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Understanding the origin of the main physiological processes involved in consciousness
is a major challenge of contemporary neuroscience, with crucial implications for the
study of Disorders of Consciousness (DOC). The difficulties in achieving this task include
the considerable quantity of experimental data in this field, along with the non-intuitive,
nonlinear nature of neuronal dynamics. One possibility of integrating the main results
from the experimental literature into a cohesive framework, while accounting for nonlinear
brain dynamics, is the use of physiologically-inspired computational models. In this study,
we present a physiologically-grounded computational model, attempting to account for
the main micro-circuits identified in the human cortex, while including the specificities of
each neuronal type. More specifically, the model accounts for thalamo-cortical (vertical)
regulation of cortico-cortical (horizontal) connectivity, which is a central mechanism
for brain information integration and processing. The distinct neuronal assemblies
communicate through feedforward and feedback excitatory and inhibitory synaptic
connections implemented in a template brain accounting for long-range connectome.
The EEG generated by this physiologically-based simulated brain is validated through
comparison with brain rhythms recorded in humans in two states of consciousness
(wakefulness, sleep). Using the model, it is possible to reproduce the local disynaptic
disinhibition of basket cells (fast GABAergic inhibition) and glutamatergic pyramidal
neurons through long-range activation of vasoactive intestinal-peptide (VIP) interneurons
that induced inhibition of somatostatin positive (SST) interneurons. The model (COALIA)
predicts that the strength and dynamics of the thalamic output on the cortex control
the local and long-range cortical processing of information. Furthermore, the model
reproduces and explains clinical results regarding the complexity of transcranial magnetic
stimulation TMS-evoked EEG responses in DOC patients and healthy volunteers,
through a modulation of thalamo-cortical connectivity that governs the level of cortico-
cortical communication. This new model provides a quantitative framework to accelerate
the study of the physiological mechanisms involved in the emergence, maintenance and
disruption (sleep, anesthesia, DOC) of consciousness.

Keywords: computational modeling, brain connectivity, feedforward inhibition, GABA, disinhibition, TMS-EEG,
disorders of consciousness (DOC)
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INTRODUCTION

The characterization and understanding of the mechanisms
underlying consciousness is one, if not the greatest challenge
that contemporary neuroscience is facing. Beyond the purely
fundamental interest of this question, a major clinical issue
is also at stake: evaluating residual consciousness in patients
suffering from Disorders of Consciousness (DOC), which can
be extremely difficult, and have crucial implications in terms of
clinical care. For example, motor imagery paradigms can reveal
covert consciousness in coma patients, using functional magnetic
resonance imaging (fMRI; Owen et al., 2006) for instance. This
illustrates the pressing need for an improved characterization
of the mechanisms that underlie consciousness, which could
be exploited to propose novel quantified measures, or metrics,
of consciousness.

Many theories have attempted, at various levels of description,
to integrate the multifaceted aspects of consciousness. One
of the first theories that found a significant echo in the
neuroscience community is the Dynamic Core Hypothesis
(DCH; Tononi and Edelman, 1998), which was the first to
relate the concept of information with consciousness. In this
theory, functional clusters in the thalamocortical system are
central, and involve fast re-entrant interactions, as well as a high
level of integration and differentiation giving rise to complex
patterns of neuronal activity. Another popular theory that has
been gradually expanded over the years, and that has solid
ties with neurophysiology, is the Global Workspace Theory
(GWT; Dehaene et al., 1998; Dehaene and Changeux, 2011).
In short, GWT states that conscious information is globally
available within the brain, and that the ‘‘ignition’’ of large-scale
networks, i.e., the sudden communication between distant brain
regions to engage into the processing of information, enables
a stimulus to reach the global workspace, hence consciousness.
Ignition is thought to involve long-range glutamatergic fibers
that enable long-distance communication between cortical
regions. Several experiments have supported GWT, for example
that non-masked words involve the activation of much wider
networks as compared to masked words (Dehaene et al.,
2001), with a similar result found for sub-liminal vs. supra-
threshold visual stimuli (Modolo et al., 2018; van Vugt
et al., 2018). The Integrated Information Theory (IIT) is
based on a different approach. Instead of beginning from
the large-scale structure of the thalamo-cortical system as
in the DCH and GWT, IIT introduces several axioms to
derive general principles of consciousness. One of the leading
ideas of IIT is that consciousness involves the integration
of information between distant areas (reminiscent of ignition
in GWT), which increases the complexity of the processed
information. Segregation, or differentiation of information, is
also key in IIT: for example, large-scale synchronization of
several regions with the same activity is indeed integrated,
however with low complexity (Koch et al., 2016). Therefore,
integration and differentiation appear as the two concepts
leading to increasing the complexity of the information
conveyed by brain-scale networks. A more recent theory
named algorithmic information theory of consciousness a.k.a.

Kolmogorov Theory (KT; Ruffini, 2017) is also based on the
idea that conscious states are associated with higher levels of
complexity, and that subjective experience occurs following
processes of information compression.

In contrast with the aforementioned theoretical studies
of consciousness, only few studies have actually attempted
to simulate brain activity associated with consciousness
states using neurophysiologically-plausible computational
models. Obviously, the in silico implementation of neural
mechanisms that underlie the emergence and maintenance of
consciousness represents a considerable challenge. However,
capturing the main features of the most significant common
principles from the main theories of consciousness using a
computational neuroscience framework appears at reach. For
example, a computational model exploring how cortico-cortical
connectivity is functionally impaired during sleep (‘‘connectivity
breakdown’’) has been proposed (Esser et al., 2009). However,
most of these models are limited in terms of spatial scale and the
represented micro-circuitry. This limitation hinders bridging the
micro-circuit scale with the brain-scale, which is of interest in
consciousness. The present study proposes to fill this gap, and
provides new links between different levels of description (from
local neuronal population to whole-brain scale).

Using a bottom-up approach, we developed COALIA, a
new computational model of brain-scale electrophysiological
activity. This is neither the intention nor objective of the present
article to investigate the philosophical question of ‘‘qualia’’
that represents the perception properties. Instead, the model
name ‘‘COALIA’’ has been chosen to ground this brain-scale
computational model in the field of consciousness research. The
model starts from neuronal micro-circuits involving different
cellular subtypes that have been reliably identified through
neurobiological studies. The basic unit of the model is the neural
mass, representing a local population of a few thousands of
neurons, which has proven its ability to capture the dynamics
of actual neuronal assemblies (Wendling et al., 2002). At the
local level, the model includes subsets of pyramidal neurons
(glutamatergic), and three different types of interneurons
(GABAergic) with appropriate physiologically-based kinetics
(fast vs. slow). At the global level, the large-scale model is
then constructed on the basis of a standard 66-region brain
atlas (Desikan et al., 2006), with one neural mass representing
the local field activity of one atlas region. Neural masses
are spatially distributed over the cortex, using the template
brain morphology (Colin). As they account for distinct cortical
regions, neural masses are synaptically connected through
long-range glutamatergic projections among pyramidal neurons
and GABAergic interneurons, Connectivity is derived from DTI
(Diffusion Tensor Imaging) data. Results show that the model
captures the large-scale structure of brain connectivity between
regions while accounting for the properties of local micro-
circuits. It can accurately reproduce EEG activity for different
conscious states (e.g., sleep vs. wake), and the breakdown of
functional connectivity during sleep as assessed through the
replication of TMS-EEG experiments.

In this article, we first describe basic concepts of cortico-
cortical and thalamo-cortical networks involved in theories of
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consciousness. Then, we present the neural mass modeling
approach used to develop the brain-scale model, along with the
various microcircuits considered and their functional role. A
toy model involving a limited number of neuronal populations
is then investigated in order to validate the implemented
micro-circuits, before an extension to the whole-brain model.
Simulated responses to TMS are generated and quantified in
two consciousness states, namely awake and asleep. Results are
discussed according to the novelty, performance and limitations
of the model, along with its usefulness in consciousness studies.
Future extensions are described.

BACKGROUND: ROLE OF CORTICO- AND
THALAMO-CORTICAL NETWORKS IN
CONSCIOUSNESS

Consciousness is a global functional state of the brain that
is intrinsically linked with neuronal oscillations generated by
large-scale cortico-cortical and thalamo-cortical networks (Llinás
et al., 1998). More specifically, wakefulness is determined by
widespread thalamocortical projections (Timofeev and Steriade,
1996; Laureys, 2004) while awareness requires the activation of
a wide cortico-cortical network, involving lateral and medial
frontal regions parieto-temporal and posterior parietal areas,
bilaterally (Laureys et al., 1999). In the model, we included
these two key components of consciousness that are briefly
reviewed below.

“Horizontal” Cortico-Cortical Connectivity
Functional connectivity studies have shed light on the functional
networks involved in various conscious states (Jin and Chung,
2012). During general anesthesia-induced loss of consciousness,
there is a breakdown in cortical effective connectivity (Ferrarelli
et al., 2010; Hudetz, 2012; Gómez et al., 2013). As a reminder,
effective connectivity is defined as the ability of a neuronal group
to causally affect the firing of other neuronal groups (Friston,
2011). In unresponsive patients, impaired consciousness was
associated with altered effective connectivity (Varotto et al.,
2014; Crone et al., 2015). A protocol of TMS triggered a
simple local EEG response indicating a breakdown of effective
connectivity at the cortical level, similar to the one previously
observed in unconscious sleeping or anesthetized subjects
(Casali et al., 2013). Sleep stages have a drastic impact on
consciousness and also on functional connectivity. For example,
there is a strong reduction of both wakefulness and awareness
components of consciousness during NREM sleep, associated
with thalamic up-and-down state and cortical slow wave
sleep (SWS). However, brain effective connectivity changes
significantly (Tononi and Sporns, 2003; Esser et al., 2009).
More specifically, cortical activations become more local and
stereotypical upon falling into NREM sleep, which indicates an
impaired effective cortical connectivity (Massimini et al., 2010).
‘‘Horizontal’’ communication through coherence that involves
high frequency oscillations synchronization is a fundamental
mechanism in cortical function and perception (Fries, 2005,
2009). Overall, the ‘‘awareness’’ component of consciousness
depends on large-scale synchronized communication among

distant neuronal populations distributed over the neocortex (see
Figure 1A, left panel).

“Vertical” Thalamo-Cortical Connectivity
As reported in IIT (Tononi, 2004, 2012), consciousness depends
on the brain’s ability to integrate information, which relies
on the effective connectivity among functionally specialized
regions (or clusters) of the thalamocortical system, and on the
segregation of information. One important modulator of cortical
connectivity is the activity pattern of thalamocortical cells, tonic
vs. up- and down, which is able to modify the excitability
level of cortical neuron subpopulations. The thalamic-mediated
synchronization of distant cortical areas may coordinate the
large-scale integration of information across multiple cortical
circuits, consequently influencing the level of arousal and
consciousness (Saalmann, 2014). Conversely, during sleep or
anesthesia-induced transitions in consciousness, both thalamo-
cortical and intra-thalamic functional connectivity are modified
(Kim et al., 2012; Hale et al., 2016). In addition, thalamic
input to neocortex modifies cortico-cortical connectivity. Upon
falling into NREM sleep (when rhythmic thalamo-cortical
up-and-down activity develops), cortical activations become
more local and stereotypical, indicating a significant decrease
of cortico-cortical connectivity (Esser et al., 2009; Massimini
et al., 2010; Usami et al., 2015). Recently, it was shown that
direct and tonic optogenetic activation of thalamic reticular
nuclei (TRN) GABAergic interneurons induces a spatially
restricted cortical slow-wave activity (Lewis et al., 2015).
This activity was reminiscent of sleep rhythms, and animals
exhibited behavioral changes that were consistent with a decrease
of arousal.

Overall, this brief literature review suggests that both
components of consciousness, namely awareness and
wakefulness, are impaired when large-scale cortico-cortical
functional connectivity mediated through the binding of
synchronized high-frequency oscillations in the beta-gamma
band (Schoenberg et al., 2018) and regulated through the
thalamus (Nakajima and Halassa, 2017). Meanwhile, during this
decrease of awareness and wakefulness, an increase of ‘‘vertical’’
thalamo-cortical connectivity is observed, along with a stronger
synchronization of delta oscillations between thalamic cell (TC)
assemblies and isolated groups of neocortical neurons (Hill and
Tononi, 2005; Figure 1A, right panel).

MATERIALS AND METHODS

Modeling of Micro- and Macro-Circuits:
Neural Mass Model Approach
Neural mass models (NMMs) are a mathematical description
of neural dynamics at a mesoscopic scale (from a millimeter
to several centimeters of the cortex). This class of models
was proposed in the 1970s as an alternative to detailed
microscopic models that require a more extensive computational
cost (Wilson and Cowan, 1973; Nunez, 1974; Lopes da Silva
et al., 1976; Freeman, 1978). NMMs can indeed model the
local field potential (LFP) of an entire cortical region using
only few state variables (Breakspear, 2017), whereas in detailed
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FIGURE 1 | (A) Illustration of “horizontal” and “vertical” connectivity. Left: Horizontal connectivity refers to the cortico-cortical connections which are functionally
effective during wakefulness, with a weak level of thalamo-cortical coupling. Right: Vertical connectivity refers to thalamo-cortical projections that functionally impair
cortico-cortical connectivity during sleep. (B) General architecture of the micro- and macro-circuits implemented in the computational model. The local neural mass
model (NMM) of cortical activity is composed of a PC exciting two GABAergic interneurons, namely, the somatic-projecting BC and the dendritic-projecting SST,
responsible for the generation of fast and slow oscillations, respectively; the VIP were introduced as they play a crucial role in cortical column communication through
disinhibition of SST. The subcortical module consisted in TC sending excitatory glutamatergic projections to the TRN block composed of fast and slow GABAergic
interneurons TRN1 and TRN2, respectively. VIP, vasoactive intestinal peptide positive GABAergic interneurons; SST, Somatostatin-positive GABAergic interneurons;
BC, Basket-type GABAergic interneurons; PC, Glutamatergic Pyramidal Cells.

models this activity is meticulously described at the level
of spatially distributed and interconnected neuron models,
each including the properties of ionic channels, axons and
dendrites (Wang and Buzsáki, 1996; Whittington et al., 2000;
Maex and De Schutter, 2007).

Despite their simplicity, NMMs are neurophysiologically
grounded, since they include the connectivity, synaptic kinetics

and firing rates of neuronal sub-types present in the region
of interest. The reduced complexity and performance (in term
of reproducing actual LFPs) of the NMM approach made it
a powerful tool to investigate various cerebral mechanisms,
such as the generation of brain rhythms (Jansen and Rit,
1995; David and Friston, 2003; Ursino et al., 2010). NMMs
have also been extensively used to study pathological dynamics
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such as in epilepsy (Wendling et al., 2002; Traub et al., 2005;
Molaee-Ardekani et al., 2010; for a review, see Wendling et al.,
2016), Alzheimer’s disease (AD; Bhattacharya et al., 2011) and
Parkinson’s disease (PD; Liu et al., 2016, 2017).

Designing a NMM involves identifying the main subsets of
neurons implied in the modeled brain tissue and describing
their synaptic interconnections. Based on an exhaustive literature
review, we developed a model consisting of coupled NMMs
able to simulate both cortical and thalamic activity, as
described hereafter.

A Local Neural Mass Model of Neocortical
Activity
Until recently, the classification of GABAergic interneurons
was a highly challenging task, regarding the electrophysiological
properties, morphology, biochemistry markers and connectivity.
However, all recent studies converge towards much simpler
functional categories, involving three main classes of GABAergic
interneurons in the neocortex (Rudy et al., 2011). As briefly
reviewed below, these classes account for: (1) somatic-targeting
parvalbumine positive (PV+) basket cells (BC); (2) dendritic-
targeting somatostatin positive (SST) interneurons; and
(3) vasoactive intestinal-peptide (VIP) expressing interneurons
(Tremblay et al., 2016; Figure 1B, left panel).

Basket Cells and Fast Oscillations
PV+ participate to the generation of cortical gamma oscillations
through: (1) thalamocortical feedforward inhibition in layer 4;
(2) feedback inhibition in layer 2/3; and (3) via direct PV+/PV+
coupling through electrical gap-junctions (Povysheva et al., 2008;
Buzsáki and Wang, 2012; Lewis et al., 2012; Varga et al., 2014;
Womelsdorf et al., 2014; Chen et al., 2017). Recent optogenetic
experiments have demonstrated the causal role of somatic-
targeting interneurons BC inmediating fast oscillations (>20 Hz;
Chen et al., 2017).

Surround Inhibition by SST GABAergic Interneurons
and Slow Oscillations
Neocortical SST neurons can exhibit high levels of spontaneous
slow oscillations, and their tonic activity might facilitate fine
scale up- and down-regulation of global inhibition levels in the
neocortex (Urban-Ciecko and Barth, 2016). Lateral inhibition
has been shown to be a fundamental principle in neuronal
networks (Harris and Mrsic-Flogel, 2013; Karnani et al., 2014;
Harris and Gordon, 2015). Specifically, lateral inhibition between
nearby pyramidal cells (PCs) is thought to work through SST
interneurons (Kapfer et al., 2007; Silberberg and Markram, 2007;
Adesnik et al., 2012). Dendritic inhibition is more effective
than perisomatic inhibition in regulating excitatory synaptic
integration, therefore SSTs are the key regulator of input-output
transformations (Lovett-Barron et al., 2012). Furthermore, the
slow kinetics of dendritic-targeting inhibitory postsynaptic
membrane potentials (IPSPs) are particularly suited to maximize
the localized shunting inhibition effect (Gidon and Segev, 2012;
Paulus and Rothwell, 2016). Finally, it was shown that this cell
type is especially involved in slow oscillations (Womelsdorf et al.,
2014; Urban-Ciecko and Barth, 2016; Funk et al., 2017).

Cortical Column Communication Through
VIP-Controlled Disinhibition
The disinhibition of cortical PCs gates information flow through
and between cortical columns (Walker et al., 2016). One of the
factors underlying this PC disinhibition is the inhibition of SST
cells during active cortical processing, which enhances distal
dendritic excitability (Gentet et al., 2012). The activation of VIP
neurons strongly inhibits dendritic-targeting SST interneurons
mediating surround inhibition, which leads to PCs disinhibition
(suppress the inhibition on PCs; Lee et al., 2013; Pi et al.,
2013; Fu et al., 2014; Pfeffer, 2014; Yang et al., 2016). This
disynaptic mechanism of disinhibition seems to be a generic
motif able to suppress the blanket of inhibition mediated by
SST neurons (Fino and Yuste, 2011; Karnani et al., 2014). It
has been demonstrated indeed in motor, sensory and associative
neocortical areas that transient SST activity suppression by VIP
activation occurs during visual processing (Lee and Mihalas,
2017), somatosensory integration (Lee et al., 2013; Sohn et al.,
2016), locomotion (Dipoppa et al., 2018), top-down modulation
(Ayzenshtat et al., 2016) and plasticity during perceptual
learning (Williams and Holtmaat, 2019). Since VIP neurons
are targeted by long-range cortical glutamatergic projections,
they represent a key factor for distal cortico-cortical activation
through disynaptic disinhibition.

Formal Description of Neocortical Model
Based on the above information, we have developed a
neocortical module involving PCs and three types of inhibitory
subpopulations, namely, BC, SST and VIP (see Figure 1B, left
panel). BC and SST receive excitatory inputs from PCs that
are reciprocally inhibited by both of them. Pyramidal collateral
excitation was also implemented via an excitatory feedback
loop passed by a supplementary excitatory population (PC’)
analogous to PC, except that it projects only from and to
subpopulation PC. The electrical gap-junction mentioned in
‘‘Basket Cells and Fast Oscillations’’ section was implemented
through an inhibitory feedback loop characterized by a
connectivity constant Cn

BC, where n is the index of the
NMM (e.g., n = 23th neural mass). Communication through
disinhibition mentioned in ‘‘Cortical Column Communication
Through VIP-Controlled Disinhibition’’ section was modeled
by inhibitory projections; first from VIP to SST, and second,
from the latter to BC. The nonspecific influence from
neighboring and distant populations was modeled by a
Gaussian input noise corresponding to an excitatory input
pnc (t) that globally describes the average density of afferent
action potentials. The set of ordinary differential equations
(ODEs) modeling the neocortical module is included as a
Supplementary Material (see Supplementary section ‘‘ODEs of
the Neocortical Module’’).

A Local Neural Mass Model of Thalamic Activity
The thalamus is considered as a complex relay extensively
connected with the cortex, as well as most subcortical
areas. This central position underlies its key role in several
cognitive functions including perception, attention, memory
and consciousness. Importantly, even a limited damage in
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the thalamus can have major consequences on all the
aforementioned functions (Ward, 2013). The thalamo-cortical
circuitry as a neural correlate of consciousness has been
mentioned by consciousness theories. More evidence for this
role was provided by a study analyzing the metabolic activity of
posterior midline cortical areas driven by the thalamic nuclei,
across different altered consciousness states (Laureys et al., 2006).
The authors reported that unresponsive wakefulness syndrome
(UWS) patients can be differentiated from minimally conscious
state (MCS) patients by a difference in glucose metabolism
in these areas. The pivotal role of thalamo-cortical loop in
the generation of slow waves and the up-and-down state was
appraised in the review of Crunelli et al. (2015) where they
enumerated the main lines of evidence supporting this assertion,
namely, the strong interconnection between thalamic cells (TCs)
and neocortical layers involved in slow waves suggesting that
thalamic nuclei can control up-and-down state dynamics in
neocortical circuits, the early TC firing in relation to the
initiation of cortical UP states, the rhythmic up-and-down state
generated by TC neurons and TRN in isolated conditions, and
the neocortical UP states readily induced in head-restrainedmice
by selective optogenetic activation of TC neurons proving the
stimuli role of the latter.

The importance of thalamo-cortical connectivity has
motivated the development of thalamo-cortical models
simulating the interactions between the cortex and thalamus
at a mesoscopic level (Suffczynski et al., 2004; Sotero et al.,
2007; Bhattacharya et al., 2011; Roberts and Robinson, 2012;
Mina et al., 2013; Sen Bhattacharya et al., 2013; Cona et al.,
2014). While some models were developed to generate alpha
activity (8–12 Hz; Sotero et al., 2007; Bhattacharya et al., 2011;
Sen Bhattacharya et al., 2013), others were used to simulate the
sleep-wake cycle (Suffczynski et al., 2004; Roberts and Robinson,
2012; Cona et al., 2014).

Since our aim is to develop a computational model
able to reproduce brain rhythms corresponding to different
consciousness states (e.g., sleep-wake cycle), the inclusion of
the thalamus in the model is crucial. A description of the
thalamus model is provided in the right panel of Figure 1B.
The thalamic module includes one population of excitatory
glutamatergic neurons TCs, and two inhibitory interneurons
from the TRN, TRN1 and TRN2 accounting for fast and slow
GABAergic IPSPs, respectively. TCs receive GABAergic IPSPs
with slow and fast kinetics from the TRNs, whereas the latter
receive excitatory inputs from the former. Similarly to the cortical
module, a Gaussian input noise corresponding to excitatory
input pnTh(t) was used to represent nonspecific inputs on TCs.
The set of ODEs modeling the thalamic module is provided as a
Supplementary Material (see Supplementary section ‘‘ODEs of
the Thalamic Module’’).

Modeling of Large-Scale Cortico-Cortical
and Thalamo-Cortical Connectivity
Cortico-Cortical Connections
PCs originating from a single cortical column target several
cell types in distant cortical columns. Glutamatergic PCs target

not only remote PCs by common feedforward excitation but
also GABAergic cells by disynaptic cortico-cortical feedforward
inhibition (FFI; see Figure 2). Even if PV+ BCs have been
shown to receive stronger thalamocortical and intracortical
excitatory inputs than SST neurons, it appears that cortico-
cortical FFI could be mediated by both types of interneurons (Ma
et al., 2010; Tremblay et al., 2016). Importantly, cortico-cortical
glutamatergic axons also target VIP neurons (Sohn et al., 2016).

Therefore, feedforward excitation was included in the model
by means of a connectivity constant K i,j

P,P modeling the
average strength of glutamatergic projections from pyramidal
subpopulations in NMM ‘‘i’’ to their counterpart in NMM ‘‘j.’’
Disynaptic cortico-cortical feedforward inhibition was similarly
integrated via the connectivity constants K i,j

P,BC, K
i,j
P,SST and K i,j

P,VIP
denoting glutamatergic projections from PC subpopulations in
NMM ‘‘i’’ to BC, SST and VIP in NMM ‘‘j,’’ respectively. The set
of ODEs modeling the cortico-cortical connections is included as
a Supplementary Material [see Supplementary section ‘‘ODEs
of Large Scale Cortico- and Thalamo-Cortical Connectivity,’’
equations (9)–(12)].

In long-range cortico-cortical connections, the time-delay
between NMMs ‘‘i’’ and ‘‘j’’ was controlled by a distance
parameter Di,j that reports the Cartesian distance in centimeters
(cm) between the two populations. By setting the conduction
velocity of action potentials in the brain to c [c ∈ (10,100) cm/s],
the time-delay taken by NMM ‘‘j’’ to receive a firing rate is
straightforwardly deduced as Di,j/c.

Thalamo-Cortical Connections
The main connections between the thalamus and neocortex
were taken into consideration in the model (see Figure 2). As
in classical thalamocortical models, TCs receive glutamatergic
excitatory postsynaptic potentials (EPSPs) fromPCs. In turn, PCs
receive excitatory input from TCs. Similarly, TRNs also receive
excitatory cortical projections. In terms of GABAergic cortical
targets, thalamic projections mainly target PV+ basket cells
(Cruikshank et al., 2007; Yang et al., 2013). In the adult brain,
thalamic projections onto SST neurons are present but are much
weaker as compared to the projections onto PCs and PV+ cells
(Ji et al., 2016). However, robust thalamocortical activation of
non-Martinotti dendritic-targeting GABAergic interneurons has
been demonstrated (Tan et al., 2008). Long-range connections
from cortical areas and/or thalamic nucleus areas can activate
VIP neurons, which in turn inhibit SST neurons, and disinhibit
PCs dendrites. Such dendritic disinhibitory circuit has been
proposed to gate excitatory inputs targeting pyramidal dendrites
(Yang et al., 2016; Williams and Holtmaat, 2019). Note that the
thalamic compartment implements FFI, since it induces first an
EPSP (PCs activation) followed later on by an IPSP (cortical
interneurons activation).

Since only one thalamic population was considered in this
model, the TC projections to—and from—PCs were included
in the model. Connectivity constants Kn

Th,P and Kn
P,Th, allow

to adjust the strength of efferent TC projections to PCs of
NMM ‘‘n’’ and efferent pyramidal projections from the NMM
‘‘n’’ to TC, respectively. Projections from PCs of NMM ‘‘n’’
onto TRN1 and TRN2 were also integrated and adjusted with

Frontiers in Systems Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 59

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Bensaid et al. Computational Model of Consciousness

FIGURE 2 | Large-scale architecture of the model. Illustration of the synaptic projections between cortical modules, and between thalamic and cortical modules.
Note the presence of long-range thalamocortical and cortico-cortical feedforward inhibition. For the sake of clarity, long-range connections between cortical NMMi

and NMMj are unidirectional, whereas in the model, PCs of NMMj also project on neurons of NMMi. The strength of the synaptic input of PC onto distant VIP cells is
larger than the input onto the other distant interneurons (SST, Basket).

the connectivity constants Kn
P,TRN1 and Kn

P,TRN2, respectively.
Likewise, projections from TC to GABAergic interneurons
in NMM ‘‘n,’’ namely BCs, SSTs and VIPs, were included
through the connectivity constants Kn

Th,BC, K
n
Th,SST and Kn

Th,VIP,
respectively. The set of ODEs modeling the thalamo-cortical
connections is described in Supplementary section ‘‘ODEs
of Large Scale Cortico- and Thalamo-Cortical Connectivity’’
[equations (13)–(19)]. It is noteworthy that time-delays between
the thalamus and the cortical NMMs were included as in the
cortico-cortical long-range connections.

Implementation and Parameter Tuning
An important step in NMM approaches consists in tuning
the model parameters. Some of these parameters, namely
time constants in the three modules, were set close to the
‘‘standard values’’ used in neuronal population models, while
other parameters such as connectivity constants were adjusted
according to the target EEG activities. Two classical well-known
examples of conscious and unconscious states are deep sleep-
a.k.a. SWS characterized by delta oscillations (0–4 Hz),
and wakefulness (background activity). The objective was to
reproduce these manifestations of consciousness modulation in
the model.

In Supplementary Table S1, we provide physiological
interpretation and values of model parameters. Regarding the
model output, the signal simulated at the level of PCs in the
cortical compartment was chosen as the model output since it
corresponds to the sum of PSPs, which is the main contribution
to LFPs recorded in the neocortex.

When several cortical NMMs are interconnected, a simple
way to handle large-scale connectivity is to arrange the
connectivity constants in arrays where line and column
indices refer to source and target NMMs, respectively. Based
on ‘‘Modeling of Large-Scale Cortico-Cortical and Thalamo-
Cortical Connectivity’’ section, there are two categories of
connectivity array, ‘‘excitatory to excitatory’’ and ‘‘excitatory
to inhibitory’’ arrays. In the first category, we consider the
matrix KEXC whose (i, j)th element represents the glutamatergic
projections from NMM ‘‘i’’ onto an excitatory subpopulation
in NMM ‘‘j.’’ Hence, if both of them belongs to the cortical
module, the (i, j)th element would correspond to K i,j

P,P. However,
if NMM ‘‘i’’ coincides with a thalamic population, the (i, j)th
element would be then equal to K j

Th,P. In the second category,
a similar scheme is considered with the difference that the target
subpopulation is always an inhibitory interneuron (BC, SST, VIP
or TRNs). Consequently, five arrays are considered, namely,KBC,
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KSST, KVIP, KTRN1 and KTRN2 (see Supplementary Figure S1).
Note that when only one thalamic NMM is considered, the two
last matrices are reduced to vector arrays. Cortico- and thalamo-
cortical time-delays were similarly arranged in matrix D whose
(i, j)th element coincides with the aforementioned Di,j.

The set of second order stochastic nonlinear ODEs obtained
for all synaptic interactions present in the model was numerically
solved using a fixed step (∆t = 1 ms) 4th-order Runge-Kutta
method. The model was implemented using an object-oriented
language (Objective-C).

To study the model behavior, we followed a two-step
approach. We first implemented a ‘‘toy model’’ with a small
number of coupled neural masses. This reduced-complexity
model allowed to assess the effects of cortico- and thalamo-
cortical connectivity matrices on cortical activities associated
with different consciousness states (see ‘‘A Local Neural Mass
Model of Neocortical Activity,’’ ‘‘A Local Neural Mass Model
of Thalamic Activity’’ and ‘‘Modeling of Large-Scale Cortico-
Cortical and Thalamo-Cortical Connectivity’’ sections). After
validation in the toy model, all mechanisms were implemented
in an extended, more realistic model, where the whole brain
was considered.

Toy Model of Cortical Activity
The toy model was composed of one thalamic population
connected to four cortical populations (N = 4) that were
identically tuned. The default values of NMMs intrinsic
parameters are listed in Supplementary Table S1. Unless
explicitly mentioned, these parameters were kept unchanged for
all neural activities generated afterward (SWS and background
activity). The objective was to verify, in a simplified model,
the hypothesis that cortical activity is modulated from deep
sleep to wakefulness by tuning only thalamo- and cortico-
cortical connectivity, so that, when thalamocortical connectivity
increases, the model goes deeper into sleep. This connectivity
mechanism was implemented in all connectivity matrices in the
model (see Supplementary Figure S2).

Whole Brain Model: From Cortical Activity to EEG
The pipeline used for the simulation of scalp EEG data is
described in Figure 3. In order to obtain a ‘‘realistic’’ activity
during wakefulness and SWS over the entire neocortex, we
considered one thalamic population and 66 cortical populations
(N + 1 = 67). Each time-course at the output of these
populations represented the activity of one macro-region of
the anatomical parcellation described in Desikan et al. (2006),
in which the activity was assumed to be homogenous. In
order to generate 67 time-courses from the coupled NMMs
(66 cortical regions plus the thalamus), we used a combination
of connectivity arrays (Figure 3B). First, a matrix of connection
weight KDTI representing a density of fibers between all pairs of
66 cortical regions was used to set the structural connectivity.
This matrix, obtained from DTI, is provided in Hagmann et al.
(2008). Second, we considered additional functional horizontal
(i.e., cortico-cortical) matrices KHx, reproducing the coefficients
weights used for both wakefulness and sleep in the toy model,
taking also into account the new number of populations. In order
to apply the connectivity weights defined earlier in the toy model

only to pairs of NMMs that are structurally connected. Structural
and horizontal functional matrices were combined using the
Hadamard product. Finally the vertical (i.e., thalamo-cortical)
connectivity KVx was added to this product to obtain a set of
anatomo-functional connectivity matrices Kx such that:

Kx = KDTI � KHx + KVx (1)

with x = {EXC,SST,BC,VIP,TRN1,TRN2}. All connectivity
matrices are described in Supplementary Figure S3.

Using this combination of connectivity weights, and specific
parameters defined in Supplementary Material for delta and
background activity, we built a spatio-temporal source matrix S
containing the time-varying activities of the thalamus and of all
cortical macro-regions.

To reconstruct simulated scalp EEG data, we first solved the
forward problem using the Boundary Element Method (BEM,
OpenMEEG, Gramfort et al., 2010). To this end, a realistic
head model was built in Brainstorm (Tadel et al., 2011) from
the segmentation of a template T1 magnetic resonance imaging
(MRI; Colin 27 template brain, Holmes et al., 1998) previously
obtained using the Freesurfer image analysis suite1 (Dale et al.,
1999; Fischl et al., 1999), as illustrated in Figure 3A. The head
model consisted in three nested homogeneous mesh surfaces
shaping the cortical surface (642 vertices), the skull (642 vertices)
and the scalp (1,082 vertices) with conductivity values of
0.33 Sm−1, 0.0082 Sm−1 and 0.33 Sm−1, respectively (Gonçalves
et al., 2003). The forward problem was then numerically
calculated for each vertex of the source mesh obtained from
the segmented white matter/gray matter interface of the same
template brain. As a result, the leadfield matrix A represented
the contribution of each dipole of the source mesh at the level
of 257 scalp electrode positions (high-density EEG), placed over
the scalp according to the geodesic convention (EGIr, Eugene,
USA). All leadfield vectors ofA belonging to a common region of
Desikan Atlas were added to obtain a simplified 66× 257 matrix
G. The spatio-temporal matrix X of simulated EEG data was
given by the matrix product:

X = GS (2)

The entire pipeline enabling the simulation of scalp
EEG is provided in Figure 3. Finally, as detailed in the
Supplementary Material, a total number of 1,060 ODE’s must
be solved to run the model. To give an idea of the required
computing time, 60 s of simulated EEG could be simulated in 49 s
on a 3.5 GHz 6-Core Intel Xeon EG with 64 GB of 1,866 MHz
RAM (OsX Mojave) and in 72 s on a standard Intel 2.5 GHz
2-Core Xeon EG with 8 GB RAM (Windows 10). Therefore, the
model performed almost real-time simulation on a standard PC.

Cortical Response to TMS and PCI
In order to simulate TMS-evoked EEG responses that can
be compared to those recorded experimentally (Casali et al.,
2013), we included the effect of an exogenous, TMS-induced,
stimulation in the whole-brain model. The model can simulate

1http://surfer.nmr.mgh.harvard.edu/
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FIGURE 3 | Full processing pipeline leading to the simulation of scalp EEGs. The pipeline to simulate EEG is a two-step process. (A) First, the forward problem is
solved at the level of 257 scalp electrodes from a dipole layer constrained to the surface of a cortical mesh (15,000 vertices) midway between the Gray/White matter
interface and the cortex surface. The boundary Element Method is used for the calculation within a realistic head model that accounts for the conductivity properties
and the geometry of brain, skull and scalp. This step provides a 257 × 15,000 leadfield matrix A representing the contribution of each individual cortical dipole at
each of the 257 scalp electrodes. In this matrix, leadfield vectors belonging to a common region of the Desikan Atlas are added to obtain a simplified 66 × 257 matrix
G. Second, the time courses S at the whole brain level are obtained in the mean-field model from a set of 66 cortical and one thalamic coupled NMMs. (B) Coupling
between these 67 NMMs is done using combination of connection weight matrices. Pairs of structurally connected cortical NMMs are first defined from a matrix of
connection weights representing a density of fibers between all pairs of 66 cortical regions of the Desikan Atlas. This matrix is provided in Hagmann et al. (2008).
Using an element-wise multiplication, this matrix is combined with a set of horizontal (i.e., cortico-cortical) functional connectivity matrices that reproduce the
coefficients weights used for wakefulness and sleep in the toy model. Vertical (i.e., thalamo-cortical) connectivity matrices are added to each of these products to
obtain connectivity weight matrices that account for anatomical connections as well as cortico-cortical and thalamo-cortical connectivity matrices. Cortico- and
thalamo-cortical time-delays were similarly organized in the form of matrices where the elements represent the Cartesian distance between cortical NMMs divided by
the mean velocity of traveling for action potentials. (C) The mean-field model includes explicitly the contribution of an external stimulus term that represents the effect
of TMS. At the output of the pipeline, scalp EEG signals at the level of 257 channels are obtained as the product of leadfield G and source time courses S.

not only the activity of the 67 pre-defined anatomical
regions but also the EEG signals recorded by 257 scalp
electrodes. Furthermore, since the model includes, as a
connectivity matrix between the 67 regions, a DTI-derived
connectivity matrix (Hagmann et al., 2008), it is possible
to track the spatio-temporal dynamics of the stimulation-
evoked network, i.e., the activated regions, along with the
peak latency for each region. In addition, since the model can
simulate ‘‘wake’’ and ‘‘sleep’’ states, it provides the opportunity
to compare TMS-evoked responses in these two states of
consciousness, which have been experimentally recorded in
humans. Therefore, the structure of our computational model
provides a unique framework to interpret TMS-evoked EEG
responses obtained in humans.

In principle, TMS involves a high-intensity current flowing
through the stimulation coil, thereby generating a magnetic
field penetrating without attenuation through the head. Since

the stimulation pulse is very short (≈0.1 ms), the magnetic
field gradient dB/dt is extremely high (>30,000 T/s), resulting
per Maxwell-Ampere’s law into an electric field at the level of
brain tissue. Since the electric field induced in brain tissue is
high (>V/m, Miranda et al., 2003), this induces neuronal firing,
presumably at the bending point of cortical axons, triggering
a series of complex activations within the stimulated area
(Di Lazzaro and Ziemann, 2013).

We used a simple approach to represent the effect of TMS,
consisting in simulating an afferent volley of action potentials
(in terms of pulses/s) to the stimulated cortical region. Since the
1 ms time step used to numerically solve the equations of the
model was higher than the duration of an actual TMS pulse, the
simulated length of this volley of incoming action potential was
adapted and fixed to 5ms. The amplitude of the simulated evoked
volley of action potentials was fixed to 1,000 pulses/s and was
applied to each cellular subtype of the stimulated region (i.e., PCs
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and all types of GABAergic interneurons). For the purpose of
this artilce, we chose to simulate the stimulation of the right
motor cortex in both conditions (‘‘wake’’ and ‘‘sleep’’), which is
known to have a number of anatomical connections that should
result in the propagation of the TMS-evoked responses in several
cortical structures. The repetition rate of the TMS protocol was
fixed to 2 s, and the total simulation duration was a full minute,
resulting in a total of 30 TMS-evoked responses available at the
source level. The EEG activity at the level of each scalp electrode
was then computed from the simulated source activity using our
EEG forward problem pipeline, as described previously. From the
simulated TMS-evoked responses, the studied outcomes were the
anatomical regions activated by TMS, and also their latency from
the onset of the TMS pulse.

Finally, simulated EEG responses were used to compute
the Perturbational Complexity Index (PCI; Casali et al., 2013).
PCI is a measure of TMS-evoked responses complexity, based
on the Lampel-Ziv compression algorithm. The basic idea is
that, if a sequence of information is complex, then it can be
only marginally compressed (low compression rate); and on
the opposite, a very simple sequence can be described by a
very limited amount of information (high compression rate). To
derive PCI, a process similar to the one proposed by Casali et al.
(2013) was used:

• The sources activity is stored in a 2D matrix (number of lines
equal to the number of channels, number of columns equal to
the number of time points).
• A threshold value for the simulated sources activity was set by
preserving the highest 20% (proportional threshold) of values
once fixing to 0 values below it.
• Each value of the sources activity matrix that is above or equal
to the threshold value is set to 1, while all other values are set
to 0 (binarization process).
• The Lempel-Ziv algorithm is then applied to the resulting
binary matrix.

PCI values were computed in the two different scenarios,
corresponding to the ‘‘wake’’ and ‘‘sleep’’ state, respectively.

Overall, our implementation of TMS-evoked responses
enables a meaningful comparison with human data, since it
results in similar experimentally measurable quantities: impacted
anatomical regions, latency of the TMS-evoked response within
specific regions, and complexity of the brain-scale response
through PCI.

RESULTS

Toy Model: The Impact of Cortico- and
Thalamo-Cortical Connectivity on the
Cortical Rhythms During Sleep and
Wakefulness
During the deep sleep state, the thalamocortical connectivity is
meant to be strong compared to the cortico-cortical one (see
Supplementary Figure S2, first column). Our strategy consisted
in progressively and simultaneously decreasing and increasing
the thalamo- and cortico-cortical connectivity, respectively, in

order to switch to wakefulness (see Supplementary Figure S2,
column 2). Note that this connectivity process was mostly
reflected by arraysKEXC andKBC, to simulate the strong thalamic
projections onto PCs and BCs as reported in ‘‘Introduction’’
section. It is also noteworthy that no time delays were injected
in the toy model example.

In Figure 4, we provide an example of simulated LFPs a.k.a.
intracerebral EEG (iEEG) in comparison with real (human)
ones. The left column depicts the scheme of high (and low)
thalamo- (and cortico-) cortical connectivity. As depicted, the
reinforcement of the thalamocortical loop (TC→PC→TRNs
and TC→BC) resulted in the generation of delta oscillations
that characterize SWS. In this example, the simulated delta was
around 2–3 Hz (slightly faster than real iEEG). Conversely, by
reducing the thalamocortical loop (right column), delta waves
disappeared and were replaced by background activity, indicative
of oscillatory changes observed during the switch from sleep
to wake. We emphasize that only the large scale connectivity
was tuned while all remaining parameters were kept unchanged,
confirming the crucial role of thalamo- and cortico-cortical
connectivity in modulating consciousness.

Whole Brain Model: The Impact of Cortico-
and Thalamo-Cortical Connectivity on
Scalp EEG Rhythms During Sleep and
Wakefulness
The morphology of simulated intracerebral signals was not
modified when connectivity matrices were adapted to a larger
number of NMMs in order to account for whole-brain activity.
In the case of low thalamo-cortical connectivity (wakefulness
condition), background activity was similar to signals obtained
in the toy model and resembled real intracerebral background
activity recorded during wakefulness in humans. Similarly, by
increasing thalamo-cortical connectivity, the whole-brain model
generated delta activity at a mean frequency of 3.8 Hz that
was consistent with the morphology and spectral content of
delta activity obtained both from the toy model and from real
intracerebral recordings during SWS.

Signals obtained with the whole-brain model in both
conditions of wakefulness and SWS were used in the forward
calculation to generate simulated scalp EEG data at the
level of 257 electrodes (Figure 5). In the low-thalamocortical
connectivity condition, simulated scalp EEG (Figure 5A)
resembled scalp EEG background activity as recorded in humans
during wakefulness (Figure 5C). The spectral analysis disclosed
similar sub-band distribution in the simulated vs. real case,
although simulated signals contained more beta frequency
than real background activity. In the high-thalamo-cortical
connectivity condition, simulated scalp EEG (Figure 5B) was
comparable to scalp EEG signals recorded in humans during
SWS (Figure 5D). In the simulation case, the peak frequency
was 3.8 Hz, thus slightly higher than in the real case (2 Hz).
Topographical voltage maps at the peak of delta waves showed
analogous distribution over the vertex, the activity in the
simulated case being slightly more posterior than on the real
case example.
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FIGURE 4 | Comparison of real and simulated intracerebral EEG (iEEG; toy model, N = 4). Left column: in the condition of high thalamo-cortical connectivity
(i.e., low cortico-cortical connectivity), signals generated by the mean-field model are characterized by delta waves (∼4 Hz). These simulated signals are similar
(although slightly faster) to delta waves recorded by iEEG during slow wave sleep (SWS) in non-epileptic cortical regions of one patient undergoing an invasive EEG
exploration. Right column: in the condition of low thalamo-cortical connectivity, signals generated by the mean-field model are similar to background activity recorded
by iEEG in real conditions during wakefulness. Note that these iEEG recordings are performed in patients who are candidates to epilepsy surgery. For the sake of this
study, only iEEG signals that do not show epileptic activity were retained.

Bridging Brain Circuits, TMS-Evoked EEG
Responses and Complexity Metrics
In Figure 6, we describe the process used to estimate the
complexity of TMS-evoked EEG responses within our brain-
scale model and in humans (Casali et al., 2013). As depicted,
the simulated TMS-evoked EEG response (Figure 6B) was very
similar to the human response (Figure 6A), not only in terms
of length (250 and 350 ms, respectively) but also in terms of
regions distant from the right motor cortex (the stimulated area)
that are activated post-stimulation. Indeed, in the simulated
and experimental data, a first activation of the right pre-central
gyrus occurred within 15 ms from the TMS pulse, followed by
activity evoked notably in the right precuneus within 40 ms
and a common propagation in the contralateral left precuneus
at about 60 ms from the stimulus. In both simulated and
experimental TMS-evoked responses, activity was evoked in the
right frontal lobe within 110–120 ms, with activation of the
right superior parietal cortex within 175 ms (human data) and
150 ms (model data). The most important difference is that the
human TMS-evoked response was notably longer as compared to
the model.

We then compared the simulated and experimental
TMS-evoked responses in wakefulness and in sleep, along with
their PCI value, which is presented in Figure 7. In the two cases,
the right motor area is stimulated. In the case of wakefulness, as
also illustrated in Figure 6, there was a satisfactory agreement
in the duration and global shape of the response, and also in
terms of the sequence of activated brain regions. More precisely,
by comparing Figure 7A (upper) and Figure 7B (upper),
we can conclude that the tracking of the propagation of the
TMS-evoked activity revealed that this propagation occurred,

as expected, along documented inter-regional connections from
the DTI-derived connectivity matrix used in the model. PCI
values obtained were also extremely similar (0.52 and 0.51 for the
model and for humans, respectively). Conversely, in the ‘‘Sleep’’
condition, the time course of the TMS-evoked response was
significantly shorter (less than 200 ms), which is also comparable
to TMS-EEG human recordings. In addition, another striking
similarity with human data is that the TMS-evoked activity
remained confined to the stimulated area, i.e., the right motor
area. The PCI value in this condition was 0.19, which is very
similar to the value obtained in humans during sleep (0.23, see
Figure 7A, lower panel), notably lower than the ‘‘Wakefulness’’
condition, which is also consistent with human data (Casali
et al., 2013). Therefore, despite using the exact same TMS pulse
characteristics within the two conditions (‘‘Wakefulness’’ and
‘‘Sleep’’), the simulated response was drastically different within
the model: in wakefulness, the TMS-evoked response resulted
in a complex sequence of successive activations within distant,
anatomically connected areas in ipsilateral and contralateral
regions; while during sleep the TMS-evoked activity remained
confined to the stimulation site, even when the anatomical
connections were present as in the ‘‘sleep’’ condition.

DISCUSSION AND PERSPECTIVE

In this article, we have developed the first brain-scale
computational model that can reproduce neuronal activity
patterns associated with various conscious states, while
accounting for key microcircuits at the cellular type scale.
A major asset of the model is its strong link with recent
neurophysiological and neuroanatomical data: the main cellular
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FIGURE 5 | Simulated vs. Real EEG during wakefulness and SWS. Signals simulated with the whole-brain model using weak thalamo-cortical connectivity
parameters (A) display background activity. The morphology and spectral content of these simulated signals are similar to scalp EEG recorded in a human subject
during wakefulness in humans (C), except for a higher power spectral density in the beta sub-band. Signals simulated with the whole-brain model using strong
thalamo-cortical connectivity parameters (B) display delta waves similar to the activity recorded in real condition during SWS in humans (D). The spectral content of
signals as well as the topographical voltage distribution at the peak of delta waves were similar in the simulated and real conditions.

types are included (PCs and different types of interneurons),
along with their recently elucidated connections that underlie
the selective disinhibition of distant neural populations (through

VIP to SST projections), realistic synaptic kinetics, large-scale
structural connectivity obtained in humans through DTI and
propagation delays between regions based on their spatial
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FIGURE 6 | Comparison of TMS-EEG evoked responses in silico and in humans. (A) Time course of a human TMS-EEG response (modified from Casali et al.,
2013) following stimulation of the motor cortex during wakefulness. Once that cortical sources have been computed from EEG recordings, a spatio-temporal matrix
of significant sources was built and the Lempel-Ziv compression algorithm was used to compute the complexity of the evoked response (Perturbational Complexity
Index, PCI). (B) Time course of a simulated TMS-EEG response using our brain-scale, following stimulation of the motor area in the wakefulness mode. Cortical
sources were reconstructed from the simulated EEG, and a similar procedure was used to compute PCI. A similar PCI value was obtained in the simulated and
experimental TMS-evoked EEG responses in the awake state.

distance. Furthermore, since the model features detailed micro-
circuits, DTI-derived brain connectivity matrix and large-scale
macro-circuits results also provided a bottom-up description of
TMS-evoked responses in humans.

The model offers novel, key insights into the maintenance
of the neuronal activity associated with conscious states.
Interestingly, this model including a variety of cellular
subtypes with accurate synaptic kinetics provides realistic
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FIGURE 7 | Comparison of TMS-evoked EEG responses in wakefulness and sleep. (A) TMS-evoked EEG responses obtained through TMS of the motor cortex in
humans (upper panel, during wakefulness; lower panel, during sleep) with associated PCI values. (B) TMS-evoked EEG responses obtained through simulated TMS
of the motor region (upper panel, in the wakefulness mode; lower panel, during the sleep mode) with associated PCI values.

electrophysiological signals both at the level of cortical sources
and of the EEG. First, it explains how thalamo-cortical (vertical)
connectivity is critically involved in the gating of cortico-cortical
(horizontal) information propagation. If thalamo-cortical
activity is indeed rhythmically patterned, the communication
between cortical areas is disrupted due to the resulting rhythmic
inhibition. This result is therefore in line with the ‘‘connectivity
breakdown’’ observed during sleep (Esser et al., 2009; Ferrarelli
et al., 2010; Casali et al., 2013).

Crucially, the various conscious states simulated with the
model can be tuned by modulating only the thalamo-cortical
input, which supports our hypothesis that this represents the
crucial control parameter for consciousness, i.e., the dimension
of wakefulness. It can be seen essentially as the possibility for
information processing to take place between spatially distant
cortical areas. Since the propagation of activity is impaired
at the cortical level during sleep (absence of wakefulness),
no cortical processing can take place, which explains the
absence of consciousness. Second, regarding cortico-cortical
activity (horizontal connectivity), since the model reproduces
with a satisfactory qualitative and quantitative agreement
the TMS-evoked EEG responses observed in awake humans
(Casali et al., 2013), this suggests that: (1) our modeling
hypotheses and choices appear sufficient to capture the essence
of TMS-EEG responses; (2) TMS-EEG responses are mainly
driven by the underlying structural connectome, which is in

line with recent research pointing at the tight links between
structural and functional connectivity (Avena-Koenigsberger
et al., 2017); and (3) this modeling approach could be
used to assist in the interpretation of TMS-evoked EEG
responses in DOC patients, since our model links explicitly
the underlying connectivity with the observed TMS-evoked
response. Finally, the model validates that, at the brain scale,
the disynaptic disinhibition of distant PCs through the activation
of VIP neurons is indeed an effective mechanism enabling the
transmission of activity between a few cortical regions. The
model therefore confirms the role of a cellular-scale micro-
circuit that regulates brain-scale propagation of activity within
the cortex.

Among the possibilities to improve the realism and predictive
power of our brain-scale model, the most immediate would
be the use of structural connectivity matrices averaged among
a large number of healthy participants, such as those from
the Human Connectome Project2. Furthermore, no regional
specificities were accounted for between the 66 cortical regions
included within the model, since we used standard parameter
values for the synaptic gains (e.g., A, B and G) and the
same within-population connectivity parameters. By doing so,
we have assumed that the large-scale anatomic structure of
brain connectivity and the cellular-scale micro-circuits included

2http://www.humanconnectomeproject.org
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are the main factors explaining the resulting simulated EEG
signals. Another limitation of COALIA under its current form
is the simplification of the physiological processes involved
in the transition from wakefulness to sleep. The brainstem
is indeed involved in the modulation of thalamic activity,
and the regulation of cortico-cortical connectivity (Crunelli
et al., 2015). In the model, the brainstem input onto the
thalamus is not explicitly included. Instead, the modulation of
thalamic inhibition between the sleep/wake mode was simulated
by changing the excitatory input onto the RT-interneurons
or TC cells.

It should be mentioned that in the case of deep sleep
simulated signals, the median frequency of delta activity was
higher in the model (2–3 Hz) as compared to human data
(∼1 Hz). This discrepancy is explained by the fact that model
does not implement themechanisms underlying slow oscillations
(∼1 Hz) generated in cortical and thalamic networks, among
which: (i) the sequence of depolarizing periods followed by
silent periods (up to 2 s) during up-and-down states as well as;
and (ii) GABAB-mediated pre-synaptic slow inhibition that also
appears to play some role (see review in Neske, 2015). Other
limitations likely explain the moderate discrepancies between
the simulated and experimental TMS-EEG responses in terms
of latencies and localizations, such as the lack of asymmetry
in connectivity weights (i.e., all connections were assumed
bidirectional and identical).

Let us emphasize that the results presented in the present
article are only a first step towards understanding the transition
between wake and sleep and that COALIA provides an
appropriate framework to achieve that objective. The future
prospects regarding our brain-scale EEGmodel are numerous: in
terms of consciousness studies, the model could be used to study
the mechanisms underlying the so-called ‘‘slow-wave activity
saturation,’’ delta-band activity that appears when the blood
concentration of anesthetics is increased (Ni Mhuircheartaigh
et al., 2013), and that constitutes a solid marker of the conscious
state. Furthermore, this study improves our understanding of
active probing paradigms of brain circuits in DOCs, such as
the PCI and paves the way toward the design of optimized

stimulation-based metrics to measure consciousness. The model
indeed allows to test in silico novel neuromodulation protocols
based on TMS, transcranial direct current stimulation (tDCS)
and transcranial alternating current stimulation (tACS), aiming
at quantifying the level of residual consciousness in DOC
patients. Beyond applications for consciousness, the model could
be exploited to understand the detailed dynamics of TMS-EEG
responses and their underlying mechanisms, or to shed light on
the mechanisms underlying the generation and propagation of
epileptiform activity.
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