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Original Article

Prescription Value-Based Automatic
Optimization of Importance Factors
in Inverse Planning

Caiping Guo, PhD1,2 , Pengcheng Zhang, PhD2, Zhiguo Gui, PhD2,
Huazhong Shu, PhD3,4, Lihong Zhai, MD1, and Jinrong Xu, MD1

Abstract
Objective: An automatic method for the optimization of importance factors was proposed to improve the efficiency of inverse
planning. Methods: The automatic method consists of 3 steps: (1) First, the importance factors are automatically and iteratively
adjusted based on our proposed penalty strategies. (2) Then, plan evaluation is performed to determine whether the obtained
plan is acceptable. (3) If not, a higher penalty is assigned to the unsatisfied objective by multiplying it by a compensation coefficient.
The optimization processes are performed alternately until an acceptable plan is obtained or the maximum iteration Nmax of step
(3) is reached. Results: Tested on 2 kinds of clinical cases and compared with manual method, the results showed that the quality
of the proposed automatic plan was comparable to, or even better than, the manual plan in terms of the dose–volume histogram
and dose distributions. Conclusions: The proposed algorithm has potential to significantly improve the efficiency of the existing
manual adjustment methods for importance factors and contributes to the development of fully automated planning. Especially,
the more the subobjective functions, the more obvious the advantage of our algorithm.
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Abbreviations
CERR, computational environment for radiotherapy research; CI, conformity index; CT, computed tomography; DV, dose–
volume; DVH, dose–volume histogram; FMO, fluence map optimization; gEUD, generalized equivalent uniform dose; HI,
homogeneity index; HN, head and neck; IMRT, intensity-modulated radiotherapy; NTs, normal tissues; NTCP, normal tissue
complication probability; OARs, organs at risk; PTV, planning target volume; TCP, tumor control probability
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Introduction

Inverse planning in intensity-modulated radiotherapy (IMRT)

aims to deliver uniform doses to the planning target volume

(PTV), while sparing damage to normal tissues (NTs) and

organs at risk (OARs). The performance of an inverse planning

system depends on the optimization engine, which handles

mutually exclusive optimization goals for different structures

and accordingly adjusts beamlet intensities using an iterative

method.1 In standard inverse planning, such a trade-off is com-

monly resolved by minimizing a therapeutic objective function,

which combines different structure-specific penalty objectives

using importance factors. Two methods are commonly used to

adjust the importance factors (weighting factors): fine-tuning
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France

Corresponding Author:

Caiping Guo, Department of Electronic Engineering, Taiyuan Institute of

Technology, Yingxin Street, Taiyuan, Shanxi 030008, China.

Email: guocaipingvip@163.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/
by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE
and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Technology in Cancer Research &
Treatment
Volume 18: 1-13
ª The Author(s) 2019
DOI: 10.1177/1533033819892259
journals.sagepub.com/home/tct

https://orcid.org/0000-0001-7358-9870
https://orcid.org/0000-0001-7358-9870
mailto:guocaipingvip@163.com
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://doi.org/10.1177/1533033819892259
http://journals.sagepub.com/home/tct
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1533033819892259&domain=pdf&date_stamp=2019-11-29


importance factors in a manual trial-and-error fashion2,3 and

multiobjective optimization, where part of the representatives

of a Pareto surface are precomputed and then navigated.1,4-9

Between the 2 methods, the former is the most commonly used,

although it is time-consuming, because lengthy manual trial-and-

error procedures are needed to find a set of suitable importance

factors to arrive at a satisfactory balance between the PTV cov-

erage and OAR sparing. Moreover, the optimization process

becomes even more complicated and time-consuming as the

number of subobjective functions increases. To improve the effi-

ciency of inverse planning, it is desirable to have an automatic, or

a more effective, approach to determine the importance factors.

To achieve this goal, some authors have proposed schemes

to automatically adjust the importance factors. Xing et al10

proposed a method for auto-optimizing importance factors

using 2-stage optimization under the guidance of a predefined

dose–volume histogram (DVH) score function. In a similar

vein, some researchers proposed methods to automatically

optimize treatment plans guided by a reference plan.8,11-24 Of

these, the source of the reference plan, for different clinical

applications, is not the same. For automatic replanning, the

reference plan comes from a clinically delivered original plan

for the same patient. For knowledge-based approaches, the

reference plan for an incoming cancer patient is based on retro-

spective patient data. These methods can automatically adjust

the importance factors but require a prechosen DVH curve for

each optimized organ. Due to the differences and variances of

patient-specific anatomical structures, it is difficult to choose

beforehand the ideal DVH curves for both the traditional

inverse planning and replanning process. Additionally, some

investigators, using machine learning, have proposed methods

to predict OAR weights25 and OAR DVHs26-28 for some cancer

cases. Dias et al29 implemented the automatic optimization of

prescribed doses and importance factors by applying the theory

of fuzzy inference. All the aforementioned methods are based

on dose-based optimization models.

In this study, we focused on automatic optimization for IMRT

treatment planning to avoid the requirement of human planner

intervention. An effective and simple computer-aided method to

automatically and iteratively adjust the importance factors with-

out manual intervention was proposed. Moreover, compared

with the aforementioned automatic important factor optimiza-

tion methods, the advantages of our proposed method are: (1) It

does not need a reference plan, but is suitable for automatic

optimization method based on a reference plan; (2) It does not

need a large number of clinical cases to train prediction model;

(3) It does not need to design complex membership functions;

and (4) It not only applies to dose-based physical optimization,

but also to others, such as biological and hybrid optimization.

Materials and Methods

Optimization Technique

The core of the automatic method is the iterative and automatic

adjustment of importance factors based on the difference between

actual dose and the prescribed value within a certain small num-

ber of iterations. Figure 1 depicts a flow chart of the automatic

method. (1) First, the importance factors are automatically and

iteratively adjusted based on proposed penalty strategies. (2)

Then, plan evaluation is performed to determine whether the

obtained plan is acceptable according to evaluation functions.

(3) If not, a higher penalty is assigned to the unsatisfied objective

by multiplying a compensation coefficient. The optimization pro-

cesses are performed iteratively until an acceptable plan is

obtained or the maximum iteration Nmax of step (3) is reached.

These optimization problems were solved using the limited-

memory Broyden–Fletcher–Goldfarb–Shanno gradient optimi-

zation algorithm,30 and square roots of beamlet weights were used

as variables to avoid nonphysical solutions with negative values.1

The following sections provide details of the automatic method.

Prescription value-based penalty strategies. In clinical practice,

prescription values mainly include minimum dose, maximum

dose, mean dose, maximum dose–volume (DV) constraints,

minimum DV constraints, generalized equivalent uniform dose

(gEUD),31 tumor control probability (TCP), and NT complica-

tion probability (NTCP).32 We use wnew and wold to, respec-

tively, denote the current importance factors and automatically

adjusted importance factors, where we defined the relationship

between them as

Figure 1. Overview of the automatic FMO. FMO indicates fluence

map optimization.
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wnew ¼ wold þ factor: ð1Þ

where factor is defined as weight correction factor which is a

function of prescription value and actual value. For different

prescription values, the factor proposed in this article is defined

in Table 1. The subscripts pre and cur represent the prescription

value and the actual value in the current plan, respectively. For

DV constraint, V1 is the prescribed volume with respect to

prescribed dose D1 and V2 the actual volume in the given plan

with respect to D1.

For example, the minimum dose criterion is typically used

to control the low dose delivered to PTV. The penalty for it is

the greater the difference between Dmin�cur and Dmin�pre, the

greater the corrector factor. Hence, a higher importance factor

is assigned to the minimum-dose-based subscore. But maxi-

mum dose criterion is typically used to constrain the overdose

delivered to PTV or OAR. The greater the maximum dose of

the current plan, the greater the factor. Other penalty strategies

are formatted similarly.

The automatic adjustment of importance factors, shown

in rectangle I in Figure 1, compromises the requirement of

PTV coverage and OARs sparing based on prescription

value-based penalty strategies. Then, plan evaluation is

performed.

Plan evaluation. Plan evaluation is performed according to 2

evaluation functions, which are provided in Equations 2 and

3, which are respectively express the PTV coverage considered

in priority, and the maximum DV objectives for OARs. N is the

number of the DV constraints.

f1 ¼ VPTVðDmin preÞ � 95% ð2Þ

f2 ¼ VOARðD1iÞ � V1i% i ¼ 1 � � �N ð3Þ

The criteria for plan evaluation are listed as follows: (1) If

the PTV coverage is satisfied, while the specific DV constraints

of OARs are not satisfied, the algorithm considers improving

the OARs DV constraints without jeopardizing the pre-

scribed PTV coverage. If the OAR doses cannot be made

to satisfy all the conditions without compromising the pre-

scribed PTV coverage, the high-dose region of the OAR

will be considered first. (2) If the PTV coverage is dissa-

tisfied, a higher penalty, imposed by multiplying by a com-

pensation coefficient, is assigned to the weight correction

factors of the subscores controlling PTV, until the dose

constraint of the PTV was satisfied. (3) If the PTV coverage

and OARs DV constraints are all satisfied, the algorithm

tries to improve the PTV coverage as far as possible while

ensuring the prescribed OARs DV constraints; if OAR doses

are needed to decrease to the fullest extent, the algorithm

can try to decrease the OAR doses as far as possible while

ensuring the prescribed PTV coverage.

Ideally, if the prescription values are well-defined, an accep-

table plan is generated only by the step in Figure 1 (rectangle I).

Otherwise, a compensation stage will be performed.

Compensation stage. During the compensation stage, the unsa-

tisfied objective is assigned a higher penalty by multiplying by

a coefficient k defined in Equation 4. Then, the fluence map

optimization (FMO) shown in rectangle I in Figure 1 is per-

formed once again. Figure 2 shows the process, k0 represents

the initial value, and steplength represents the variation of the k

between iterations.

wnew ¼ wold þ k � factor ð4Þ

Objective function. Three representative objective functions

(DV-based objective function, gEUD-based physical–biologi-

cal objective function, and NTCP-based physical–biological

Table 1. Weight Correction Factors for Different Prescription Values.

Prescription

Value Factor

Dmin�pre Dmin�pre=Dmin�cur
Dmax�pre Dmax�cur=Dmax�pre
Dmean�pre maxðDmean�cur;Dmean�preÞ=minðDmean�cur;Dmean�preÞ

for PTV

Dmean�pre Dmean�cur=Dmean�pre for OAR

DVmax V2=V1

DVmin V1=V2

gEUD gEUDcur=gEUDpre; a � 1 for OAR

gEUD gEUDpre=gEUDcur; a < 1 for PTV

NTCP NTCPcur=NTCPpre
TCP TCPpre=TCPcur

Abbreviations: gEUD, generalized equivalent uniform dose; NTCP, normal

tissue complication probability; OAR, organ at risk; PTV, planning target

volume; TCP, tumor control probability.

Current plan is not

acceptable

Determine the

objective needed to

be given more

penalty

Adjust the weight(s)

of unsatisfied

objective by

new oldw w k factor

0

0

k k steplength
k k

FMO using L-BFGS

= +

=

= + .

Figure 2. Process of compensation stage.
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objective function) were used in our study. The weighted sum

of objective function f to be minimized is

f ðDÞ ¼
Xl

i¼1
wi fiðDÞ; ð5Þ

where importance factor wi represents clinical significance, l

is the number of subobjective functions, and D is the dose

distributions to the organ constrained by subscore fi. To

avoid numerical errors in the automatic procedure, the

importance factors were kept within a specific range

through normalization by Equation 6. The importance fac-

tors were kept within (0, 1). It is worth noting that the

normalization does not affect the optimal solution from the

mathematical standpoint.

wi ¼ wi

Pl

i¼1
wi

ð6Þ

DV-based objective function. Dose–volume-based optimization is

common in clinical settings for IMRT treatment planning. The

DV-based model used in our study was

f ðDðxÞÞ ¼ w1 fMinðDPTVÞ þ w2 fMeanðDPTVÞ

þ
X5

i¼3
wi fDVmax�OAR1ðDÞ þ

X8

i¼6
wi fDVmax�OAR2ðDÞ þ � � �

ð7Þ
Due to the nonconvexity of the DV criterion,33 the equiva-

lent convex DV criterion was used to construct the maximum

DV subscore.34 The subscores used in DV-based optimization

model are expressed as follows:

fMinðDÞ ¼ 1
N

XN

i¼1
HðDMin �DiÞ � ðDMin �DiÞ2; ð8Þ

fMeanðDÞ ¼
1

N

XN

i¼1
ðDi � DMeanÞ2 ; ð9Þ

fDVmaxðDÞ ¼
1

N

XN

i¼1
HðDi � D1Þ � HðD2 �DiÞ � ðDi � D1Þ2 ;

ð10Þ

where H(x) represents the step function; Di is the dose in the ith

voxel; N is the number of voxels in PTV or OAR; the maximum

DV constraint VD1 � V1% indicates that the volume of the

OAR receiving dose greater than D1 should be less than

V1%, D2 is in the current plan, where VD2 ¼ V1%.

gEUD-based physical–biological objective function. The advantages

of gEUD-based optimization have been widely investi-

gated.3,6,34-41 Previous studies have shown the superiority

of gEUD-based physical–biological optimization compared

with gEUD-based biological optimization.37,40 Based on

their findings, the gEUD-based objective function used in

our work was,

f ðDÞ ¼ w1 fMinðDPTVÞ þ w2 fMeanðDPTVÞ þ
XNOAR

i¼1
wiþ2 fgEUDðDÞ;

ð11Þ

where

fgEUDðDÞ ¼ HðgEUDcurðDÞ � gEUDpreÞ � ðgEUDcurðDÞ � gEUDpreÞ;
ð12Þ

NOAR is the number of OARs; gEUD is given by Nie-

mieko,31 the wi is given from Equation 6.

NTCP-based physical–biological objective function. NTCP-based

optimization has been investigated in inverse treatment plan-

ning42-46 and incorporated into some commercial treatment

planning software.44,47 The NTCP-based objective function

was expressed in Equation 13. The NTCP model used here was

the LKB model.48,49

f ðDÞ ¼ w1 fMinðDPTVÞ þ w2 fMeanðDPTVÞ þ
XNOAR

i¼1
oiþ2 fNTCPðDÞ:

ð13Þ

To use a gradient-based optimization algorithm to solve the

nonconvex NTCP-based optimization problem, the following

equivalent convex NTCP criterion38 was applied. The NTCP-

based subscore50 utilized in our work was defined in

Equation.14

fNTCPðDÞ ¼ maxðlnð1� NTCPpreÞ � lnð1� NTCPLKBðDÞ; 0Þ
ð14Þ

Patients, Related Parameters, and Assessment Criteria

The feasibility and performance of the automatic method was

tested on 10 cases of prostate cancer and 3 cases of head and

neck (HN) cancer randomly selected from the database of

treated cases. The study protocols were approved by the Ethics

Committee of the North University of China with the approval

No. 2018006, the written consent forms were signed by the

participants whose computed tomography (CT) images were

used for this study.

For prostate cancer cases, these patients underwent simula-

tion and treatment in the supine position. Target volume and

OARs (bladder, rectum, and femoral heads) were delineated on

CT slices. The rectum and bladder walls were generated with a

thickness of 5 mm from the external manually delineated rectal

and bladder contours, respectively. A “tissue ring,” the outside

of the area extending the PTV by 5 cm, was defined as the other

NT. The target volume included the prostate and excluded the

pelvic lymph nodes. The PTV was calculated by adding a 10

mm margin in all directions except the posterior, where a 5 mm

margin was applied. All plans used the identical configuration

4 Technology in Cancer Research & Treatment



of 5 coplanar 6 MV photon beams, with gantry angles of 36�,
100�, 180�, 260�, and 324�. The values of D1 and V1 for the

DV-based optimization are listed in Table 2. The prescribed

Dmin-pre and Dmean-pre for PTV were 74 Gy and 78 Gy, respec-

tively. The prescribed gEUDpre and NTCPpre for rectum and

bladder were 60 Gy and 0.05, respectively. The NTCP and

gEUD radiobiological parameters for the bladder and rectum

were taken from studies, respectively.51,52

For HN cancer cases, patients, related optimization para-

meters applied in Equations 7 and 11, and plan assessment

criteria are same as those in our previous study.53 The pre-

scribed NTCPpre for OARs (spinal cord, brainstem, L-parotid,

and R-parotid) was 0.1.

The number of maximum iterations was 5 in rectangle I in

Figure 1, empirically chosen through a series of experiments.

The dose sedimentary matrix was calculated with a standard

pencil beam algorithm,54 implemented on the computational

environment for radiotherapy research (CERR).55 All experi-

ments were performed by using an instrument equipped with a

32-bit OS, Windows 7, and an Intel (R) Core (TM) i3-4150

CPU with 4G RAM.

The plan quality was assessed by using the clinical evalua-

tion guidelines shown in Table 3.56 Conformity index (CI) and

homogeneity index (HI)57 are, respectively, defined in Equa-

tions 15 and 16.

CI ¼Vt;ref

Vt
�Vt;ref

Vref
; ð15Þ

where Vt is the volume of the PTV, Vt;ref is the target volume

that receives a dose greater than or equal to the reference (pre-

scribed) dose, and Vref is the total volume that receives a dose

greater than or equal to the reference dose.

HI ¼ D5%

D95%
; ð16Þ

where D5% and D95% correspond to the minimum doses deliv-

ered to the hottest 5% and 95% of the PTV, respectively.

All statistical tests were performed using the Wilcoxon

matched-pair, signed-rank test using a significance level of

0.05.

Table 2. D1 and V1 for the DV Subobjective Functions.

OAR D1 (Gy) V1 (%)

Rectum 50 40

65 25

75 15

Bladder 65 35

70 30

75 16

Abbreviations: DV, dose–volume; OAR, organ at risk.

Table 3. Dose–Volume Criteria for Bladder and Rectum.

OAR Parameters of DV constraints

Bladder V65 < 50% V70 < 35% V75 < 25% V80 < 15%
Rectum V50 < 50% V60 < 35% V65 < 25% V70 < 20% V75 < 15%

Abbreviations: DV, dose–volume; OAR, organ at risk.

Table 4. Optimized Compensation Coefficient k for 3 Optimization Methods.

Case

DV-Based gEUD-Based NTCP-Based

wPTV
inew
¼ wPTV

iold þk � factor
i ¼ 1, 2 in Equation 7

wPTV
inew
¼ wPTV

iold þ k � factor
i ¼ 1, 2 in Equation 11

winew ¼ wiold þ k � factor for rectum
and parotids i for rectum

Prostate 1 1 10 4

Prostate 2 10 30 1

Prostate 3 1 10 2

Prostate 4 8 20 1

Prostate 5 9 20 1

Prostate 6 3 20 4

Prostate 7 1 25 1

Prostate 8 1 25 1

Prostate 9 8 20 4

Prostate 10 10 15 2

HN 1 5 10 2

HN 2 2 20 1

HN 3 8 25 3

Abbreviations: DV, dose–volume; gEUD, generalized equivalent uniform dose; HN, head and neck; NTCP, normal tissue complication probability.
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It should be pointed out that the differences of the DVH

criteria for the bladder and rectum in Tables 2 and 3 are that

the DVH criteria in Table 2 are prescribed DV constraints in

Equation 10, while the DVH criteria in Table 3 are evaluation

guidelines to determine whether optimized plan is clinically

accepted. For different prostate patients, the evaluation guide-

lines are same, but the prescribed DV constraints should be

tightened and relaxed depending on the patients’ different

structures.

Results

In Optimization Technique section, we proposed an automatic

algorithm for dynamically generated acceptable importance

factors for IMRT inverse treatment planning. Next, we

describes an investigation of the automatic method.

Determination of Iteration Number

First, we investigated the impact of iteration numbers on the

convergence of the algorithm and plan quality. It was found

that the total iteration number to be 15, which is always enough

to get an acceptable plan based on our a series of experiments.

Then by using different combinations of iteration numbers of

iterative adjustment shown in rectangle I in Figure 1 and com-

pensation stage shown in rectangle II in Figure 1, we found that

by performing compensation stage, the algorithm can further

improve the plan quality than only by performing iterative

adjustment shown in rectangle I in Figure 1. But after each

adjustment of the compensation coefficient, because of the

repetitive performing of iterative adjustment shown in rectan-

gle I in Figure 1, the computation time becomes longer. As this

test was consistent for different cases, we fixed the number of

iterations at 5 in rectangle I in Figure 1 and the maximum

iteration was 10 in rectangle II in Figure 1, which allows the

algorithm to show the trade-off between the gain in plan quality

and the cost in computation time.

Effects of Compensation Coefficient

Under the above-prescription values, Table 4 lists the optimized

compensation coefficient k for testing cases in 3 kinds of opti-

mization methods. It was observed that in the DV-based optimi-

zation and gEUD-based optimization, the weight correction

factors of subscores for PTV needed to be given extra penalty

by multiplying a compensation coefficient, whereas in the

NTCP-based optimization, the subscore for rectum or parotids

needed to be given extra penalty; k0 for the DV-based, gEUD-

based, and NTCP-based optimizations were, respectively, 1, 10,

and 1. The respective step lengths were 1, 5, and 1.
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Figure 3. Dose–volume histograms of gEUD plans with different

coefficient k for patient 2. gEUD indicates generalized equivalent

uniform dose.
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Table 5. Dose Conformity and Homogeneity to the PTV of the Automatic Plan for 10 Prostate Cases.

Index Method

Prostate HN (PTV70, PTV63, PTV56)

1 2 3 4 5 6 7 8 9 10 1 2 3

DV-based 0.88 0.87 0.90 0.88 0.90 0.85 0.85 0.85 0.86 0.86 0.84 0.59 0.48 0.89 0.53 0.36 0.80 0.45 0.25

CI gEUD-based 0.88 0.87 0.90 0.87 0.90 0.86 0.85 0.86 0.85 0.86 0.83 0.60 0.49 0.86 0.50 0.35 0.78 0.44 0.29

NTCP-based 0.88 0.87 0.90 0.87 0.89 0.85 0.85 0.84 0.87 0.86 0.84 0.67 0.41 0.88 0.51 0.36 0.78 0.42 0.27

DV-based 1.02 1.02 1.04 1.02 1.06 1.03 1.02 1.02 1.05 1.02 1.04 1.08 1.06 1.07 1.09 1.05 1.05 1.10 1.10

HI gEUD-based 1.02 1.02 1.04 1.02 1.06 1.04 1.02 1.02 1.04 1.02 1.08 1.10 1.08 1.09 1.10 1.06 1.05 1.13 1.10

NTCP-based 1.02 1.02 1.04 1.02 1.06 1.02 1.02 1.01 1.02 1.02 1.07 1.09 1.06 1.08 1.13 1.08 1.07 1.15 1.11

Abbreviations: CI, conformity index; DV, dose–volume; gEUD, generalized equivalent uniform dose; HI, homogeneity index; NTCP, normal tissue complication

probability; PTV, planning target volume.

A B

C

Figure 5. Comparisons of DV criteria for DV plan. DV indicates dose–volume. A, Dose comparison of PTV-95% for DV plan; (B) DVH

comparison of Bladder for DV plan(“*”:B-65Gy,“e”: B-70Gy,“o”: B-75Gy); (C) DVH comparison of Rectum for DV plan(“*”:R-60Gy,“e”:

R-65Gy,“o”: R-75Gy).
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Figure 3 shows the evolutionary process of the gEUD-based

optimization with different compensation coefficient k for

prostate patient 2. It can be seen that the greater the important

factors with higher coefficient k for the PTV subscores, the

greater the dose coverage within the target, whereas OARs

sparing decreased because of the trade-off.

If we want to further improve the quality of the automatic

plan for a specific objective, we can manually impose a com-

pensation coefficient on the objective. Taking the optimized

DV plan of prostate patient 8 for example, Figure 4 shows the

difference between the plans with k¼ 1 and k¼ 2. The aim is to

further improve the dose distribution of PTV with k ¼ 2 yield-

ing improved PTV coverage. The same approach can be used to

improve other objectives.

Plan Comparison

For the automatic plans, PTV coverage quantified by CI and HI

is guaranteed for testing cases in 3 kinds of optimization meth-

ods (Table 5). It is clear that the proposed automatic method

yields good dose conformity and homogeneity to the PTV.

Next, the automatic plan was compared with the manual

plan generated in CERR by experienced physicians and

reported in other literature created by our team members.50 For

prostate cancer cases, Figures 5–7 present the comparative

results corresponding to DVH criteria for the PTV and OARs.

The data labeled PTV-95% represent the volume fraction of the

PTV receiving 0.95 � 78 Gy of radiation. The other labels are

formatted similarly, where the acronyms correspond to the

bladder (B) and rectum (R). The black scatter point represents

A B

C

Figure 6. Comparisons of DV criteria for gEUD plan. DV indicates dose–volume; gEUD, generalized equivalent uniform dose. A, Dose

comparison of PTV-95% for gEUD plan; (B) DVH comparison of Bladder for gEUD plan(“*”:B-65Gy,“e”: B-70Gy,“o”: B-75Gy); (C) DVH

comparison of Rectum for gEUD plan(“*”:R-60Gy,“e”: R-65Gy,“o”: R-75Gy).
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the result of the automatic plan, and the grey scatter point

represents the result of the manual plan. The comparative

results demonstrate that the automatic method can generated

clinically acceptable plans in terms of PTV coverage and

OARs sparing. Moreover, the comparisons in Figures 5–7 indi-

cate that the quality of the automatic plan is better than that of

manual plan considering DV constraints. For example, the

automatic DV plan for patient 5 in Figure 5 yields better PTV

coverage and better trade-off between bladder-sparing and

rectum-sparing compared to manual DV plan. The same con-

clusion can be applied to the other plan comparison for all

testing cases.

Figure 8A-C present the comparative DVHs between the

automatic plans and the manual plans based on DV model,

gEUD model, and NTCP model for patient 1. The red

curves present the automatic plan, and the blue curves pres-

ent the manual plan. The acronyms “A” and “M” correspond

to the automatic method and the manual method. The com-

parison of DVHs demonstrates that our proposed automatic

method can result in better trade-off between PTV coverage

and OARs sparing.

For HN cases, the same comparisons were performed.

Figure 9 compares the average DVHs for the automatic DV

plan and the DV manual plan. It clearly shows improvement

for all OARs. Similarly, comparisons corresponding to DVH

criteria for the PTVs and OARs were also performed. The

comparative results indicate that the automatic plans are better

than that of manual plan in terms of OARs protection.

A B

C

Figure 7. Comparisons of DV criteria for NTCP plan. DV indicates dose–volume; NTCP, normal tissue complication probability. A, Dose

comparison of PTV-95% for NTCP plan; (B) DVH comparison of Bladder for NTCP plan(“*”:B-65Gy,“e”: B-70Gy,“o”: B-75Gy); (C) DVH

comparison of Rectum for NTCP plan(“*”:R-60Gy,“e”: R-65Gy,“o”: R-75Gy).
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To further prove the efficiency of our proposed automatic

method, we also considered spatial dose information. Consistent

with the comparison of the DVHs, the automatic plans retained

similar or better dose distributions compared to the manual plan.

Statistical Analysis of Experimental Results

To compare the results between the automatic plan and the

manual plan for all testing cases, the statistically analysis were

performed. There are no significant differences in CI and HI

that indicate the similar dose coverage to the PTVs between 2

kinds of plans. As shown in Figures 5–7, for 10 prostate cancer

cases, no significant difference was found between these DV

values for automatic plan and manual plan in 3 kinds of opti-

mization methods. For 3 cases with HN cancer, the Wilcoxon

test was performed for the difference dose bins of DVH in

Figure 9, significant differences were observed for the Dmean

to the cord and the brainstem.

Changes of Importance Factors

To illustrate the variances of the importance factors in auto-

matic method, taking gEUD-based optimization as an example

for patient 6 with prostate cancer, Figure 10 shows the var-

iances with respect to iterations. In the optimization of all other

cases, the weight changes were similar.

Influence of Initial Importance Factors

The proposed algorithm is intended to be automatic optimiza-

tion for importance factors, so we would not like to have the

planner initializing the importance factors by trial and error. In

our experiments, we used uniform initial importance factors.
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For example, the uniform initial weights (1/4, 1/4, 1/4, 1/4)

were used in gEUD-based optimization. We then tested the

stability performance of the automatic method using different

sets of initial importance factors generated randomly and found

that different initial importance factors will only have as a

consequence a decrease or an increase in the total computation

time and not in the quality of the final plan.

Influence of Prescribed Value

A series of experiments showed that whether the compensation

step was needed correlated to the prescribed value. The value

of the compensation coefficient k was different when optimiza-

tion was guided by different prescribed values for the same

case. This contributed to the fact that different prescribed

values led to different penalties. We found that for the testing

cases, the choice of prescription value only resulted in different

values of k and not in the quality of the optimized treatment

plan. Still, it should be pointed out that if the prescription

values cannot result in acceptable plan within limited itera-

tions, physicians manually adjust them according to their expe-

rience, and then repeat the automatic method.

Discussions and Conclusions

In this article, we proposed a prescription value-based auto-

matic importance factor optimization algorithm that avoids

tedious manual trial-and-error schemes of the traditional man-

ual method. Furthermore, this advantage becomes more and

more apparent with increase in the number of subobjective

functions. It should be pointed out that our proposed prescrip-

tion value-based penalties strategies shown in Table 1 are novel

and the compensation coefficient introduced in our algorithm

can improve the flexibility of the new automatic method. More-

over, different initial importance factors have minimal impact

on the plan quality. In our experiments, for different prostate

cases and HN cases, it takes 3 to 7 minutes or 5 to 11 minutes to

produce an acceptable plan applying our proposed automatic

optimization method of importance factors, while for manual

trial-and-error method, it needs experienced physicians to take

1 to 3 hours to obtained an acceptable plan. The substantial

reduction in human intervention will greatly improve the effi-

ciency of radiotherapy. The automatic optimization of impor-

tance factors runs without any interaction, leaving the

dosimetrists free for other tasks, and minimizes the time spent

on the whole process. The complexity of the patient anatomy,

the number of loops executed by the algorithm, and the amount

of importance factors put on the cost functions will also influ-

ence the calculation time.

It should be pointed out that our main purpose is to describe

a new and simple method of adjusting importance factors in an

automatic way based on prescription value, not for dose com-

parison with other existing methods because of their intrinsic

differences, while in the near future, we will actively carry out

the corresponding comparative work to further prove the effi-

ciency of our proposed method. Moreover, different from the

other automatic method, our proposed method can be applied

not only to dose-based optimization, but also to other optimiza-

tion models, such as NTCP-based or TCP-based optimization.

In other automatic optimization methods, dose-based models

were only used.

There persist challenges and room for improvement in this

vein. First, the manner in which we adjust the compensation

coefficient k, mentioned in Optimization Technique section,

remains heuristic, due to the uncertain relationship between

DVH curves and importance factors. This relationship needs

to be further investigated for an efficient way to adjust k.

Second, while the prostate and HN are partial tumor sites,

there is potential for expanding this automatic technique to

other tumor sites. Finally, we only study the automatic opti-

mization of weighting factors of the FMO omitting the
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segmentation of beamlet intensity. In future study, we need to

include automatic segmentation of beamlet intensity into the

automatic optimization process while keeping the quality of

the fluence-optimized dose distribution during segmentation

to achieve the real fully automatic optimization. Nevertheless,

the proposed method does find importance factors using a

reasonably simple method, which was shown in this article.

The automatic treatment plan can serve as a reference plan

and starting point for the specific treatment and, at least,

ensure a certain minimum quality.

Finally, the proposed automatic method can not only be

used in inverse treatment planning in IMRT, but can also auto-

matically generate volumetric modulated arc therapy plans.

Related work is in progress.
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