataset respectively.

For the Fukuchi dataset, six compared models are: TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16

[13], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], FD17 [START_REF] Chen | Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[END_REF]. The P-R curves, F-measure and MAE values are drawn in Fig. 12, from which we can see that the proposed 370 method has the best P-R curve, the highest F-measure and the smallest MAE values. The detailed MAE and F-measure scores over four video sequences are shown in Table .1 and the proposed method achieves the best performance.

These four video sequences are selected with different cases: in "AN119T", the salient object locates in the frame center; in "DO01 013", all the salient object 375 touch the frame border and in "DO01 055" and "DO02 001" part of salient objects touch frame border. In the Fukuchi dataset, the contrast between the salient object and the background is large and the salient object movement is slow. Spatial saliency detection thus can already provide a high confidence, while the wrong detections in the temporal domain may influence the final 380 saliency map. Compared with methods TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SA15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], and FD17 [START_REF] Chen | Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[END_REF], the proposed fusion method can better select higher confidence spatial saliency information from two domains.

For the FBMS dataset, five compared models are TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16

[13], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]. Fig. 13 reports the P-R curves, F-385 measure and MAE values. We can see that our proposed method performs the best, while all the methods get lower performances on this dataset since it is the most challenging one. Five videos with difficult cases (the salient object is similar to the background or the clustering background is complex) are selected and the detailed corresponding MAE and F-measure scores are shown 390 in Table .2, in which the proposed method is always the best method. In the FBMS dataset, on one hand, the global motion exists in many sequences and is with high complexity which make the temporal detection more difficult. On the other hand, the salient object appearance is similar to that of the background and the clustering background is complex which makes the spatial detection [22], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], FD17 [START_REF] Chen | Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[END_REF] . more difficult. Among methods TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF] and SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF] gets a better result since they put emphasize on the temporal saliency detection. However, compared with TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF],

the proposed method leverage the spatial saliency and fuse them in a more confidence way to obtain better result. To evaluate the overall performances and disparities between our method and the state-of-the-art methods, we also show a subjective comparison in Fig. 14, (a), (e), (f) and (g) are chosen from the Fukuchi dataset; (b), (c), (d), (h), (i),
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(j) and (k) are from the FBMS dataset. We can see that RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF] tends to detect salient object edges rather than the whole salient object. Methods : MST16 [START_REF] Tu | Real-time salient object detection with 500 a minimum spanning tree[END_REF], FastMBD15 [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF], AMC13 [START_REF] Jiang | Saliency detection via absorbing markov chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF] can detect salient object region located in the frame center [22], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF] and SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF].

but not the salient part close to frame borders. By visually comparing on this 410 figure, we can see that the proposed method can detect the salient object more completely and more accurately.

Performance of the VBGFd

It may be worthy to look at the performance of the VBGF with an integration of a deep learning based method, named VBGFd. In VBGF, the "Saliency 415 computation" part adopts the traditional method [START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF], and the "Virtual bor-
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A c c e p t e d m a n u s c r i p t der building" part is proposed to solve the problem appeared in this type of traditional methods (cf. Fig. 3). For the VBGFd, we replace the "Saliency computation" and "Virtual border building" parts in both "SD" and "TD" blocks in Fig. 3 by a deep-salient detection method proposed in [START_REF] Liu | Dhsnet: Deep hierarchical saliency network for salient object detection[END_REF] -DHSNet (because 420 of the availability of its source code). Besides, the first two steps in the "Map fusion" part in Fig. 3 change to use the ratio between the entropies for each frame in Eq.6, instead of using the ratio between mean entropies for the whole video sequence. In this section, the large-scale video salient object detection dataset VOS and its two subsets VOS-E, VOS-N are used. SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]. GT: Ground truth.

(1) Contributions of the proposed components

In Table 3, we list the performances of the VBGFd with different components. We can see that its performance is better for all performance evaluation metrics with the "guided filtering" by comparing the 4th and 5th columns in Table 3 (contribution (2)); and its performance is better for most performance 430 evaluation metrics when the spatial and the temporal information is fused by comparing the 3rd, 5th and 6th columns in Table 3 (contribution (3)).

(2) Performance benchmarking of our approach

In Table 4, we inserted the performance of our proposed models into the 1 The best three scores in each column are marked in red, green and blue, respectively.

2 13 state-of-the-art models (LEGS,MCDL,MDF,ELD,DCL,RFCN,DHSNet,SIV,FST,NLC,SAG,GF) can be referenced from the paper [START_REF] Li | benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection[END_REF]. For SFCN, the result is generated using the provided source code.

on a NVIDIA 1080 GPU. Note that the video (Fukuchi and FBMS datasets) with original resolution is used. For different models that tested in section 4.3.1

(except the model FD17 [START_REF] Chen | Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion[END_REF] with the unpublished code), the average run-time is listed in Table 5. Video-based method SFCN and 3 image-based models have low computation costs. Others have higher computation costs since the 450 optical flow estimation is usually time consuming. The proposed VBGF and VBGFd models are among the three fastest video-based detection models, and the average run-time per frame of each element can be found in Table 6 in detail. AMC13 [START_REF] Jiang | Saliency detection via absorbing markov chain[END_REF], TGFV17 [START_REF] Wang | Fast filtering-based temporal saliency detection using minimum barrier distance[END_REF], SGSP16 [START_REF] Liu | Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation[END_REF], RWR15 [START_REF] Kim | Spatiotemporal saliency detection for video sequences based on random walk with restart[END_REF], GF15 [START_REF] Wang | Consistent video saliency using local gradient 515 flow optimization and global refinement[END_REF], SAG15 [START_REF] Wang | Saliency-aware geodesic video object segmentation[END_REF]), SFCN [START_REF] Wang | Video salient object detection via fully convolutional networks[END_REF]). and temporal information together by applying appropriate balance. When tested on various video databases, the proposed approach yields satisfactory performance and even outperforms the state-of-the-art methods.

Conclusion

Image based MST

The virtual border can be used as an optimization operation for salient object detection methods that are based on background prior. The guided filter-based 465 Feature fusion helps to remove background regions for moving object detection and segmentation. The Map fusion provides a new way to combine various individual saliency maps into a more robust one. However, the proposed fusion can lead to information loss as the used hand-crafted features are not robust in some complex cases, which may be improved with more informative features; so 

Figure 1 :

 1 Figure 1: State-of-the-art saliency maps [8, 9, 10].

50Figure 2 :

 2 Figure 2: State-of-the-art saliency maps [13, 11, 12].

  is still a much more challenging problem. Facing these open issues, we propose a new video salient object detection algorithm by addressing: 65 1) the problem of detecting a complete salient object connected to borders using the distance transform with a virtual border-based technique which consists of four steps which are a) Frame Border Selection, b) Frame Border Division, c) Representative Pixel Selection and d) Virtual Border Padding. In spatial domain, the virtual border is added to the frame aiming to detect the 70 whole salient object. In temporal domain, it is also added to the color optical flow map in order to detect the complete salient object motion and then obtain the salient object by filtering the global motion out.

A c c e p t e d m a n u s c r i p t temporal saliency map.

  

For

  graph-based approaches, Shan et al. [15] use background weight map as propagating seeds and design a third-order smoothness framework to improve the performance of manifold ranking. Jiang et al. [10] propose a saliency detec-95 tion via absorbing Markovian chain. Zhang et al. [9], Tu et al. [8] and Huang et al. [16] compute the saliency based on the minimum barrier distance transform. Lie et al. [17] improve the detection speed using the upsampling of random color distance map. For probabilistic models, Aytekin et al. [18] adopt a probabilistic mass function to encode the boundary connectivity saliency cue and smooth-100 ness constraints into a global optimization problem. Li et al. [19] propose an optimization model based on conditional random fields and geodesic weighted Bayesian model. For cognitive method, Yan et al. [20] combine bottom-up and top-down attention mechanisms to focus on the salient object. Peng et al. [21]

A c c e p t e d m a n u s c r i p t

  

Figure 3 :

 3 Figure 3: The proposed block-diagram. SD: spatial saliency detection; SSM: spatial saliency map; TD: temporal saliency detection; TSM: temporal saliency map; STSM: spatio-temporal saliency map.

180

  vided border is obtained from the original frame border (with width u). The divided up border (DUB), divided down border (DDB), divided left border (DLB) and divided right border (DRB) are shown in the bottom left part inA c c e p t e d m a n u s c r i p t

Figure 4 :

 4 Figure 4: Virtual border building: (1) two examples of map M obtained by applying FastMBD [9] on the frame; and then for each frame, the closest border to the salient region is selected to build the virtual border; (2) generating the divided border from the highlighted frame border (with width u), h 1 is the frame height, w 1 is the frame width and l is set to 18%, four divided borders: divided up border (DUB), divided down border (DDB), divided left border (DLB), divided right border (DRB) are shown; (3) the red dotted line denotes the virtual border padded with the selected representative pixel; (4) building and padding the virtual border

190

  intensities as the representative pixel value. Various experiments conducted on different frames have shown that the minimum SAD choice performs better than the mean and the median values in most of the cases (cf. the 1st example image in Fig.4where the representative pixel is chosen from the salient object instead of the background when using the mean value of the borders intensities). The same 195 way, choosing the median value of the border's intensities as the representative pixel value fails, which can be seen on the 2nd example image in Fig.4. d) Virtual Border Padding: around the selected original frame border, we build the corresponding virtual border with the above representative pixel. The virtual up border (VUB), the virtual down border (VDB), the virtual left border 200 (VLB) and the virtual right border (VRB) are shown in the bottom right part in Fig.4. Existing methods usually regard the border (with width 1) to be background and seed sizes are set to be 1. Here we set the virtual border size v
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Figure 5 :

 5 Figure 5: (Better viewed in color) An example of the spatial saliency detection. The red dotted line denotes the virtual border.

230 3 . 2 . 3 .

 323 Feature fusionWe propose a new Feature fusion way that fuses the spatial edge with the temporal information, considering that: 1) the salient object movement is often bigger than the background movement, thus the background and the salient object are often shown in different colors in the color optical flow map; 2) if the movements within the salient object are different, the salient object cannot be A c c e p t e d m a n u s c r i p t detected completely. If the spatial edges are added onto F , the salient object

  decided by the frame size. Large frame size needs large |ω k |. We use 20×20 for Fukuchi and FBMS datasets, and use 60×60 for VOS dataset since VOS has larger average frame size than that of Fukuchi and FBMS[26, 44][26].

  240

Figure 6 :

 6 Figure 6: (Better viewed in color) An example of the temporal saliency detection: from two successive frames, the optical flow vector is extracted and mapped to be the color optical flow map E. The virtual border is built on map E to generate with-virtual-border color optical flow map F . The red dotted line denotes the virtual border. After guided filtering, the filtered image G is generated to produce the temporal saliency map. Ground truth is provided for comparison.

A c c e p t e d m a n u s c r i p t luminance values and

  thus σ i (i ∈ S,T ) is smaller. If σ S is bigger than σ T , it means SSM has a high confidence.

3 . 1 .

 31 The performance of each component of the model is shown to demonstrate our contributions. The VBGF's performance is then compared with nine state-of-the-art 315 traditional salient object detection methods. Secondly, the VBGF is further improved by integrating a deep learning based image salient object detection method [36] and denoted as VBGFd. In Section 4.3.2, the contributions are shown by analyzing the performance of each component. Then performance benchmarking of our approaches (VBGF and VBGFd) and 13 state-of-the-art 320 models is reported. Finally, the run-time complexity is compared in section 4.3.3.

A c c e p t e d m a n u

  s c r i p t salient object in image domain based on the "background prior", we compare the proposed spatial saliency map with them by using the Fukuchi dataset, 335 in which many salient objects connected to the frame border. Quantitative performance can be found in Fig.7. The proposed spatial saliency detection has a better performance since it can detect salient objects more completely.

Figure 7 : 18 A

 718 Figure 7: (Better viewed in color) Quantitative comparisons between our proposed spatial saliency map (proSSM) and three image salient object detection models over the Fukuchi dataset. Some state-of-the-art methods, including: MST16 [8], FastMBD15 [9] and AMC13 [10]. The left parts show the Precision-Recall curves, the right parts shows the F-measure↑ scores.

Figure 8 :

 8 Figure 8: Precision-Recall (P-R) curves of the proposed temporal saliency map (proTSM) with guided filtering and without guided filtering over the Fukuchi dataset and the FBMS dataset.

Figure 9 :

 9 Figure 9: F-measure↑ scores of the proposed temporal saliency map: (a) with guided filtering and (b) without guided filtering over the Fukuchi dataset and the FBMS dataset.

A c c e p t e d m a n u

  s c r i p t P-R curves over Fukuchi P-R curves over FBMS

Figure 10 :

 10 Figure 10: (Better viewed in color) Precision-Recall (P-R) curves of proSSM, proTSM and proSTSM over the Fukuchi dataset and FBMS dataset. proSSM: proposed spatial saliency map; proTSM: proposed temporal saliency map; proSTSM: proposed spatio-temporal saliency map.

Figure 11 :

 11 Figure 11: F-measure↑ scores of proSSM, proTSM and proSTSM over the Fukuchi dataset and the FBMS dataset. proSSM: proposed spatial saliency map; proTSM: proposed temporal saliency map; proSTSM: proposed spatio-temporal saliency map.
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Figure 12 :

 12 Figure 12: (Better viewed in color) Quantitative comparisons between our method and six video salient object detection models over the Fukuchi dataset. The upper parts show the Precision-Recall curves, the left below shows the F-measure↑ scores and the right below shows the Mean Absolute Error (MAE)↓ scores. Some state-of-the-art methods, including: TGFV17

400b)

  Subjective comparison with 3 image salient object detection models and 5 video salient object detection models 22 A c c e p t e d m a n u s c r i p t
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Figure 13 :

 13 Figure 13: (Better viewed in color) Quantitative comparisons between our method and five video salient object detection models over the FBMS dataset. The upper parts show the Precision-Recall curves, the left below shows the F-measure↑ scores and the right below shows the Mean Absolute Error (MAE)↓ scores. Some state-of-the-art methods, including: TGFV17

Figure 14 :

 14 Figure 14: Comparison of the saliency maps. (a)-(k) are 11 different video sequences. Some state-of-the-art methods, including: MST16 [8], FastMBD15 [9], AMC13 [10], TGFV17 [22],

A c c e p t e d m a n u s c r i p t
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  In this paper, a novel video salient object detection method (the VBGF) and its extension integrating deep representations (the VBGFd) are proposed. Using virtual border concept has helped to address the problem of distance transform

A c c e p t e d m a n u s c r i p t

  

A c c e p t e d m a n u s c r i p t

  explore deep-learning based methods for salient object detection in videos. We also plan to improve the above fusion by training deep networks to learn more useful deep representations.

36 A c c e p t e d m a n u s c r i p t

 36 His current research interests include saliency detection, object segmentation, and semantic segmentation. Kidiyo Kpalma received his Ph.D in Image Processing INSA Rennes in 635 1992. Since 2014, he became Professor at INSA: he teaches Signal and Systems, Signal Processing and DSP. As a member of IETR UMR CNRS 6164, his research interests include pattern recognition, semantic image segmentation, facial micro-expression and saliency object detection.

Table 1 :

 1 A table comparing the proposed method and six video salient object detection models in Mean Absolute Error and F-measure scores over 4 video sequences chosen from the Fukuchi dataset.

			Mean Absolute Error↓ scores	
	Method				
		AN119T DO01 013 DO01 055 DO02 001
	TGFV17 [22]	0.0119	0.0084	0.0462	0.0324
	SGSP16 [13]	0.0772	0.0675	0.0996	0.1463
	RWR15 [11]	0.0692	0.0773	0.052	0.0826
	GF15 [12]	0.0312	0.0306	0.0334	0.0378
	SAG15 [28]	0.0264	0.0247	0. 026	0.0162
	FD17 [34]	0.0062	0.0086	0. 0165	0.0113
		0.0027	0.0052	0.0053	0.0014
			F-measure↑ scores	
	Method				
		AN119T DO01 013 DO01 055 DO02 001
	TGFV17 [22]	0.9069	0.704	0.7228	0.808
	SGSP16 [13]	0.7318	0.6343	0.5411	0.5925
	RWR15 [11]	0.4878	0.5379	0.6533	0.6182
	GF15 [12]	0.8659	0.6842	0.7417	0.8292
	SAG15 [28]	0.8432	0.5486	0.7393	0.8348
	FD17 [34]	0.9449	0.685	0.7852	0.8656
	Ours	0.9516	0.801	0.8051	0.9322

1 

The Bold number indicates the best result.

Table 2 :

 2 A table comparing the proposed method and five video salient object detection models in Mean Absolute Error and F-measure scores over 5 video sequences chosen from the FBMS dataset.

			Mean Absolute Error↓ scores	
	Method					
		Cars5	Cars10 Cats03 Horses04 Horses05
	TGFV17 [22] 0.0205	0.0248	0.0536	0.0454	0.0363
	SGSP16 [13]	0.0708	0.0599	0.1089	0.0964	0.0877
	RWR15 [11]	0.1905	0.1485	0.1471	0.1175	0.0968
	GF15 [12]	0.0438	0.0388	0.1148	0.1049	0.0598
	SAG15 [28]	0.0486	0.034	0. 0941	0.1427	0.0689
	Ours	0.0161 0.0218 0.0103 0.0243	0.0215
			F-measure↑ scores	
	Method					
		Cars5	Cars10 Cats03 Horses04 Horses05
	TGFV17 [22]	0.751	0.6494	0.6573	0.7021	0.6018
	SGSP16 [13]	0.6359	0.6595	0.6558	0.6476	0.6105
	RWR15 [11]	0.3485	0.4056	0.2219	0.3389	0.3666
	GF15 [12]	0.5877	0.6339	0.2762	0.6415	6067
	SAG15 [28]	0.4964	0.584	0.3532	0.3797	0.6495
	Ours	0.7712 0.7281 0.7184	0.7294	0.6593

1 

The Bold number indicates the best result.

Table 3 :

 3 Comparison of the proposed VBGFd componets' performance on dataset VOS, VOS-

		E, VOS-N. proSSM: proposed spatial saliency map; proTSM: proposed temporal saliency map;
		proSTSM: proposed spatio-temporal saliency map.
		Dataset Metrics VOS-E MAP↑ MAR↑ FBeta↑ MAE↓ VOS-N MAP↑ MAR↑ FBeta↑ MAE↓ VOS MAP↑ MAR↑ FBeta↑	Proposed VBGFd components proTSM without proTSM with guided filtering guided filtering 0.398 0.528 0.380 0.480 0.394 0.516 0.189 0.154 0.407 0.407 0.389 0.392 0.403 0.403 0.136 0.132 0.403 0.466 0.385 0.435 0.399 0.458 m proSSM 0.863 0.905 0.872 0.049 0.649 0.851 0.686 0.055 0.753 0.877 0.778 a n u s c r i p t proSTSM 0.881 0.877 0.880 0.046 0.690 0.806 0.714 0.059 0.783 0.840 0.795
	MAE↓ based deep learning and video-based unsupervised models) reported in [26], 0.052 0.162 0.143 0.053 not the image-based classic non-deep learning models (because we have already compared with some classic models in section 4.3.1). We can see that among the tested 15 models, the VBGFd has the best score for 7 times, when the best benchmarked model DHSNet has the best score for 5 times. Thus in general, we can say that the VBGFd performs the best among the tested models. 4.3.3. Time A PC with Intel Core i7 4910 2.9GHz CPU and 16GB RAM is used for testing A c c e p t e d 440
	445	the speed of traditional methods, and the deep learning method is performed
			27

1 

The Bold number indicates the best result in each line.

the benchmarking table (cf. Table III in the paper

[START_REF] Li | benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection[END_REF]

) provided with the 435 VOS dataset. Note that here we only list 13 state-of-the-art models (image-

Table 4 :

 4 Performance benchmarking of our approach and 13 state-of-the-art models on the dataset VOS and two subsets VOS-E and VOS-N. These models are categorized into two parts: [I+D] for deep learning and image-based, [V+U] for video-based and unsupervised, [V+D] for deep learning and video-based.

				VOS-E			VOS-N				VOS	
		Models												
			[MAP↑	MAR↑	FBeta↑	MAE↓]	[MAP↑	MAR↑	FBeta↑	MAE↓]	[MAP↑	MAR↑	FBeta↑	MAE↓]
		LEGS	0.820	0.685	0.784	0.193	0 556	0.593	0.564	0.215	0.684	0.638	0.673	0.204
		MCDL	0.831	0.787	0.821	0.081	0.570	0.645	0.586	0.085	0.697	0.714	0.701	0.083
	[I+D]	MDF ELD	0.740 0.790	0.848 0.884	0.762 0.810	0.100 0.060	0.527 0.569	0.742 0.838	0.565 0.615	0.098 0.081	0.630 0.676	0.793 0.861	0.661 0.712	0.099 0.071
		DCL	0.864	0.735	0.830	0.084	0.583	0.809	0.624	0.079	0.719	0.773	0.731	0.081
		RFCN	0.834	0.820	0.831	0.075	0.614	0.783	0.646	0.080	0.721	0.801	0.738	0.078
		DHSNet	0.863	0.905	0.872	0.049	0.649	0.851	0.686	0.055	0.753	0.877	0.778	0.052
		SIV	0.693	0.543	0.651	0.204	0.451	0.523	0.466	0.201	0.568	0.533	0.560	0.203
		FST	0.781	0.903	0.806	0.076	0.619	0.691	0.634	0.117	0.697	0.794	0.718	0.097
	[V+U]	NLC SAG GF	0.439 0.709 0.712	0.421 0.814 0.798	0.435 0.731 0.730	0.204 0.129 0.153	0.561 0.354 0.346	0.610 0.742 0.738	0.572 0.402 0.394	0.123 0.150 0.331	0.502 0.526 0.523	0.518 0.777 0.767	0.505 0.568 0 565	0.162 0.140 0.244
		SSA [26]	0.875	0.776	0.850	0.062	0.660	0.682	0.665	0.103	0.764	0.728	0.755	0.083
		VBGF	0.797	0.773	0.791	0.085	0.558	0.688	0.583	0.130	0.674	0.729	0.686	0.108
	[V+D]	SFCN [41] VBGFd	0.806 0.881	0.842 0.877	0.814 0.880	0.063 0.046	0.577 0.690	0.815 0.806	0.619 0.714	0.086 0.059	0.688 0.783	0.829 0.840	0.716 0.795	0.075 0.053

Table 5 :

 5 Average run time (per frame) of the compared models (MST16[START_REF] Tu | Real-time salient object detection with 500 a minimum spanning tree[END_REF], FastMBD15[START_REF] Zhang | Minimum barrier salient object detection at 80 FPS[END_REF],

Table 6 :

 6 Average run time (per frame) of each component in the proposed models. computation in previous approaches. The guided filterbased Feature fusion and the Map fusion are efficiently used for fusing spatial

			VBGF	VBGFd
	Component				
		Time(s) Ratio(%) Time(s) Ratio(%)
	virtual border building	0.50	14.04	-	-
	saliency detection	0.07	1.97	0.15	4.78
	optical flow computation	2.80	78.65	2.80	89.17
	feature filtering)	0.07	1.97	0.07	2.23
	map fusion	0.12	3.37	0.12	3.82
	employed for saliency 460				
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