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This chapter deals with the use of methods for measuring the refractive index of optical materials. It 

contains five sections: 

The first section recalls some bases of the electromagnetic theory of light leading to the main 

characteristics of the index of refraction, and their consequences in geometrical optics (Snell-Descartes 

laws), in the spectral transmission and absorption of optical media, or the polarization of light beams 

at interfaces between optical media. 

The second section describes the more or less classical panel of methods that have been devised to 

measure refractive indices of bulk materials: these are essentially based upon either the refraction or 

reflection of light inside prisms (minimum deviation angle, Littrow methods,…) polarizing properties of 

optical boundaries (ellipsometric, Brewster configurations). 

While the previous section consists of refractive index characterization at a given temperature, the 

third section is dedicated to the dependence of the refractive index upon the temperature: the 

normalized thermo-optic coefficient (NTOC) is defined here and an experimental set-up specially 

designed for this purpose by one of the authors is described in detail. 

The last section is concerned with the fact that most optical components are thin film coated in order 

to improve their performances, in transmission, reflection or absorption. Since spectrophotometry is 

extensively used to characterize these coatings, the operating principle of spectrophotometers is 

recalled, as well as the main parameters of these deposited films that one can expect to extract by 

using this technology from spectrophotometric measurements. Also various spectrophotometric 

procedures are described to determine the optical constants of optical “systems” (bulk and thin film 

compounds) in the case of homogeneous or inhomogeneous films, slightly absorbing or not. 
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Introduction 
 

The speed of light in vacuum, designated as c, is a physical constant for any type of electromagnetic 

radiation. For a monochromatic radiation of frequency ν, the wavelength λ0 is then given by the 

following relationship: 

 
0

v

c
   (1.1)  

When light travels through a transparent, homogeneous material, its frequency remains 

unchanged, but its speed of propagation is modified (reduced) from c to v , so that its wavelength 

becomes v /  . The ratio between these quantities is the absolute index of refraction n of the 

medium: 0/ v = /n c   . If two media, 1 and 2 have respective indices n1 and n2, the following 

ratio, 1,2 1 2 2 1 2 1/ v /v /n n n      is designated as the relative refractive index of the first medium 1 

with respect to the second one. 

Along with its wavelength, the other parameters of a light beam that are modified by the 

refractive index of the optical materials it encounters are its direction of propagation, split into b ot h  

reflected and refracted beams at the interface, the energy it carries (attenuation or absorption by 

the atoms of the medium), a n d  its state of polarization (direction of vibration). These effects are 

frequency dependent because they result from the mutual interaction between the incident 

electromagnetic field and the electrons of the medium under consideration. Frequency dependence, 

and its effect may be analyzed by means of the basic electromagnetic theory of light. 

Among the parameters influencing the refractive index of a medium, one will mention the number of 

atoms per unit volume, related to its density ρm, and its chemical structure, converted into specific 

refractivity R in the following H. A. Lorentz formula: 

    2 21 2 .     / mn n R     (1.2) 
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Figure 1.1: Abbe diagram of optical glasses (Schott catalog)[1] 

 

Hence gases have lowest values of refractive index (close to one), as compared to liquids (typically 

between 1.3 and 1.6) and solids (between 1.3 and 4).  

In most experimental set-ups, refractive indices of solids and liquids are not measured in vacuum but 

in the presence of ambient atmosphere. This consideration must be taken into account for specific 

applications (aeronautical, space or satellite optical systems), since the result from such measurements 

is the relative index of the medium with respect to that of air: 

 
relative absolute air/n n n  (1.3) 

In the visible, the refractive index of air is around 1.00029, so the relative difference between absolute 

and relative indices is about 3.10−4 

The specific refractivity R of a medium depends upon the frequency of the incoming light. This defines 

the dispersion of the medium, i.e. the change of the refractive index with respect to wavelength   

or (less generally) frequency  or wave-number 1/ & . 

In the visible domain (380 nm <   < 780 nm), glasses are generally specified by the value of their 

refractive index nd near the center of the domain ( = 587.6 nm at the d spectral line of He) and 

their dispersion by the Abbe number, defined as : 

  d F C     1 /              )  (  Abbe number n n n    (1.4) 
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  All optical glasses are classified in the Abbe diagram (figure 1.1), where (nF - nC) is the 

difference of indices between two Hydrogen spectral lines: F (in the blue, λ = 486 nm) and C (in the 

red:   = 656 nm). 

The influence of temperature upon the refractive index of a medium is characterized by its 

thermo-optic coefficient, dn/dT, i.e. the change of refractive index per degree Celsius. This particular 

point will be treated in Section 1.2. Pressure also plays a role on the refractive index of media, 

particularly in gases, for which the molecular density is proportional to the pressure. This also affects 

liquids to a lesser degree. As far as solids are concerned, large pressure stresses and strains may induce 

birefringence in the medium, i.e. different values of refractive index depending upon the state of 

polarization of the incoming light. 

Accuracy requirements: Because of its numerous influences upon the behavior of any medium with 

respect to incident light, an accurate evaluation of its refractive index is of prime importance in all 

areas of optics: optical design, imaging and non-imaging applications, optical telecommunications, 

laser optics, atmospheric and space optics, bio-photonics, thin film coatings. To give a few examples: 

• Optical telecommunications 

Optical telecommunications are based upon beam guiding by means of total reflection inside step 

index fibers or gradient index fibers that necessitate perfect refractive index monitoring. 

• Low attenuation coatings 

As optical systems become more and more complex and involve an increasing number of components, 

reflection phenomena at each interface must be reduced to minimal values. This is generally achieved by 

depositing thin films coatings with refractive indices known as accurately as possible. 

• Optical design 

In the simple case of a monochromatic system (at some wavelength ) made up of a thin lens, its focal 

length f is given by the well-known formula: 

  
1 2

1 1 1
1n

f r r

 
   

 
 (1.5), 

 
where r1 and  r2 are the radii of curvature of the front and back surfaces, respectively, and n the refractive 

index at that wavelength . Hence, for a monochromatic system, the uncertainty σn upon the value of 

the refractive index induces the following uncertainty f upon the focal length f: 

 
 1

f n

f n

 



 (1.6) 

In more complex optical systems, close to the diffraction limit, the uncertainties on the refractive 

indices of the various optical components over some spectral domain (visible, near IR, or thermal IR) 

must be low enough so as to maintain the root mean square ( rms)RMS) value of the optical path 

difference (OPD) induced by chromatic aberration onto the output wave-front. Quality criteria like 



 

8 
 

Maréchal’s or Strehl’s ones are generally required (typically: OPDrms < /10). Without getting 

into too much detail, one may show that this condition leads to the following constraint upon the 

needed accuracy of refractive index measurement, at each wavelength: 

   1       ( )   n averageK n    (1.7) 

Refractive index 
 

σn Visible 

average = 0.5µm 
σn Near IR 

λaverage = 1.5µm 
σn 3µm − 5µm 
λaverage = 4µm 

σn 8µm − 12µm 
λaverage = 10µm 

n = 1.5 1.10−6 3.10−6   
n = 2   2.10−5 5.10−5 

n = 4 (Ge)   6.10−5 1.5.10−4 
 

Table 1.1: Specifications on refractive index accuracy of bulk materials for high quality optical 

systems 

 

In equation (1.7), K is a coefficient taking into account the system complexity (number and thicknesses of 

refractive components), λaverage and n are the average values of wavelength and refractive index over 

the spectral domain. For high resolution systems representative of aeronautical and space applications, 

a value of K close to 5.10−6 µm−1 is appropriate if the average wavelength is expressed in µm units. 

Table 1.1 lists some orders of magnitude of the refractive index accuracy that is required by optical 

designers for high quality systems, with respect to average values of wavelengths and refractive indices. 

• Atmospheric corrections: 

For applications in which long distances of atmosphere are being traversed by light, tiny fluctuations of 

refractive index induced by local temperature changes produce phenomena such as turbulence. 

• Optical range-finding: 

High precision distance measurements, which are based upon time- of-flight range-finding techniques, 

are degraded by uncertainties on refractive index of the intermediate medium. This is the case for 

instance in astronomical experiments about the precise measurement of the distance between the Earth 

and the Moon. 

 

1.1 Main properties of the refractive index 
1.1.1 Propagation of light  
1.1.1.1 Maxwell equations in vacuum 
These equations set relationships between the electric and magnetic fields of a radiation propagating 

inside a medium. Written as follows in the SI international set of units, they are the starting point 

for evaluating the refractive index of the material: 
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.

 

. 0

 

t

t

 


  



 


  



D

B
E

B

D
H j

 (1.8a) 

with .
D D D

x y z

  
   

  
D  (1.8b) 

and the vector ( , , )
y yx xz z

E EE EE E

y z z x x y

   
    

     
E  (1.8c) 

where E is the electric f ield vector, D the electric displacement field, H the magnetic field, B 

the magnetic induction, ρ the free electric charge density and j the free current density. In the case 

of dielectric, homogeneous media such as a good quality glass, j = ρ = 0, and hence Maxwell’s 

equations reduce to: 

 

. 0

 

. 0

 

µ
t

t


 


  



 


 



E

H
E

H

E
H

 (1.9) 

 

where   and   are the dielectric permittivity and magnetic permeability, respectively. By taking the 

derivative of the last equation with respect to time, one obtains: 

 

2

2
 

   t t


 
 

 

H E
 (1.10) 

Then, by taking the curl of second equation, there comes: 

  
2

2t t
 

  
       

  

H E
E  (1.11) 

 

Noting that     2..  . A AA A        and taking into account the fact that . 0 E  we 

find: 

 

 

2

2 2

1
.

v  t


 



E
E  with v

1

µ
  (1.12) 
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This is the equation of propagation of the electric field E (the same result can be derived 

concerning the magnetic field) leading to the value of the speed of propagation of light and which is, 

in vacuum:  

8

0 0

1
3.10 /

µ
c m s


 , since 0   = 1/36 nF/m and µ0 = 4π.10−7 H/m. 

In a transparent medium other than vacuum, one gets: 

 0  r    and 0.rµ µ µ   (1.13) 

For dielectric materials such as glasses, µr ∼ 1, and hence there comes: 

 
v

r

c
n    (1.14), 

which corresponds in optics to the so-called refractive index n of the medium. 

1.1.1.2 Case of transparent and absorbing media 
 

 It is convenient to take the refractive index as a complex parameter, and going back to Maxwell’s equations 
(1.8), complex solutions in terms of plane waves (in z-direction), sinusoidally modulated with respect to time t 
with angular frequency ω are written in the form: 

( )

2
0( )

nzz i t
c

E z eE e
  

 
  

   (1.15), 

where the complex refractive index is set as n n i  (1.16); similarly, the complex absolute 

dielectric permittivity of the medium will be written as 2n i      (1.17). The solution (1.15) is 

referred to the simple case of a harmonic wave propagating along the z axis in an isotropic medium, E 

being perpendicular to H and both lying in a plane normal to the z direction.   stands for a phase at 

origin t = 0 and z = 0. The coefficient  characterizes the absorption of the electromagnetic wave at 

angular frequency  and is determined from spectroscopic measurements. 

Now, following Beer-Lambert’s law, the intensity I(z) of a beam after a propagation length z in an 

optical material is given by: 

0( ) zI z I e   (1.18) 

where I0 is the intensity of the incident light. Notice also that in terms of electric field attenuation, 

formula (1.18) corresponds to a field E(z): 

2
0( )

z

E z E e




  (1.19), 

since 
2

( ) ( )I z E z , E0 being a real. 

Hence, the basic equations that can be drawn for non-conductive and non-magnetic media are: 
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2 4

c

 



   (1.20) 

2 2n     ;       2n   (1.21) 

 

n is the real refractive index which obeys to the Snell-Descartes’s relationships, while   is the so-called 

extinction coefficient; both depend on the angular frequency . The complex dielectric function or 

relative dielectric permittivity r is written as 0 0/ ( ) /r i          (1.22). 

1.1.2 Chromatic dispersion of the refractive index 
1.1.2.1 Kramers-Kronig relationships 
 

One of the main ways useful to determine the real and imaginary parts of the complex refractive index 

is to perform spectroscopic measurements over the whole frequency range, that is from 0   to 

 . 

Kramers-Kronig (K-K) relations derive from the causality principle generally admitted in physics, which 

states that the response of a system submitted to a given excitation cannot exist before this excitation 

has taken place [2]. The system is supposed to be homogeneous, stable in time, and exhibiting a linear 

response. Basically, if ( )f t  represents the response in time domain, the causality principle states that 

we must have: 

( ) 0f t   0t   (1.23) 

One method for obtaining the K-K relations is to start by multiplying the ( )f t function by the Heaviside 

( )H t step one, which does not change anything to relation (1.23), and going then to the frequency 

domain by taking the Fourier transform ( )F of the product: 

1
( ) ( ). ( )

2

i tf t H t e dt






 F  (1.24) 

Detailed calculations following formula (1.24) can be found in ref [3, 4] for instance. It comes out that 

in terms of frequency dependence of the real and imaginary parts of the dielectric constant, the K-K 

relations may be expressed as: 

2 20

2 ( )
( ) 1 P d

  
  

  

   
  

   (1.25) 

2 20

2 ( ) 1
( ) P d

  
  

  

   
  

   (1.26), 

where P denotes the Cauchy principal value of the improper integrals of rational functions g( ) : 
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0 00
g( ) lim g( ) g( )P d d d

 

 
     

  



       
      (1.27) 

In practice, for bulk optical materials, the refractive index n and extinction coefficient  are deduced 

from the reflection spectra performed under (nearly) normal incidence. From Fresnel formula 

*
( ) ( )R r r  represents by definition the normal reflectance. The complex reflection coefficient 

 r  undergoes a phase change ( )  and is written as      i
r r e

 
 


  where  r   is the 

complex reflectivity modulus. As a result of K-K relations we have:  

2 20

2 ln ( )
( )

r
P d

  
  

  

 


  (1.28) 

The refractive index and extinction coefficient can finally be derived from spectroscopic measurement 

through the use of Fresnel formulae in normal incidence: 

2

2

1 ( )
( )

1 ( ) 2 ( )cos ( )

r
n

r r




   




 
 (1.29) 

2

2 ( )sin ( )
( )

1 ( ) 2 ( )cos ( )

r

r r

  
 

   


 
 (1.30) 

Thus, reflectance spectra allow calculating ( )r   and the phase change ( )  undergone by the 

reflected beam. This holds for the case of an optically polished flat front face of a bulk sample which is 

exposed to an impinging beam and set in a free space (nearly vacuum condition).  

From a technical point of view, care must be taken to avoid an eventual contribution of the rear face 

of the sample to the reflected intensity; this can be realized for instance by shaping the material in a 

slightly wedged form. The case of a double sided polished sample is examined in section 1.4.2.2 

 

1.1.2.2 Sellmeier’s formula 
 

This subsection is intended only to recall the basic equations that have led to the dispersion formula 

of refractive index, in view of using them further in Section 1.3.3 for a rigorous formulation of their 

temperature dependence. 

Maxwell equations (see §1.1.1) are the constitutive formula that describe at a macroscopic 

scale the response of a dielectric medium to an applied electric field E, whatever be the atomic 

structure of the material. Dealing with refractive index determination, the main parameter that is to 

be taken into account is the absolute complex permittivity   of the medium which is related to the 

polarization P induced by the field: 0 ( 1)r  P E  (1.31). 

From a microscopic analysis, the Lorentz’s model introduces the mean molecular polarizability 

p    and assumes to first order that the polarization P at a mesoscopic scale is the summation of the 
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mean polarizability of each molecule forming the material over the unit volume of matter. For weak 

fields, to a first approximation, the polarization P induced by a field E is supposed to be linear, 

described by the simplest form 0 P E  (1.32) where   is defined here as the complex dielectric 

susceptibility of the material, related to the above mentioned permittivity by the straightforward 

relationship 1 r   (1.33). 

Speaking now in terms of mean molecular polarizability p , it was shown on another hand that 

the effective field E’ acting on a molecule (Lorentz’s local field) is given by 
0

3
 

P
E' E  (1.34), larger 

than the average electric field E in the dielectric [5]. From these considerations, the mean molecular 

polarizability P  was related to the dielectric constant  (or the square of the refractive index n in 

Maxwell theory) through the so-called Lorentz-Lorenz formula: 

2

2

0 03 31 1

2 2
p

n

N N n

 




  
 

 
 (1.35) 

where N is the number of molecules per unit volume. The corresponding total electric moment P is 

PN N P p E '  (1.36) where p is the molecular elementary electric moment.  

For interaction of light with matter, we have to account for the frequency dependence of the response 

to an applied harmonic field E of angular frequency . A molecule which consists of heavy nuclei 

surrounded by light particles (electrons) will undergo a local electric field E’, as mentioned above. 

Assuming no motion of the nuclei, E’ will generate a harmonic motion of the electrons, bonded to the 

nuclei through a restoring force of amplitude F1 proportional to the displacements x from their 

equilibrium position (Hooke’s law): 

1 fF k x   (1.37) 

where kf       is the restoring constant. 

Considering for example one electron, this one will be submitted also to the Lorentz’s force F2 

proportional to its electric charge e and the local field E’: 

2F eE  (1.38) 

 

If me is m the mass of the electron and neglecting the existence of a damping term (resisting force), 

due to energy dissipation and some kind of friction between atoms, the equation of motion will take 

the simplest form:  

2

2e f

x
m k x eE

t


 


 (1.39) 
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For a harmonic field of the form 
0

i tE E e    (1.40) and looking to a solution 0

i tx x e   (1.41), we 

get: 

 2 2

0e

eE
x

m  





 (1.42) 

where 0

f

e

k

m
   (1.43) is the resonance angular frequency of the un-driven electron.  

The elementary moment .p e x  is to be extended up to the scale of the unit volume, and summing 

these contributions gives the total polarization 
 

2

2 2

0

.
e

e E
P Ne x N

m  


 


 (1.44). 

Combining equations (1.35), (1.42) and (1.44) will give the variation of the refractive index n with 

angular frequency , that is chromatic dispersion, described by: 

 

2 2

0

2 2 2

0

1

2 3 e

n Ne

n m  




 
 (1.45) 

Of course, at the scale of a unit volume of matter, one may presume the occurrence of many resonance 

frequencies similar to the simplest case described above, so that formula (1.45) should reasonably be 

read as:  

 

2

2
0

2

2 2

1

2 3 e

i

i i

fn e

m

N

n   




 
  (1.46) 

 

where i
Nf  is the number of electrons oscillating at resonance angular frequency i . 

From formula (1.46) it was shown [5] that the frequency dependence of the refractive index n is 

described through the so-called Sellmeier’s dispersion formula: 

2

2 2
1 i

i i

n


 
 


  (1.47) 

where we set 
2

03

i
i

e

Nf e

m



  (1.48) 

 

In the above description, only electrons were considered, assuming that they easily move with respect 

to applied field because of the low value of their mass me; formula (1.47) was proven quite satisfying 

in the case of gases and particularly at short wavelengths. However, going towards infrared 

wavelengths we have to take into account the motion of nuclei, and formula (1.47) must also include 
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resonance frequencies specific to lattice vibrations of optical materials [6]. Thus two sets of terms 

appear generally in the Sellmeier’s dispersion formula used to predict the value of the refractive index 

of a compound over its spectral region of transparency. High values of i account for the UV cut-off, 

while lower ones account for the infrared edge beyond which the compound becomes opaque. In most 

cases two poles added to a constant term are quite sufficient for describing accurately the chromatic 

dispersion.  

 

1.1.3  Reflection and refraction by transparent media 
 

Snell-Descartes relationships 

Let us consider a monochromatic, plane polarized wave of modulus E0 that is incident upon the 

boundary separating two transparent media, 1 and 2, inside which speeds of propagation are 

respectively v1 and v2 and corresponding refractive indices n1 = c/v1 and n2 = c/v2. If E(x,y,z,t) is the 

electric field of the incident wave, Er(x,y,z,t) and E t(x,y,z,t) being respectively the electric fields of 

the reflected and transmitted waves, one must write the classical continuity equations at the interface, 

i.e. equality between the tangential components of E+Er  and of Et as well as the same ones for the 

magnetic fields. These equalities must pertain at all times, which means that the frequencies of these 

three waves must be the same, hence one may omit the effect of time and consider only the complex 

amplitudes. The plane of incidence is defined by the propagation vector and the normal to the 

interface. If we choose the xyz axes such that the xz plane is the plane of incidence (see Figure 1.2), 

the direction cosines of the incident plane wave are then
1

1

1

.
( )x

k
 

k u 1

1

1

.
( 0)

y

k
  

k u
and 1

1

1

.
( )z

k
 

k u
 where ux, 

uy and uz are the unit vector along the x, y, z axis respectively.  

The incident electric vibration may be written as follows, in complex notation: 

  1 1 1exp ik x z    0E E  with 1 1

1

2
k n

c

 


   (1.49) 

The reflected and transmitted vibration amplitudes will be written: 

 
 

 
0 1 1 1 1

0 2 2 2 2

exp ( )

exp ( )

r

t

E r E ik x y z

E t E ik x y z

  

  

    

  
 (1.50), 

where  ’1,  ’1,  ’1 are the direction cosines of the reflected wave and 2, 2, 2 are those of the 

transmitted wave. 

with 2 2

2

2
k n

c

 


   

Writing continuity conditions at the boundary (z = 0) leads to the following results: 
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  1 2' ' 0    and 1 1 1 1 2 2'k k k     (1.51) 

The first result, on the ’s, expresses the fact that the incident, reflected and refracted rays lie in the 

same plane, i.e. the plane of incidence. 

The second result, on the α’s, leads to the well-known relationship: 

    

   1 1sin      sin '      and    1 1 2 2sin       sin   n n   (1.52) 

where 1, ’1, and 2 are respectively the angles of incidence, of reflection, and of refraction of the 

beam. 

. 

Fresnel equations at an interface  

At the interface between two homogeneous, isotropic, lossless dielectric media, Maxwell 

equations must be completed by boundary conditions imposing continuity between tangential 

components of both electric and magnetic fields, i.e.: 

      T T

1 2E E=  and 1 2  T TH H  (1.53) 

The mathematical expressions of reflectance and transmittance, that are derived by writing 

the continuity conditions at the boundary, depend upon the angle of incidence and the orientation of 

the electric and magnetic vectors with respect to the plane of incidence: we will examine successively the 

case of plane polarized light with the electric vector firstly perpendicular to the plane of incidence, and 

then secondly parallel to it. 

 

Figure 1.2: Electric, magnetic and propagation vectors: a) general case of linearly polarized Incident 
wave ; b) transverse electric incident wave ; c) transverse magnetic incident wave.  
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1st case: electric vector perpendicular to the plane of incidence (transverse electric or TE wave): 

The possible relative orientations of electric, magnetic and propagation vectors are drawn on figure 

1.2. The total tangential component of the electric vector is E+E r  in the first medium and E t  in the 

second one (in complex notation). For the magnetic vector, they are    1- cosr H H  and 

 2cos 
t

H . 

Denoting r the amplitude reflection coefficient (in the literature, one finds also rs , rTE or rσ) and t (or 

ts, tTE , tσ)) the amplitude transmission coefficient, and taking into account the fact that H = E/µv = 

nE/µc, noting that the ratio H/E appears as the optical admittance Y, one obtains: 

 1    r t   and 1 1 2 2( ) ( ) (1     )r n cos t n cos       (1.54) 

Taking into account the Snell-Descartes’s law, that is n1 sin( 1 ) = n2 sin( 2 ), this equation system 

leads to the following results: 

 
 

 
1 2

1 2

sin
r

sin

 

 



 


 and 

   

 
1 2

1 2

2 
 

cos sin
t

sin

 

 
 


 (1.55) 

These two quantities are real, which means that the phase changes at interface may only be 0 or π. 

t⊥ is always positive (no phase change) and r⊥ is negative if  1 >  2  (i.e. n2 > n1 ), or positive if  1 < 

 2  (i.e. n2 < n1 ). In the case of near normal incidence, these formulas get simpler:  

 
2 1

2 1

n n
r

n n






 and 

1

2 1

2 
 

n
t

n n
 


 (1.56) 

2nd case: electric vector lying in  the plane of incidence (transverse magnetic or TM wave): 

If the amplitude reflection and transmission coefficients are denoted r// (or rp, r) and t// (or tp, t), 

the orientation of the electric, magnetic and propagation vectors is given on figure 1.2, which leads 

to the following continuity conditions: 

  

     / / 1 / / 21      cos        cos  r t    and      / / 2 / / 11      sin        sin  r t    (1.57) 

and hence to the following expressions for both amplitude reflection and transmission coefficients: 

 
 

 
1 2

/ /

1 2

tan

tan
r

 

 


 


 and 

   

   1

/ /

1 2

2 1 2

2 cos sin

sin cos
t

 

   


 
 (1.58) 

Here again, these coefficients are real, hence phase changes can only be 0 or π. In case of near normal 

incidence, one finds the same results as for the previous case. 
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1.1.4 Energy considerations 
 

It must be recalled here that optical metrological instruments are sensitive to optical powers or fluxes 

(i.e. optical energy flow per unit time), while previous results are derived from reflection and 

transmission coefficients calculated at the scale of local electric fields E. These coefficients have to be 

converted into corresponding measurable, that is namely energetic quantities. This can be done simply 

by considering that the energy flow per unit time of a beam of light (i.e. its flux or power P) is equal to 

the product of its energy density per unit area, dW/dS, times the beam cross section S and the speed 

of propagation of light, v. Since the energy density per unit area is proportional to E2,  being the dielectric 

constant of the medium involved, the correspondence between powers of the incident beam and either one 

of the reflected or transmitted beams may be written as: 

 
v

v

2

2 2 2

incinc 1 inc

dW

P SdS=
dWP S

dS

 
 
 
 
 

 (1.59) 

In the case of reflection, incident and reflected beams have identical cross sections and propagate 

through the same medium (i. e. same dielectric constant ε and speed of propagation of light), hence: 

the reflectance R is  

 

2

2r r

inc inc

P E
R r

P E

 
   

 
 (1.60) 

For the transmitted beam, there comes: the transmittance T is 

 
 

 

 

 
2 12 22 1

1 1 2 2

cos tan

cos tan

t

inc

P n
T t t

P n

 





 
    (1.61), 

taking into account that 2   n   
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Figure 1.3: Amplitude reflection coefficient r⊥ and reflectance R⊥ versus incidence angle, from 
air to glass of refractive index n = 1.5 (TE wave). 

 

 

1.1.5 External and internal reflections 
1.1.5.1 External reflection 
 

External reflection is said to occur when n1<n2 , for example when light propagates from air into 

glass, or from air into water. Here again, we will first consider the case of polarized light, with the E 

vector being either perpendicular or parallel to the plane of incidence, then the case of natural light  

and finally the case of randomly polarized light. 

- E vector perpendicular to the plane of incidence: 

Variations of r⊥ with respect to angle of incidence 1 are given on the graph of figure 1.3 in the case of 

an interface of air with a glass of refractive index 1.5: r⊥ starts at -0.2 for normal incidence and 

reaches -1 for grazing incidence (1 = π/2). Corresponding values of R⊥ evolve from 4% up to 

100%. 

- E vector parallel to the plane of incidence: 

r// starts from the same value of -0.2, as above for normal incidence, and changes in sign while crossing 

the zero value when 1 + 2 = π/2, i.e. when reflected and refracted beams are perpendicular to each 

other. In that configuration, sin(2) = cos(1), hence n1 .sin(1) = n2 .cos(1) and consequently: 

   2
1

1

tan  
n

n
   (1.62) 

This particular angle of incidence for which the electric vector is parallel to the plane of incidence is not 

reflected at all is called Brewster’s angle. It has a value of about 56°20’ for a glass of refractive index 1.50. 

Reflectance decreases from 4% at normal incidence down to zero at Brewster’s angle, then increases 

sharply up to 100% for grazing incidence, as shown on figure 1.4. 
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Figure 1.4: Amplitude reflection coefficient r// and reflectance R// versus incidence angle, from air to 
glass of index n = 1.5 (TM wave; B corresponds to Brewster angle). 

 

 

- Case of natural light: 

The light being radiated from most natural sources is un-polarized, i.e. made up of a 

superposition of electric vectors vibrating along all possible directions. Such a light may be considered 

as having two perpendicular components E// and E⊥ of equal amplitude but however without any 

phase correlation. The reflectance for each of these components will be either R// or R⊥ and generally, 

reflected light will be partially polarized: it will be completely depolarized for 1= 0 and 1= π/2 and 

totally polarized (perpendicular to the plane of incidence) for 1= B. 

- Case of light linearly polarized along some arbitrary direction: 

If the electric vector E is at angle  with the plane of incidence (figure 1.2a), it can be 

decomposed into two in phase components: 

 
/ / c ( )osE E   and si )n(E E    (1.63) 

After reflection, one will get:  

  / / / /'   cos 'E r E   and    '   cos 'E r E    (1.64) 

Since these two components are in phase, the reflected vibration will still be linearly polarized, at an 

angle  ’ with the plane of incidence such that: 
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  
 

 
 1 2

/ / / / 1 2

cos -'
tan ' tan   tan

' cos

E r

E r

 
 

 
 

 
   

 
 (1.65) 

Since the coefficient of  tan  is always > 1, the plane of vibration tends to get away from the plane 

of incidence. 

1.1.5.2 Internal reflection 
 

Internal reflection is said to occur when 
1 2n n , which may arise for instance when a beam propagating 

inside a piece of glass hits the glass/air boundary. Equations (1.55), (1.58), (1.60) and (1.61) which 

give the characteristic parameters of the reflected and transmitted waves still hold, provided that 1 

is changed into 2 and vice versa. Three cases may thus occur: 

- As long as 1 remains smaller than a so-called “limit angle” L satisfying the relationship: 

  2

1

sin L

n

n
   (1.66), 

the refraction angle 2 does exist and part of the light gets transmitted towards the outside (external) 

medium 

- For 
1 L  , 

2 90    and the emerging beam appears as grazing along the interface figuring the boundary 

between both the internal and external media. 

- For an incidence angle 1 greater thanL, the angle of refraction 2 does not exist anymore, but one 

may nevertheless introduce “virtual” values of  2sin 1   and pure imaginary ones for 2cos( )  in 

above mentioned expressions. By writing now: 

2
2,1

1

n
n

n
  (1.67), 

one gets: 

 
 1

2

2,1

sin
sin

n


   and  2cos   becomes purely imaginary:  

 2

1

2 2

2,1

sin
cos 1i i m

n


       

by setting 
 2

1

2

2,1

sin
1m

n


   (1.68). 

This leads to the fact that  1 2sin    and  1 2sin    are complex conjugates, as well as 

 1 2tan    and  1 2tan   . Therefore both moduli of / /r  and r  equal unity and the 

corresponding incident energies are totally reflected: 
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/ / 100%R R   (1.69) 

Figure 1.5 shows reflectance values R//  and R   versus the angle of incidence 1 in the case of a glass 

to air internal reflection ( 1 1.5n  ; 2 1.0n  ). 

 

Figure 1.5: Reflectance ( R
 and 

/ /R ) of a glass to air interface versus incidence angle;B and L 

represent the Brewster and limit angles, respectively. 

 

An interesting feature of the case of total internal reflection is the occurrence of a so-called 

evanescent wave in the external medium: when applying equations 1.49 and 1.50 to this case 
1( )L  , 

one gets the following expression for the transmitted field: 

 0 2 2 2exp ( )tE t E i k x z    (1.70), 

with  2 2sin   (1.71) and  2 2cos i m     (1.72) 

Taking into account that 2 2 1 1 1 1sink k k     and that 2 2i k z  becomes a real quantity, one may 

write:  

 2

0 1 1exp sink m z

tE t E e i k x      (1.73) 

One will remark that the minus sign has to be kept in the expression of  2cos   in equation 1.72 to 

avoid the propagation of an infinitely increasing energy in the output medium. As a consequence, the 

transmitted wave “creeps” along the boundary while, in the mean time, its amplitude decreases 

exponentially along the z axis which explains why it is called an “evanescent wave”. 

We can also analyze the phase shift arising in the case of total internal reflection, depending on the 

polarization state of the beam: 
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a) In the case of an incident TE wave, which is the component perpendicular (E) to the plane of 

incidence, the amplitude reflection coefficient may be written as: 

 

 

     

     
1 2 2 1 1

1 2 2 1 1

sin sin cos sin
exp( )

sin sin cos sin

i m
r i

i m

    


    
 

 
   

 
 (1.74) 

and the phase shift  at reflection is given by: 

 

 

2 2

1 2,1

1

sin
tan

2 cos

n




 
 

 
 (1.75) 

Thus 
is an advance phase shift that increases from 0 for

1 L   up to  for 
1

2


    

b) In the case of an incident TM wave, which is the component parallel (E//) to the plane of 

incidence), one gets:  

 

 

     

     
 2 1 1 1 2

/ / / /

1 2 1 1 2

tan sin cos sin
exp

tan sin cos sin

i m
r i

i m

    


    

 
   

 
 (1.76) 

As in the case of a TE wave, there is also an advance phase shift at reflection, such that: 

 

 

2 2

1 2,1/ /

2

2,1 1

sin
tan

2 cos

n

n





 
 

 
 (1.77) 

This phase shift starts at 0 for
1 L   and increases up to  for

1
2


  . Figure 1.6 shows the difference: 

 / /   versus the angle of incidence, in the total reflection regime between glass (n = 1.5) and air. 

 

Figure 1.6: Phase shift difference in the total reflection regime for a glass (n = 1.5) to air interface, 

versus incidence angle. 
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1.1.6 Case of thin films  
1.1.6.1 Transfer matrix formulation 

 

A simple extension of the above analysis occurs in the case of a thin, plane parallel film of 

material covering the surface of a substrate [7, 8]. The presence of two (or more) interfaces means 

that a number of beams will be produced by successive reflections and the properties of the film will 

be determined by the summations of these beams. 

 

Figure 1.7: Plane wave incident on a thin film 

We denote the waves propagating along the direction of incidence and those propagating towards the 

opposite direction by the symbols + and -, respectively. The interface (b) located between the film and 

the substrate can be treated in the same way as for a simple boundary. By considering the tangential 

components of the fields, there is no wave travelling within the substrate and all + waves can be 

summed. 

Thus, at the substrate-thin film interface (b), the tangential components of E and H are: 

 1 1

1 1 1 1

b b b

b b b

E E E

H Y E Y E

 

 

  


 

 (1.78) 

where Y1 is the optical admittance defined as the ratio of the tangential components 
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 (1.79) 

The field at the other interface (a) is obtained by taking into account the phase change  (or phase 

shift) of the wave  

  1 1 1

2
cosn d


 


  (1.80) 

where d1 is the thickness of the layer 

Note that 
1  is obtained by applying the Snell-Descartes relationship (1.52):    0 0 1 1sin sinn n   

1 1

1 1

1 1

1 1
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i

a b

i

a b

E E e

E E e
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 
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So that  

1 1

1 1

a a a

a a a

E E E

H H H

 

 

  

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 (1.82) 

These relations can be written in a matrix form such as: 

 1

1

cos sin

sin cos

a b

a b

i
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Y
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iY

 

 

 
        
   

  

 (1.83), 

where the 2x2 matrix is characteristic of a homogeneous thin film and often called its Abeles matrix.  

1.1.6.2 Optical properties of a coating 
 

The procedure described in the preceding section can be extended to the general case of a N layers 

stack, where the resulting characteristic matrix is simply the product of the successive individual 

matrices corresponding to the sequence performed during the coating process used.  

Starting from the substrate one can take into account step by step each one of the various appearing 
interfaces through the product of the corresponding matrices to connect finally the field tangential 
components (EA , HA) and (Es , Hs) drawn on figure 1.8: 
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   (1.84) 

where the optical phase change j introduced by the jth layer) is defined by the expression: 

    
2

     cosj j j j jn i d


  


   (1.85) 

with nj : refractive index of the jth layer ;  

j : extinction coefficient of the jth layer ; 
dj : mechanical thickness of the jth layer ;  

 the wavelength and  

j is the angle of light inside the jth layer, determined by using the Snell-Descartes law  
N is the number of layers 

     / cos  j j j jY n i     for p-polarization (TM-wave or //) 

     cos  j j j jY n i     for s-polarization (TE-wave or ) 

The optical admittance at the interface is expressed by the relation Y=H/E . 
Note that the admittance of a thick absorbing substrate is equal to : 

     / cos  s s s sY n i     for p-polarization 

    cos  s s s sY n i      for s -polarization 

and for the incident medium (n0): 

 00 0/ cos  nY 
 for p-polarization 

 00 0cos  nY    for s –polarization 

 
Then speaking in terms of admittances, we get for a coating of N-layers [7-8]: 
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  (1.86) 

the reflectance at an interface (a) is 

2 2

2 0 0

0 0

A

A

Y B C Y Y
R r

Y B C Y Y

 
  

 
 (1.87) 

the transmittance is 0

2

0

4 Re( )sY Y
T

Y B C



 (1.88)  

where Re(Ys ) is the real part of Ys 

   and the absorptance is 1A R T    (1.89) 
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Figure 1.8: Diagram showing a multilayer deposited on a substrate considered as infinite. EA and HA 
represent the tangential components of fields at the upper interface. Es and Hs are the tangential 
components of the field at the coating/substrate interface. ns and n0 are respectively the refractive 
indices of the substrate and the input medium.  

 1.2   Measurement of the refractive index of bulk materials 
 

The methods and set-ups used for measuring the refractive indices of bulk materials are based upon the 

index induced phenomena described in paragraph 1.1.3, mainly angular deviation of light by refraction 

through prisms, and also, to a lesser degree, total internal reflection including critical angle, and in some 

cases Brewster angle measurements. 

 

1.2.1 Minimum o f  deviation angle through a prism 
 

This method is recognized as the most accurate one for measuring the refractive index of bulk 

materials. It consists in illuminating a prism of known apex angle  by a monochromatic collimated 

beam of wavelength , and in measuring the minimum value m of the deviation angle between input 

and output beams by means of a goniometer. Figure 1.9 shows a typical graph of deviation angle  

versus the angle of incidence . Minimum deviation occurs when rays inside the prism are 

perpendicular to the bisector of apex angle, hence when input and output beams are symmetrical with 

respect to that bisector. 

At wavelength  and temperature T, the refractive index of the prism material is then given by the 

following relationship: 

  
    

 

sin , / 2  
,

 sin / 2

mT T
n T

T

  




  
  

 (1.90) 
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The fact that the deviation angle is stationary in the neighborhood of this configuration somewhat 

alleviates precision constraints upon the setting of the corresponding incidence angle. 

 

Figure 1.9: Deviation angle through a prism; minimum of deviation configuration 

 

Expected accuracy: 

The main experimental uncertainties σ that are to be taken into account for evaluating the affordable 

accuracy on the measured value of n(λ, T ) are the following: 

•   upon the measurements of the apex angle of the prism, inducing a partial 

uncertainty , n

n
  



 
  

 
  

•  upon the  measurements of the deviation angle from the prism, inducing a partial uncertainty 

, n

n
  



 
  

 
 

• T  upon the measurements of the temperature T of the prism, inducing , n T T

n

T
 

 
  

 
 

 
where 

n

T

 
 
 

 is the value of the thermo-optic coefficient of the material, i.e. the change in its 

refractive index per degree Celsius. 

•   upon the measurements of the wavelength of the illuminating beam, inducing 

,n

n
  



 
  

 
 where 

n



 
 
 

is the dispersive power of the material. 

Considering that these uncertainties are uncorrelated, one may write that the global variance of the 

refractive index is the summation over all contributing variances: 

  2 2 2 2 2

, , , ,,  n n n n T nT             (1.91) 
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Even with commercial equipment, the minimum deviation method is quite satisfactory for most 

materials in the visible range. In the infrared, severe precautions must be taken concerning the size of 

the prisms, the precision of the angular measurements, the temperature of the room: firstly, the 

angular measurement accuracy degrades as wavelength increases from UV, visible up to infrared since 

it depends upon the (wavelength/pupil size) ratio and the signal to noise ratio; secondly, many infrared 

materials are semi-conductors, and their thermo-optic coefficient may be much larger than those of 

glasses of the visible domain (typically, one hundred times larger for germanium for instance). 

Hence, in the IR domain, specific constraints are imposed upon the pupil size (> 30 mm), the surface 

quality (flatness better than  / 1 0 , usually measured in the visible), temperature, (σT < 0.1 K) and, 

in some cases, humidity and pressure. 

A rough evaluation is given hereafter concerning the dependence of the index accuracy upon 

uncertainties on  and minimum deviation m: taking the partial derivative of n with respect to , one 

gets: 

2

sin cos sin cos
2 2 2 2

2 sin
2

m m

n

    



       
             

  
 
    (1.92) 
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  
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   
    

   


  
 
    (1.93) 

  

Considering that the optimum value of apex angle  must be chosen in accordance with the expected 

value of n ( decreases as n increases), and varies widely from one material to another, we choose to 

evaluate 
n



 
 
 

 with respect to n and the angle of incidence, considered as being the same for all 

materials. Making use of some characteristics of the minimum deviation configuration: 

If r is the angle of the refraction,  

       sin sin  rn  and    2 m      

 
 sin

2 arcsin
n




 
  

 
 (1.94) 

one gets: 
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Similarly, one gets the following result for 
 

 

n






 where  is deduced by measuring twice this deviation 

between two symmetrical positions of the prism with respect to the axis of the incident beam: 

 
 

 
    

  4 tan

n n

 





 (1.96) 

Table 1.2 shows a comparative evaluation between the expected accuracy of the minimum deviation 

method for the measurement of refractive indices of various infrared materials: magnesium fluoride, 

zinc sulfide, zinc selenide, silicon and germanium. For this evaluation, the angle of incidence is the 

same for all samples (= 50°), σ = 1 second of an arc, σ = 6 seconds of an arc, σT  = 0.1°C and σλ = 1 

nm, 2 nm and 5 nm respectively at 3 different wavelengths: 2.325 µm, 3.39 µm and 10.6 µm. 

The results from this analysis indicate that the respective contributions of the various parameters vary 

widely from a sample to another and for a given sample from wavelength to wavelength. The table 

below lists these relative weights for the above mentioned materials: 

Parameter  napprox  n n dn/d n dn/dT nT 2n 

Unit µm  Degree ° 10-6 10-6 10-6nm-1 10-6 10-6 K-1 10-6 10-5 

Material           

MgF2 2.325 
3.39 
10.6 

 
1.3 

 
72 

 
1.7 

 
7.9 

7.4 
11 
53 

7.4 
22 

265 

 
1 

 
0.1 

2.2 
4.7 
53 

ZnS 2.325 
3.39 
10.6 

 
2.2 

 
41 

 
9 

 
13 

9.6 
10 
14 

9.6 
20 
71 

 
40 

 
4 

3.7 
5.2 

14.4 

ZnSe 2.325 
3.39 
10.6 

 
2.4 

 
37 

 
12 

 
15 

10 
4.6 
6.5 

10 
9.2 
33 

 
60 

 
6 

4.6 
4.5 
8.4 

 
Si 

2.325 
3.39 
10.6 

 
3.4 

 
26 

 
29 

 
21 

18 
7.1 
0.2 

18 
14 
1 

 
150 

 
15 

8.8 
8.5 
8 

Ge 2.325 
3.39 
10.6 

 
4 

 
22 

 
40 

 
24 

68 
30 
0.7 

68 
60 
3.5 

 
400 

 
40 

18.5 
17 
12 

Table 1.2 : Contribution of the various sources of uncertainties on , ,  and T to the index 

measurement accuracy by means of the minimum deviation method 

 

Parameter  napprox 2n =1’’ n=6’’ =1.2nm T=0.1 K 

Unit µm  10-5 % % % % 

Material        

 
MgF2 

2.325 
3.39 
10.6 

 
1.3 

2.2 
4.7 
53 

3 
0.5 
0 

51 
11 
0 

46 
88 

100 

0 
0 
0 

 
ZnS 

 

2.325 
3.39 
10.6 

 
2.2 

3.7 
5.2 

14.4 

22 
12 
1.5 

50 
25 
3 

23 
60 
95 

5 
2.5 
0 

 
ZnSe 

2.325 
3.39 
10.6 

 
2.4 

4.6 
4.5 
8.4 

27 
28 
9 

44 
45 
15 

20 
18 
73 

9 
9 
0 

 
Si 

2.325 
3.39 
10.6 

 
3.4 

8.8 
8.5 
8 

46 
49 
55 

24 
26 
30 

18 
12 
0 

12 
13 
15 

 
Ge 

2.325 
3.39 
10.6 

 
4 

18.5 
17 
12 

18 
22.5 
42 

6 
5 

16 

58 
50 
0 

18 
22.5 
16 
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Table 1.3: Relative percentages of various uncertainty contributions on apex angle , deviation angle 

, wavelength  and temperature T to the overall refractive index uncertainty 

 

Most national metrological laboratories such as PTB in Germany [9], LNE in France, or NPL in Great 

Britain are equipped with this method to measure refractive indices with respect to air, at least in the 

UV, visible and near infrared domains, for measurements at ambient temperature. One may mention 

the NIST and the NASA Goddard Space Flight Center that are able to measure absolute refractive 

indices down to cryogenic temperatures, up to the mid infrared [10–13]. 

 

1.2.2 Littrow method 
 

Two other arrangements, derived from the minimum deviation method, have been set into 

operation. The first one, called front face autocollimation method (Figure 1.10a) consists in illuminating 

a prism under normal incidence upon the input face and measuring the corresponding deviation of the 

output beam. It has been widely used for the first characterizations of infrared materials, between 1950 

and 1980 (Optical Science Center, Tucson, University of Arizona, Institut d’Optique, Paris). It has been 

replaced in several labs (Schott Glasswerke, Institut d’Optique) by the Littrow method (Figure 1.10b), 

in which the impinging beam hits the second face of the prism under normal incidence and is  then 

retro-reflected by this optical face. 

The configurations of these set-ups are shown schematically on Figure 1.10, with corresponding 

relationships between ,  and n; a typical set-up for the Littrow configuration is shown in Figure 1.11. 

Analysis of these techniques shows that they are less accurate than the minimum deviation 

method, typically by respective factors of 2 (Littrow set-up) and 4 (auto-collimation on front face). 

1.2.3   Methods based upon grazing incidence and total internal 
reflection  
 

Grazing incidence: 

Principle: when a ray propagating inside a medium of refractive index n1 is launched under grazing 

incidence (1 = 90◦) at the interface with a medium of index n2 > n1, it is refracted inside the second 

medium along the direction of the limit angle l  such that: 

   1

2

sin   L

n

n
   (1.97) 

If an incident beam, comprising rays under grazing incidence, converges at some point I  ( F i gu r e  1 . 1 2)  

of such an interface, the beam refracted in the second medium disappears beyond the angle L, thus 

defining a well contrasted separation line between both clear and dark areas. The second medium being 
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a reference of precisely known refractive index, the measurement of the refractive index n1 comes out 

from the measured value of the limiting direction L . 

 

   Figure 1. 10 : “front face autocollimation” (a) and (b) “Littrow” configurations   

 

 

Figure 1.11: Typical experimental set-up and prisms for Littrow configuration  
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Figure 1.12: Configuration of Pulfrich refractometer 

Practical set-up: Pulfrich refractometer 

In a Pulfrich refractometer, the sample to be characterized is placed on top of the reference 

glass shaped as a cube, the horizontal and output faces of which being precisely polished and 

approximately normal to each other (angle  ≈ 90°◦ on Figure 1.12). In order to reduce stray light 

reflections from the interface, some immersion liquid index matched to the reference cube is also 

deposited in between the reference and the sample. The illuminating beam, containing rays that are 

parallel to the interface, is first refracted into the reference cube under the limit angle L then refracted 

out of it under the angle of refraction 3 . 

The refractive index of the sample, nsample, may be obtained from nref ,  and 3 by the following 

relationship: 

      2 2

3 3sin sin ( ) cos sinsample refn n       (1.98), 

where the angle 3 is measured by means of the gon io- te les cope a lso  us ed as  autocollimator, 

by pointing the normal to the output surface of the reference cube and the direction of the limit 

between dark and bright areas. In the visible domain, where the Pulfrich refractometer is exclusively 

used, the uncertainty that can be expected from it is of the order of 10
−4

. 

 

Total internal reflection 

If a ray is incident from medium 1, of index n1 onto a medium 2 of index n2 < n1 , it is totally or 

partially reflected back towards the first medium if the angle of incidence is either greater  or 

lower than the limit angle L, respectively. Hence, if the interface is illuminated by a beam 
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converging at some point I (Figure 1.13) of the interface, there results by reflection back to the 

first medium, a separation line between a bright region and a dark one. This method may give 

rise to two different configurations; one of which does not necessitate that the illuminating light 

propagates through the sample. In this case, this method is of particular interest for measuring 

refractive indices of absorbing media that cannot be characterized by prism or grazing incidence 

methods. 

 

 

Figure 1.13: Abbe refractometer configuration for transparent media 

 

The Abbe refractometer is meant essentially to measure the refractive index of liquids, viscous 

fluids, or gels. It is composed of two identical, reference prisms, one for illumination and the other one 

for measurement purposes. They are of known, high refractive index (nref  > 1.7), and of standardized 

shape (right angle triangle, with angles  = 60°, β = 90°,  = 30°). The hypotenuse side of the measurement 

prism is set horizontal so that small amounts of liquids can be poured on top of it. If the liquid 

medium to be characterized is transparent, the illumination prism is deposited face to bottom on top 

of the measurement prism to spread the liquid uniformly in between the two prisms, so that the 

resulting layer behaves optically as a thin and parallel face plate (Figure 1.13). 

The rays that propagate with an angle of incidence larger than the total internal reflection angle L 

are totally reflected back into the upper prism, while the other ones are partially reflected, and partially 

refracted into the measurement prism below that angle L: 

  sin
sample

L

ref

n

n
   (1.99) 

By adapting equation (1.98) to this configuration, one finds: 

 2

33

22  3( sin )) si )n((sample refn n     (1.100) 
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One may notice that, in this configuration, the dark region in the output beam is perfectly black 

since no radiation is transmitted beyond the total reflection angle. Hence, the contrast between 

these two regions is quite good. If the liquid is opaque, the illuminating prism is of no use, and the 

sample is then illuminated from below, through the hypotenuse side of the measurement prism. In 

this case, the contrast is not as high as in the previous configuration, since the fraction of incident rays 

with incidence angles below the total reflection angle are partially reflected, but it is usually good 

enough to give access to the refractive index of opaque liquids, not measurable by other means. Abbe 

refractometers are extensively used in chemical or food industries. 

 

1.2.4 Brewster angle method 
 

In this method, the sample is shaped as a plane parallel face plate and illuminated by a collimated, 

linearly polarized beam, at the vicinity of the Brewster angle (Figure 1.14). If the electric vector of the 

incident beam is parallel to the plane of incidence, R// drops down to a minimum value when the 

sample is rotated back and forth around this angle of incidence, 1 = B , for which tan( )Bn   

 

Figure 1.14: Brewster angle method: general configuration (a), and (b) reflectance versus incidence 
angle. 

However the precision of this configuration is rather poor because the R// curve is stationary around 

the Brewster angle of incidence. T h e  accuracy may be somewhat improved by polarizing the input 

beam at 45° with respect to the plane of incidence, and by recording the curves of both R// and R⊥ 

with respect to the incident angle 1 and solving for n from the best fit between experimental and 

theoretical curves (Figure 1.14). A further improvement in accuracy may be obtained by applying a 

minor modulation e d1 around each angle of incidence and recording the resulting modulations dR// 

and dR⊥  [14]. As shown on Figure 1.15, the Brewster angle B is then the value of the incidence 

angle for which there is a discontinuity of the first derivative of: 
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/ /

1

 ln

0

R

R





 
  

  


 (1.101) 

The uncertainty on refractive index of this method is of the order of 10
−4

. 

 

Figure 1.15: Possible improvement of refractive index measurement by Brewster angle determination 

1.2.5 Ellipsometric methods  
 

Ellipsometry is being widely used in refractive index measurements of bulk (or stacked) samples [15-

29]. It gives rise to a large number of methods and configurations that cannot be all covered here. That 

is why a selection has been made in this section that covers the operating principle and basic 

parameters of this technique, and is limited to the description of two classical configurations.  

 

1.2.5.1 Operating principle and measurement parameters  
 

Through the use of Fresnel formulae, equations (1.29) and (1.30) show how the refractive index n() 

and extinction coefficient () of a bulk material may be derived from spectroscopic measurements 

of the amplitude complex reflectance of the medium under normal incidence. In these equations, the 

phase change () between reflected and incident waves at the boundary results from K-K relation 

(equation 1.28). 
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In a more extensive use of Fresnel formulae, ellipsometry is based upon specific apparatuses 

(“ellipsometers”) in which the sample (either bulk or stacked) is being illuminated under oblique 

incidence by a monochromatic beam of well controlled state of polarization. The refractive index of 

the sample is then computed from the measurement of the amplitudes and states of polarization of 

respectively the incident and reflected waves. 

By expanding the amplitude reflection coefficient (equation 1.55) of an optical boundary, for the 

oblique incidence angle 1 of a wave polarized perpendicularly to the incidence plane (TE polarization), 

one gets: 

 

2 2 2

, 1 1 2 1 12 1

2 2 2
, 2 1 1 1 2 1 1
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E

E
 (1.102) 

and, similarly, for an incident linearly polarized wave parallel to the plane of incidence (TM 

polarization): 
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 
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      
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E

E
 (1.103) 

Hence, r⊥and 𝑟//, which are real if both media are lossless (┴ = // = 0 or ) and complex if either 

one of the media, or both, are absorbing (┴ ≠ //), may be written as: 

   

 exp( )r r i    and / / / / / /exp( )r r i  (1.104) 

 

Let a monochromatic polarized beam of electric field 𝑬𝑖𝑛𝑐 be incident upon the interface between 

two media of refractive indices n1 and n2 with the incidence angle 1: 

 cos( . ) cos( . )inc TE TE TM TMt t        E E k r E k r  (1.105) 

Where 𝑬𝑇𝐸 and 𝑬𝑇𝑀 are its components respectively perpendicular and parallel to the plane of 

incidence, with phases 𝜑𝑇𝐸  and 𝜑𝑇𝑀. The reflected electric field 𝑬𝑟  is then: 

/ / / /cos( . ) cos( . )r TE TE TM TMr t r t             E E k r E k r  (1.106) 

 

A comparison between equations (1.105) and (1.106), shows that, if the incident electric field is not 

perpendicular or parallel to the plane of incidence (|𝑬𝑇𝐸| and  |𝑬𝑇𝑀| ≠ 0), the states of polarization of 

the reflected and the incident beams differ from each other: for instance, if the input beam is plane 

polarized (𝜑𝑇𝐸 = ∓ 𝜑𝑇𝑀) and if the medium under test is non-absorbing (𝑛2 real), the reflected beam 
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is also plane polarized, but in a different direction, if the medium is non absorbing, and it is elliptically 

polarized if the medium is absorbing. 

Since the angle of incidence 1 and the refractive index 𝑛1 of the first medium (usually air) are known 

parameters, the change in the state of polarization at reflection is a function of the unknown refractive 

index n2 to be measured, and it is possible to deduce the refractive index 𝑛2 by measuring r⊥

 𝑎𝑛𝑑 𝑟//.Since 𝑛2 = 𝑛 − 𝑖𝑘, there are two unknown, and two equations are necessary to fully 

characterize n2. 

In practice, ellipsometric techniques are devised to measure the following quantity,  the complex 

reflectance ratio𝑟// over r⊥:

  / // /
/ /exp tan exp( )e

rr
i i

r r
   

 

        (1.107) 

Where ψ ϵ [0°, 90°] and ϵ [- 180°, + 180°], the two basic parameters being measured, are such that 

𝑡𝑎𝑛𝜓 is the ratio between the (amplitude) attenuations of the TM and TE components of the electric 

vector, and is the difference between their phase lags at reflection.  

In the particular case of a bulk material, expansion of equation (1.107) leads to the following 

expression of n2: 

    

2
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2 1 1 1

1
sin 1 tan

1

e

e

n n


 


 
   

 
 (1.108) 

1.2.5.2 Two main methods 
 

Among the numerous methods used in ellipsometry, this section describes only some of the more 

common, namely the “nulling technique” and the “modulation technique by rotatable components”. 

More complete reviews, concerning for example the techniques of “multiple angle of incidence 

ellipsometry (MAIE)”, “spectroscopic ellipsometry (SE)”, or “variable angle spectroscopic ellipsometry 

(VASE)”, may be found in references [15-18, 27-29]….. 

 Nulling technique: 

The configuration of the nulling technique (figure 1.16) comprises a monochromatic source (laser or 

filtered source), a polarizer, a compensator (such as a quarter wave plate) an analyzer, and a detector. 

The linearly polarized output wave from the polarizer is converted into an elliptically polarized wave 

by the compensator, which is oriented in such a way that the light reflected by the sample is linearly 

polarized. The analyzer is then oriented perpendicularly to the plane of polarization in order to obtain 

extinction (“nulling”) of the reflected beam. 
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Figure 1.16: Configuration of a nulling ellipsometer 

The ellipsometric parameters of the sample are directly derived from the respective orientation angles 

 of the polarizer,   of the compensator and  of the analyzer, with respect to the plane of incidence, 

by means of the following relationship:  

 
tan tan( )

tan exp( ) tan
1 tan tan( )

i
i

  
 

  

 
  

 
 (1.109) 

Even when automatized, this method is rather slow because of the search for the minimum value of 

the output signal from the detector, but it is quite accurate 

- Modulation techniques by means of rotating components 

These techniques consist in periodically modulating the state of polarization of the beam by means of 

rotating either one of these components: the polarizer, the compensator, or the analyzer. If the 

rotating element is the polarizer, then the source must be circularly polarized, or un-polarized, as 

perfectly as possible. In case it is the analyzer, then the detector must not be polarization sensitive. If 

it is the compensator, these constraints on both the source and the detector are relaxed, but the 

compensator must be carefully calibrated spectrally and well aligned. 

Time dependence of the detector output (case of an ellipsometer with rotating analyzer) 

Let us consider the configuration of Figure 1.17 in which the (stationary) polarizer is linearly polarized 

along some axis at angle  with the plane of incidence.  
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Figure 1.17: Modulation ellipsometer in the rotating analyzer configuration. 

The parallel (p) and perpendicular (s) components of the electric vector are then: 

 0 cospE E   and 0 sinsE E   (1.110) 

After reflection of the wave from the sample, these components become: 

'

/ / 0

'

0

tan exp( )cos

sin

p p

s s

E r E r E i

E r E r E

 





 

  

 
 (1.111) 

The complex amplitude a (t) at the exit of the analyzer is obtained by summing the projections of the 

components E’p and E’s onto the polarizing direction of the analyzer (Figure 1.18), hence: 

 
' '( ) cos sinp sa t E t E t     (1.112) 

where  is the angular speed of rotation of the analyzer. 
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( ) sin sin tan exp( )cos cosa t t i t        (1.113)

 

 

Figure1.18: States of polarization 

Since the flux on the detector is proportional to the modulus square of the amplitude, one gets: 

 ( ) ( ) ( )F t a t a t  (1.114) 

  ( ) sin sin tan exp( )cos cos sin sin tan exp( )cos cosF t t i t t i t                

(1.115) 

After development and simplification, the following relationship is obtained: 

2 2 2 2 2 2( ) tan cos sin cos 2 tan cos sin sin 2 sin 2 tan cosF t t t                  

(1.116) 

Hence the signal flux upon the detector is a periodic function of time, which varies at twice the 

frequency of rotation of the analyzer. So does the output current I(t) from the detector, which can be 

expressed as follows with respect to its average value I0: 

 
0

( )
1 cos 2 sin 2

I t
t t

I
    A B  (1.117) 

Where A  and B are the Fourier coefficients of this function at its fundamental frequency, with: 

 

2 2 2 2 2

2 2 2 2 2

tan cos sin 1 tan cot

tan cos sin 1 tan cot

    
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 
A  (1.118) 

and 
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 2 2 2 2 2
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   
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 
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 
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The ellipsometric angles ψ and Δ of the sample are then derived from the above quantities by: 

1
tan tan

1
 






A

A
 and 2

1
cos

1
 


B

A
 (1.120) 

The sign of  which depends upon the (left or right hand) type of the elliptical polarization of the 

reflected beam, cannot be determined from the flux detected in this set-up. In order to solve this 

ambiguity, a complementary measurement is needed, by means of a compensator of known slow 

and fast axes. 

  

1.3 Temperature dependence of the refractive index  
 

1.3.1 Basic considerations 
 

The temperature is one of the most important parameter affecting the value of the refractive index of 

bulk (dielectric) optical materials. At a macroscopic scale, we consider the material as a stack of 

identical molecules each one being linked to each other through some kind of binding forces. From 

Lorentz’s theory mentioned in subsection 1.1.2.2, if p is the elemental polarization associated to a 

molecule placed in an electric field E , we have 0p p E  where p  represents the molecular 

polarizability. The polarization P  at the scale of the unit volume V of material will be 

0pN N  P p E , N being the density number of molecules. For one mole of matter for instance, 

we have 
0

A m pN

M

 
P E , AN  being the Avogadro number, M the molecular weight and m  the 

mass density. In that case the volume V that is to be considered will be the molar volume. Both m  

and p parameters are temperature dependent and, consequently, so it is for the refractive index.  

Several attempts have been made to describe as accurately as possible the thermo-optic coefficient 

(TOC) 
dn

dT
 of optical materials [30-36]. Predicting their thermal behavior over the whole spectral 

range of transparency is also of most importance for proper implementation in non linear optical 

devices where high power lasers are employed in frequency conversion arrangements.  

One way to evaluate the TOC may be to start from the Clausius-Mossotti relationship (analogous to 

equation (1.35) which connects the dielectric permittivity  of a medium to its microscopic 

polarizability p. It was first proposed for static electric fields and then extended to the case of 
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alternating ones in the framework of the local field theory developed by H. Lorentz. For one mole of 

matter, the formula is written as: 

1

2 3

A m pN

M

 







 (1.121)  

Taking the derivative with respect to T gives: 

 
2

3

32

p pmA
p m

T V

N dV

T M T T dT T

 
 



        
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           

 (1.122), 

for which a dependence of p on both V and T is assumed. For an isotropic material and considering a 

volume V as the one of a sphere of radius R, we have 3 L

dV
V

dT
 , L being the usual linear 

thermal expansion coefficient: 
1

L

dR

R dT
  . Recasting equation (1.122) then yields: 
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         

 (1.123) 

For materials exhibiting a high thermal expansion coefficient, like alkali halides for instance, the TOC 

is negative, while being positive in covalent compounds due to a pre-eminent contribution of the 

change in polarizability. It can be predicted also from equation (1.135) described further in subsection 

1.3.3.1 that the thermo-optic coefficient in the transparent region is decreasing with angular frequency 

 while becoming divergent in the vicinity of both UV and IR cutting edges. 

Ramachandran [36] took also into account the change of density, which induces a net change in 

polarizability, added to a change in polarizability due only to the change in temperature. This is formally 

equivalent to what can be identified in formula (1.122). From this point of view, he derived the 

following equation describing the TOC of optical glasses: 

 
2

0 0v v

1

2

dn n

dT n
  


     (1.124), 

after having shown that the polarizability p  may exhibit a linear dependence on temperature T and 

written as: 

   
0 0 0v1p pT T          (1.125) 

v  is the volume expansion coefficient, i. e. 
1 dV

V dT
; the parameters 0  and 0  have been recast in the 

form: 

0 2
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 (1.126) 
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Thermo-optic measurements were performed on several glasses and cubic ionic crystals. It appeared 

that for glasses, the change in polarizability due to pure temperature effect is dominant as compared 

to the contribution of volume variation. The converse was true for ionic crystals where the change in 

the lattice parameter becomes dominant, leading to a negative value of dn/dT. This behavior is 

illustrated in table 1.4 which gives for comparison dn/dT and v data known for ionic cubic crystals 

(alkali halides Ia – VIIa and alkaline earth fluorides CaF2, BaF2) and for some typical Schott, Hoya, Hikari, 

Ohara and specialty IR glasses. 

 

Compound Wavelength (µm) dn/dTx106 (K-1) 
v x106 (K-1) (1) References 

Ionic crystals 

LiF 0.633 -18a,b 99.6a 
102.9b 

[42], [40], [44] 
[38], [37]b 

LiCl 0.633 -31.7 a 131.4 a,b [38], [37], [42] 

LiBr 0.633 -38.8 a 150 a,b [38], [37], [43] 

LiI 0.633 -48 a 177 a,b [38] 

NaF 0.633 -16.8 a 100.5 a,b [38], [37], [42], [44] 

NaCl 0.633 -32.2 a 123.3 a,b [38], [42], [44] 

NaBr 0.633 -38.6 a 125.4 a,b [38], [42], [44] 

NaI 0.633 -45.9 a 134.1 a,b [38], [42], [44]  

KF 0.633 -23.2 a 94.2 a,b [38], [42],  

KCl 0.633 -31.7 a 109.5 a,b [38], [42],  

KBr 0.633 -36.6 a 115.5 a,b [38], [42]  

KI 0.633 -43.75 a 120.9 a,b [38], [42]  

RbF 0.633 -25.1 a 82.5 a,b [42]  

RbCl 0.633 -39.4 a 108 a,b [38] 

RbBr 0.633 -44.9 a 111 a,b [38] 

RbI 0.633 -56.3 a 117 a,b [38], [37] 

CsF 0.633 -41.7 a 111 a,b [40] 

CsCl 0.633 -77.4 a 135 [38], [37]  

CsBr 0.633 -84.75 a 141.6 a,b [37], [44]  

CsI 0.633 -96.25 a 145.8 a,b [37], [44]  

KRS 5 
(TlBr 48%, TlI 52%) 

10.6 -235 174 [44] 

CaF2 0.633 -10.4 56.7 [41], [43], [51], [52], 
[44] 

SrF2 0.633 -12.7 55.2 [41], [44] 

BaF2 0.633 -16 55.2 [41], [52], [44] 

U. V. – Vis. Selected Glasses 
(2) Lithosil SiO2 0.633 10 1.56 [43] 

(2) N-BK7 0.633 2.5 21.9 [46], [48], [49] 
(2) N-SF6 0.633 0.43 27 [46], [48], [49] 

(2) LF5 0.633 2.3 24.9 [46], [46], [49] 
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Clearceram-Z 
regular 

0.633 13.9 6 [45] 

Specialty IR Glasses 

Germanate glass 
9754 

1.060 10.4 18.6 [43] 

 
Amtir 6 (As40S60) 

 
5 
 

-8.6 (25 to - 
78°C); +9.3 (20 

to 65°C) 

 
64.2 

 
[51] 

IRG 6 Schott  
(As40Se60) 

5 33.5 62.4 [46] 

Gasir 1 10.6 55 51 [50] 

Gasir 5 10.6 32 23.5 [50] 

IRG 22  
IG 2 

(Ge33As12Se55) 

5 
3.39 

67.7 
67.7 

36.3 
36.3 

[46] 
[47] 

IRG 23  
IG 3 

(Ge30As13Se32Te25) 

5 
3.39 

103.8 
105.2 

40.2 
40.2 

[46] 
[47] 

IRG 24  
IG 4 

(Ge10As40Se50) 

5 
3.39 

21.5 
23 

61.2 
61.2 

[46] 
[47] 

AMTIR 1  
(Ge33As12Se55) 

3.39 77 36 [51] 

AMTIR 2 (AsSe) 10.6 30 67.2 [51] 

ZBLAN 0.633 -14.75 60 [52] 

 

Table 1.4: Thermo-optic coefficient dn/dT (x106 K-1) and volume expansion coefficient v (x106 K-1) of 

some ionic crystals and selected glasses. 

(1)Values deduced from referenced linear L expansion coefficients: v L3   

(2) Selected glasses are referred to Schott catalog denomination [46]; for the same glasses different 

names can be found in ref [45], [48] and [49]. A convenient comparative table is given in ref. [45]. 

a values calculated @ 0.6328 (He-Ne laser line) from recommended data of ref [40] 

b from ref [37], [39] 

 

  

1.3.2 Measurement of the temperature dependence of the refractive 

index n(,T) 
 

1.3.2.1 Direct measurement 
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The temperature dependence of the refractive index ( , )n T can be obtained directly by using the 

minimum deviation method if the prism is mounted in an adequate temperature controlled cell and 

illuminated with an appropriate wavelength selecting set-up. Indeed, among the various methods 

described in section 1.2, it appears as the most suitable one to achieve best accuracy. However, if a 

wide temperature range is to be explored, this would require the use of an air-tight evacuated and 

thermal insulated enclosure, along with additional optical components allowing entering and leaving 

of the light beam, which obviously will alter the accuracy of measurements. Such problems have been 

overcome to some extent at NASA Goddard Space Flight Center with the development of the 

Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) equipment which enables accurate 

measurements of ( , )n T , mostly dedicated to proper implementation of optical materials for space 

applications at cryogenic temperatures [10,11,53,54]. Even appearing as well suited for isotropic, 

homogeneous and perfectly transparent materials, some disadvantages can still be mentioned: 

- It is known that best accuracy is obtained with prisms of quite large dimension (say a few cm2 in 

aperture), leading to considerable thermal time constants and to an eventual occurrence of thermal 

gradients in the sample. The measurement procedure is of step by step type, with regularly spaced 

temperature intervals and suitable soaking times of the sample. These operating constraints induce 

unavoidable rather consuming time of measurements. 

-Submitted to a rise in temperature, any (homogeneous) material would exhibit an increase in its 

absorption coefficient and, consequently, the beam could progressively lose more or less its original 

transverse symmetry of intensity while travelling inside the prism. This is particularly true for 

semiconductors like (cubic) germanium for instance. For large temperature excursion and/or rather 

high values of absorption such phenomenon could lead to a shift of the maximum of irradiance onto 

the pupil of the detection system and a slight widening of the diffraction pattern in the focal plane of 

the detection system. This qualitative description is illustrated figure 1.19 which shows that the 

location of the irradiance maximum is shifted towards the summit of the prism. 

- Case of anisotropic materials: accurate measurements are to be performed in polarized light and 

require a set of prims which are to be precisely cut with respect to appropriate crystallographic 

directions which depend on the space group of the compound. This can be adequately realized at room 

temperature, say T0, and the principal refractive indices could thus accurately be measured at T0 using 

the minimum of deviation method. However, if the compound undergoes a temperature change from 

T0 to T, its intrinsic anisotropic character will induce internal strains; these ones could distort the initial 

shape of the prism, depending on the symmetry class that it belongs to [55]. Thus, dealing with thermal 

behaviour of refractive indices, the minimum of deviation method appears not very convenient for this 

purpose. 

Most of the above mentioned difficulties inherent to direct measurements of the refractive index as 

function of temperature can be overcome by using differential interferometric methods which are 

described in the next section 
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Figure 1.19: Prism method in the case of an “absorbing material”. The transverse profile of intensity 
becomes asymmetric at the exit of the prism. 

 

 

1.3.2.2 Interferometric methods: normalized thermo-optic coefficients (NTOC) 
 

It is known that interferometric methods may be used advantageously to determine the thermo-optic 

coefficients with high accuracy. However they give only what we have called the “normalized thermo-

optic coefficient” [56, 57] (NTOC), namely  

 
1

NTOC

dn

n dT
   (1.128) 

instead of the usual and commonly admitted one TOC, defined as dn/dT. Temperature dependence 

measurements of NTOC’s can be performed at several discrete laser wavelengths by using specifically 

developed interferometric arrangements that allow accuracy around a few in 10-6 K-1) [58]. Also data 

can be obtained on relatively small parallelepipedic shaped specimen (say a few mm2 in aperture and 

about 7 mm in length), that ensures for low thermal time constant while overcoming the problem of 

non-homogeneous absorption described above. 

The first attempts to get accurate measurements using interferometric means could be attributed to 

set-ups developed at the U.S. National Bureau of Standards [59], improved for years and used to 

characterize the thermal behavior of numerous materials [60-62]. Of course, many techniques were 

then elaborated, employing various Fizeau, Fabry-Pérot, Michelson or Mach-Zehnder based 

interferometric arrangements. Some examples will be found in references [63-65]. In all cases, the 

principle is based on measuring the number of fringes N passing in front of a detector when submitting 
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a sample to a temperature change T. Regardless of the technique employed, the determination of 

the temperature dependence of the refractive index requires measurements of both thermal 

expansion and changes in optical path. For a sample of thickness L and refractive index n, the linear 

thermal expansion and normalized thermo-optic coefficient (NTOC) are  given by L = d[ln(L)])/dT 

and NTOC = d[ln(n)]/dT, respectively. Defining as well the coefficient  for “normalized thermal 

changes in optical path” (NTCOP), that is  NTCOP= d[ln(Ln)]/dT, the NTOC is obtained from the 

straightforward relationship 
NTOC NTCOP L    s an example we describe hereafter an original 

arrangement that was specifically designed for the determination of the thermo-optic coefficients of 

bulk nonlinear optical (NLO) materials [58], for which an accuracy on dn/dT of about 10-5 is required. 

Obviously, its use can easily be extended to any optical one, and particularly to (isotropic) glasses, 

seeing that in such case and for NTCOP measurements the polarization state of the beam with respect 

to dielectric axes of the medium is not so stringent.  

1.3.2.2.1 Dilatometric measurements 
 

Measurements of linear thermal expansion are performed by using an absolute laser interferometric 

dilatometer acting as an optical gauge. The corresponding modified Mach-Zehnder set-up is entirely 

mounted in a vacuum enclosure and provided with a thermostated base plate; it is depicted in Figure 

1.20. The parallelepipedic–shaped sample S is located at the center of an oven in a nearly blackbody 

configuration to avoid any occurrence of thermal gradient. Two silica windows W1 and W2 allow 

entering and leaving of light from the vacuum enclosure. The beam of a frequency stabilized He-Ne 

laser is divided into two paths by the beam splitter BS1. The plane and parallel optical end faces of the 

specimen are gold metallized and act as mirrors M5 and M6 in the sample arm. After reflection on the 

front face M5, the beam is sent by successive reflections on BS1, M2, M4, and beam splitter BS2 to the 

back surface M6 of S. The reflected beam overlaps then the one of the reference arm (path BS1, M1, M3 

and RP) at the recombination plate RP to give a fringe pattern which is recorded by photo-detector D1. 

Detection D2, external to the enclosure, enables also convenient observation of the fringe pattern on 

a screen and verification of its spatial stability. Best accuracy of measurements is achieved by inserting 

a piezo-transducer PZT on mirror M1 that allows phase modulation and subsequent phase detection 

of the fringe shift induced by applying a linear ramp of temperature to the sample through 

temperature control TC (Pt 100 thermistor) of the oven. The temperature of the sample is given by a 

Cu/constantan thermocouple glued on one of its sides. The optical source is a frequency/intensity 

stabilized He-Ne laser emitting at wavelength ; a phase shift of 2 (i. e. fringe spacing), induced by a 

variation of temperature T, corresponds to a change in length L of /2. With phase modulation, two 

consecutive zero responses on the photodetector D1 correspond to an optical path variation of /4. 

Thus, if N is the number of recorded fringes in the first case, the linear expansion coefficient will be 

given by 
2

L

N

L T


 


. In the second case we will get twice more fringes, and which are moreover 

detected unambiguously while crossing a zero response on D1. With such improvement, the typical 

accuracy on linear dilatation coefficient measurements is close to 3x10-7 K-1 for a sample of 5 mm in 

length examined over a 10 K temperature interval. It is temperature dependent, going down to zero 

at T = 0 K. As long as the material does not exhibit strong structural modification within the explored 

temperature interval, ( )L T   may always be fitted accurately to a power series in T as:  
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A schematic lay-out and a picture of the apparatus are given figure 1.20 and 1.21, respectively.  

 

Figure 1.20: Lay-out of an absolute interferometric dilatometer used for thermal expansion 
measurements. 

 

 

Figure 1.21: Photograph of an absolute interferometric dilatometer; red and yellow colored beams 
correspond to the sample and reference arms, respectively. Not shown: the laser source located at the 
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right hand side of the picture. RP: recombination plate; BS: beam splitter; D1,2: light detectors and PZT: 
piezotransducer. 

 

1.3.2.2.2 Determination of normalized thermo-optic coefficients 
 

Normalized thermal changes in optical path NTCOP  NTCOP are obtained by removing metallization M5 

and M6. The same sample S is mounted in a specific vacuum cell which reproduces identical thermal 

working conditions as those used in the dilatometer. Appropriate translation and rotation stages 

enable accurate orientation of the sample with respect to the direction of the incident beam. A Fabry-

Pérot interference pattern is generated by multiple reflections on the optical end faces; the fringe shift 

induced by applying a linear ramp of temperature to the sample is observed by reflection and 

continuously recorded on photo-detector D1 after being reflected by the semi reflecting plate BS, as 

shown in figure 1.22. An analyzer crossed with respect to the orientation of the front polarizer allows 

permanent control of the spatial stability and eventual structural changes of the sample all along 

heating runs by recording on detector D2 the intensity of the transmitted beam which is imaged outside 

the vacuum cell. BaF2 windows W1 and W2 enable convenient switching of laser sources from the UV-

Vis up to the IR spectral ranges. With such arrangement, the typical accuracy in the determination of 

NTCOP of a sample similar to the one described above and exhibiting a refractive index n=1.5 with an 

uncertainty around 10-4, is close to 2x10-7 K-1. Accuracy in the NTOC determination TOC= NTCOP- L  may 

thus be expected to lay around less than a few in 10-6 K-1. 

 

Figure 1.22: Optical lay-out used for measurements of thermal changes in optical path. 

 

1.3.3 Thermo-optic and refractive index dispersion 
1.3.3.1 Theoretical considerations 
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In a way somewhat similar to the works proceeding from a microscopic description of the matter, and 

which have lead for instance to the Lorentz-Lorenz and Sellmeier formula, G. Gosh [66] proposed a 

model based on a 3 energy levels of absorption between the valence band and the conduction band 

of the material. The characteristic energies associated to each process are Eelec, Eisen, and Eexcit, 

corresponding to so-called average electronic, isentropic and excitonic absorption band gaps, 

respectively. Eelec is the gap energy between the valence and the conduction bands, Eexcit  corresponds 

to the energy of creation of an electron-hole entity while Eisen  is defined as a fitting gap that lies 

between the excitonic band and the conduction one. The energy levels are depicted in figure 1.23 In 

the case of isotropic media, considering that the isentropic band is the geometric mean of the 

electronic absorption band and the excitonic one, further analysis gave the following temperature 

dependence of the refractive index n linked to its thermo-optic coefficient dn/dT: 

 2 2

0

1
2 1 3 excit

L

excit

dEdn
n n

dT E dT
  

 
    

 
 (1.130) 

 

L  is the linear thermal expansion coefficient, 
2

2 2

i



 



 (1.131) 

  is called “the normal dispersive parameter”,  being the photon wavelength and i the isentropic 
band wavelength, lying in the UV region between the excitonic and the electronic absorption bands. 

0
n  is the low-frequency refractive index in the IR region. The shift of lattice absorption with 

temperature is assumed to be negligibly small [66]. 

 
Figure 1.23: Schematic representation of the energy levels of optical glasses from [66].. 

 
It has been shown quite recently that a rigorous description of the thermal behavior may be obtained 

in a much more comprehensive manner [57]. Despite being said as deduced from a “semi-empirical” 

model, Sellmeier equations have been proved for long to give the best representation of the refractive 

index dispersion of any optical material all over its transparency window. Thus, in accordance with 

other authors [67], we would recommend to fit recorded refractive index data by using such 

formulation. Direct measurements of the dispersion n() are usually obtained from various non 
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coherent impinging light sources and at so-called “room temperature”, say T0, by employing prism 

methods performed in the minimum of deviation configuration. From a literature survey it can be 

estimated that mean values of best affordable accuracies lie around 10-5 in the visible spectral range 

and a few in 10-4 in the mid-IR region and for samples of large aperture. At a fixed temperature T0, the 

data may be fitted to the simple Sellmeier’s relationship 1.47 mentioned in § 1.1.2.2 and written in the 

slightly modified form: 

0

2

2 2
1

( )
l

i i

i

T
n A

B

 




 


  (1.132) 

A is a constant and the summation extends over a finite number l of oscillators i resonant at 

wavelengths 
2

i

i

c



 , c  being the speed of light. Parameters Bi depends on the strength of each 

oscillator that is to be taken into account to achieve best fitting procedure. Two sets of terms are 

introduced formally to account for UV and IR cutting edges, beyond which the material becomes 

opaque. 

Now, considering that formula 1.132 is also temperature dependent and taking then the 

logarithmic expression we get: 
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Over the range of transparency, far enough from cutting edges, the dispersion is represented by the 

summation term which figures only slight and monotonically wavelength-dependent deviations from 

the mean value A(T), that is:  
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Having defined the normalized thermo-optic coefficient 
1

NTOC

dn

n dT
  ,, we may write: 
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Now NTOC(T) data may always be accurately fitted to a power series of temperature down to better 

than 10-7 K-1 accuracy: 
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Determined experimentally, the jc ’s must be consistent with equation (1.135) and will therefore be 

written according to: 
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obtained from (1.135) by putting  
1
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Equation (1.137) represents a set of (2l + 1) linear equations with unknown parameters 1
X , i

X  and
'

i
X

, which can readily be solved by using a simple vectorial formalism if NTOC data are obtained at a 

number of (2l + 1) laser wavelengths suitably chosen in the transparency window of the material. A set 

of (2l + 1) experimental values of the jc ’s will allow to determine the temperature-dependent 

dispersion formula (1.132), which is obtained by integrating equation (1.136) and knowing the 

dispersion equation at room temperature T0. This gives: 
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The refractive index could as well be written in a Sellmeier like formulation: 
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where A , iB  and 
2( )i  are functions of temperature T and obtained by integrating equations 

(1.138): 
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Expression 1.140 is reminiscent of the pure empirical ones proposed in the case of LiNbO3 [68-69] and 

MgO doped LiTaO3 crystals [70]. 

 

 

1.3.3.2 Accuracy: temperature dependence of an ONL interaction in RbTiOPO4 
 

If 
L

 and 
NTCOP   are the uncertainties associated to measurements of thermal expansion and 

changes in optical length of a sample of length L examined over a temperature interval T , the 

uncertainty on NTOC is given by:  

 
 1 1

NTOC L NTCOP

nLnL T L
L NTCOP NTCOP

L T n L T nL T
  

  
     

  
           

 (1.142) 
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From experience, estimates of all sources of uncertainty lead us to conclude that the order of 

magnitude of
NTOC is of a few in 10-6 K-1 in most cases. Notice that such assertion comes out from 

linear optics measurements and “classical” uncertainty calculation (i. e. without any statistical 

consideration). However, confirmation of this has been clearly evidenced through a nonlinear optics 

experimentation that is described hereafter. 

The temperature dependence of the second harmonic generation (SHG) 1.0642 µm  0.532 µm was 

studied in the case of an RbTiOPO4 (RTP) single crystal [71]. Apart from the requirement of an accurate 

knowledge of the dispersion equations at a fixed temperature T0, it is known that any temperature 

variation of the crystal will alter the doubling efficiency. In such critical process, refractive indices 

modifications are to be characterized at least down to the fifth decimal place. RTP belongs to the 

anisotropic orthorhombic mm2 symmetry class; therefore three Sellmeier equations analogous to 

formula (1.132) have to be considered to characterize the dispersion of the refractive indices nx, ny and 

nz along the three principal dielectric axes Ox, Oy and Oz of the crystal, respectively. Interferometric 

measurements of the corresponding three principal thermal expansion coefficients of RTP have been 

obtained from -30°C to +130°C by using a frequency stabilized He-Ne laser. The NTOC’s were 

determined over the same temperature interval from measurements of normalized coefficients of 

changes in optical path performed at four CW laser wavelengths and with appropriate polarization 

direction of the light with respect to the X, Y and Z axes. Single mode CW lasers were used: an argon 

ion tuned at 0.4578 µm, two He-Ne emitting respectively at 0.6328 and 3.39 µm and a Nd:YAG at 

1.0642 µm. A linear behavior of L(T) coefficients was observed, with z < 0, while the NTOC’s exhibit 

a quadratic one; they are given in fig (1.24) for illustration. 

Type II eo-e Second Harmonic Generation (SHG) is a nonlinear optical interaction where an 

extraordinary photon combines with an ordinary one at the fundamental wavelength  to give an 

extraordinary wave at . The SHG 1.0642 µm  0.5321 µm is governed by the phase mismatch k 

written as: 

 / 22
( ) 2 ( ) ( ) ( )zk T n T n T n T  


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 

 (1.143) 

/ 2( )n T
 and both ( )n T

, ( )zn T
 are the temperature and orientation-dependent refractive indices at 

the second harmonic and fundamental waves, respectively. In the (X, Y) crystallographic plane and for 

an impinging internal angle φ referred to the X axis, the refractive index n is given by:  
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Figure 1.24: NTOC’s dispersion obtained for RTP at room temperature (20°C) and starting from 
refractive index dispersion given in ref [71]. Open circles correspond to experimental data and full lines 
to fitting results; black, blue and red colors refer to X, Y and Z polarizations, respectively. 

Phase matched interaction corresponds to k = 0, which is for: 

/ 2 1
( ) ( ) ( )

2
zn T n T n T     

 (1.145) 

In biaxial RTP and starting from the dispersion equations given in ref [71], this occurs at T0 = 20°C for 

phase-matching angle pm = 0 = 55.82°. The temperature dependence of pm is determined by solving 

numerically formula (1.145) and by using the n(T) values derived from NTOC’s measurements following 

the procedure described in section 1.3.3. The result is drawn as full curve in figure 1.25 which gives the 

predicted evolution of the phase-matching angle pm from -20°C up to 230°C. 

 



 

56 
 

 

Figure 1.25: Predicting the temperature dependence of the phase-matching angle in the (X,Y) plane of 
RTP for the SHG of Nd:YAG lasers. Full curve: theory, from formula (1.145); the black squares correspond 
to recorded experimental maxima of efficiency. 

 

. 

1.4 Spectrophotometric determination of refractive indices 
 

Spectrophotometers are widely used in industry and in research laboratories for determining the 

spectral transmittance, reflectance and absorptance of optical materials. This section starts by 

recalling some of their basic characteristics and methods, estimated to be useful for the understanding 

of the way they can be used for the measurement of the refractive index and extinction coefficient of 

bulk and coated samples. The following cases are then successively covered: bulk materials, 

homogeneous thin films, inhomogeneous thin films, metallic films on transparent media, and optical 

constant determination by the bilayer “metal-dielectric” method. 

1.4.1 Some useful properties of spectrophotometers 
 

This sub-section deals with some of the basic characteristics of spectrophotometers, starting by a 

description of their main constituents. It then defines their “coherence length” and the measurable 
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quantities that are of particular interest for characterizing the refractive indices of films and of coated 

or uncoated samples. The “V-W” procedure being very commonly used, its configuration is presented 

here, along with some typical spectral results in transmission and reflection. 

1.4.1.1 Structure and main components of a spectrophotometer 
 

The main components of standard spectrophotometers are the following: 

a) The light source, which is chosen in connection with the spectral domain of interest. In the UV, 

deuterium lamps operate from 195 to 380 nm; in the visible and near IR, the sources are 

usually of the tungsten halogen type (from 320 to 1000 nm) or Xenon lamps (from 190 to 1100 

nm), and blackbodies are used to cover the IR. 

b) A monochromator, in charge of filtering the input light inside a narrow bandwidth (or spectral 

resolution)  around some wavelength of interest and of scanning (or not) this selection 

over the spectral domain of investigation. 

c) A telescopic goniometer in charge of adjusting the size, the direction, and in some cases, the 

polarization of the beam of light that illuminates the sample. This component monitors the 

angle of incidence of the beam upon the optical sample under test.  

d) The sample to be characterized, generally shaped as a plane parallel plate. In most 

spectrophotometers the test sample is characterized by comparing the fluxes collected from 

it with those obtained in the same configuration from a reference sample (specially designed 

for the task). Hence, the test and reference samples are alternately illuminated in similar 

conditions. 

e) The detection and its associated signal processing electronics, that convert the different 

(reflected, transmitted, scattered) collected amounts of flux into recordable electric signals. 

Hence, it is important to notice that most of the values delivered by a spectrophotometer of optical 

parameters, such as transmittance, or reflectance, are dimensionless and are the ratios between the 

same quantities (fluxes) respectively measured from the test and reference channels under similar 

configurations.  

The reference sample (or channel) plays an important role since it is used as a scale and defines the 

so-called “baseline” of the instrument.  
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Figure 1.26: Operating principle of a spectrophotometer used for measuring the transmitted flux of a 

sample defined by  Tg()(), where Tg() is the global spectral transmittance (respectively global 

spectral reflectance Rg() and () the incident flux. . 

 

1.4.1.2 Coherence length of the spectrophotometer 
 

The coherence length (Lc )of the spectrophotometer is defined by equation 1.146 below: 
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 (1.146) 

Where 0 is the mean wavelength of the spectrally filtered beam, and 0 or 
0& its full widths at half 

maximum (FWHM), expressed in wavelength () (m or nm) or in wavenumber ( )&  (cm-1) units. The 

value of this coherence length is of prime importance because the shape of the output spectral data 
(such as spectral reflectance or transmittance) from the spectrometer depends upon the ratio 
between the sample thickness and Lc. As will be shown in subsection 1.4.1.3, the incident beam gets 
separated into two or more beamlets that recombine on the sensitive area of the detector after 
bouncing back and forth from the sample boundaries. If the corresponding optical path difference 
(OPD≈2nd for quasi-normal incidence) is much less than the coherence length, these interfering waves 
retain some mutual coherence, and their recombination gives rise to interference phenomena, 
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converted as ripples on the spectral graphs. The lower the ratio (OPD/Lc), the higher the mutual 
coherence beam, and the higher the ripple contrast. Conversely, if OPD ≥ Lc, the interfering beams are 
un-correlated. Their recombination does not give rise to static interferences, and the corresponding 
spectral graphs are smooth. 

Figure 1.27 shows the graph, over the 900-940 cm-1 domain, of the spectral transmittance of a 514 m 
thick plate of polycrystalline isotropic diamond (ndiamond ≈4) obtained from a Bomem Fourier Transform 
Infrared spectrometer, of spectral resolution 1

0 0.04cm & . In this example, 
01/ 25 cmcL  &

>> 2 ndiamond d ≈ 4 mm, which explains the rather high contrast (C= (Tmax -Tmin)/ (Tmax + Tmin)≈ 25%) of 

the ripples. The fringe spacing, or free spectral range  & i.e. the difference between two adjacent 
wavenumbers of identical state of interference), given by equation (1.146b) equals about 4 cm-1 and 
the resulting number of oscillations (ratio between 40 cm-1, the covered spectral range, and 4cm-1, the 
free spectral range), is around 10, as confirmed on Figure 1.27 [5, 73]. The black curve comes out from 
experimentation and the red one corresponds to the theoretical fit obtained by using a one pole 
Cauchy’s model for the dispersion of the refractive index [5, 73]. 

In practice, it is advisable to choose a substrate of appropriate thickness (i.e. >> Lc) with respect to the 

resolution 0 in order to better highlight the interference features specific to multilayer.  

 

 

Figure 1.27: Spectral transmisttance of a 514 µm thick plate of diamond from 900 cm-1 to 940 cm-1.  & 
is the nominal free spectral range (i.e. fringe spacing) in the explored spectral interval from [73]. 

 

1.4.1.3 Measurable quantities 
 

As mentioned in sub-section 1.4.1.1, the sample under test (either bare or coated substrate) transmits, 

reflects and/or absorbs parts of the incident pencil of light which is spectrally filtered at some 
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wavelength  (scanned over the spectral domain of interest), and the spectrophotometer outputs are 

the detector signals in response to the corresponding collected fluxes. This subsection briefly describes 

the methodology that allows deriving the optical parameters of the sample, i.e. the refractive index 

and extinction coefficient of the substrate and of its coating, as well as the film thickness, from the 

measured values of the global spectral reflectance, denoted Rg() and of the global spectral 

transmittance, denoted Tg(), of the sample. 

For this purpose, the sample is generally shaped as a plane parallel plate of high quality, with polished 

surfaces, in order to avoid any deviation or other type of modification of the reflected and transmitted 

beam spots onto the sensitive area of the detector and hence to ensure an optimized detection of all 

fluxes of interest. Figure 1.28 shows the case of a non-absorbing sample, of refractive index ns () and 

thickness ds, illuminated under quasi-normal incidence; its upper boundary is only coated over one half 

of its surface by the thin film to characterize, and the lower one is not coated at all. The surrounding 

medium is supposed to be air, of refractive index n0 ()≈ 1. 

In usual spectrophotometric experiments, three configurations of sample illumination are necessary 

in order to provide the expected information, according to Figure 1.28a: in configuration 1, on the left 

hand side, the downward propagating incident beam hits the bare part of the sample (both interfaces 

of the substrate are uncoated). At center, the sample is translated in such a way that the same 

downward propagating incident beam firstly hits the coated part of the upper surface of the sample 

and then its uncoated rear surface. At the right hand side of the figure1.28a, the incident beam 

propagates upwards and firstly hits the (uncoated) lower surface of the sample and then the coated 

surface (in practice, the sample is turned upside down). 
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Figure 1.28: Typical illuminating configurations of the sample with corresponding measured quantities 

(fluxes ) (1.28a), and parameters of the sample that can be extracted from these measurements 
(1.28b) 

Let the (unknown) spectral reflectance and transmittance of the film (as deposited on the substrate) 

be denoted R() and T() for a downward propagation of the light (i.e. for rays incident from air to 

film), and R’and T’() (=T()) for an upward direction of propagation (i.e. for an incident beam 

propagating from the substrate to the film); the spectral reflectance and transmittance of each 

uncoated boundary are respectively denoted Rsand Ts (Figure 1.28b) [5, 7, 74, 75]. 

Without getting into detailed calculations, one shows that the flux that is reflected by the sample is 

the summation of the flux reflected from the first encountered interface and the multiple ones carried 

by the beams that propagate inside the substrate and bounce back and forth from its interfaces 

(coated or not). This summation of fluxes (and not of field amplitudes is justified by the fact that the 

coherence length of the incident beam is supposed to be much less than the sample thickness. 

Similarly, the flux that is transmitted by the sample is the summation of the directly transmitted flux 

and the multiple contributions that have been bouncing back and forth inside the substrate. Table 1.5 

gives the theoretical expressions of the global spectral reflectance Rg() and global transmittance Tg() 

of the sample corresponding to the reflected and transmitted fluxes as measured in the three 

configurations of Figure 1.28a:  

 

 

Configuration Spectral reflectance Spectral transmittance 

1 
1

( )
(

 
)

)

2

(1

s
g

s

R
R

R








 (1.147) 1

1 ( )
( )

1 ( )

s
g

s

R
T

R










 (1.150) 

2 2

2

( ) ( )
( ) ( )

1 ( )  ( )

s
g

s

T R
R R

R R

 
 

 
 


 (1.148) 2

( )(1 ( ))
( )

1 ( ) '( )

s
g

s

T R
T

R R

 


 





 (1.151) 

3 2

3

( ) '( )
( ) ( )

1 ( ) '( )

s
g s

s

T R
R R

R R

 
 

 
 


 (1.149) 3

( )(1 ( ))
( )

1 ( ) '( )

s
g

s

T R
T

R R

 


 





 (1.151) 

Table 1.5: Computed values of global spectral reflectance and transmittance for the three 

illuminating configurations of Figure 1.28 (case of a non absorbing bulk material) 

The equivalence between the respective ratios between the experimentally measured reflected or 

transmitted fluxes and the incident flux, and the corresponding expressions of the reflectance or 

transmittance of the sample as expressed in Table 1.5 yield the optical parameters of the sample: 

For a transparent substrate, the spectral reflectance Rs() and transmittance Ts() of each uncoated 

boundary, given by the Fresnel formulas under normal incidence, lead to the refractive index ns() of 

the bulk material: 
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The experimental verification of the equality at the right hand side of equation (1.152) confirms the 

fact that the material of the substrate is transparent. 

At each wavelength, if the optical coating and the substrate are neither absorbing nor diffuse, the 

energy conservation law may be written for each configuration in the following manner: 

 ( ) ( ) 1g gT R    (1.153) 

If there are light losses along the optical path inside the sample, due to absorption and/or scattering, 

the energy conservation law becomes: 

 1 1 1 2 2 2 3 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1g g g g g gT R T R T R                  (1.154) 

Where the Λ’s are the spectral loss coefficients including the absorptance (A) and scattering (TIS, 

defined in subsection 1.4.1.4), with: ( ) ( ) ( )A TIS       

If scattering is negligible, for each wavelength, the values of the three unknown R(), R’() and T() 

can be extracted from the three experimental values of Rg2(), of Rg3() and of Tg2(), and hence allow 

to compute the film admittances YAand Ys(), defined in subsection 1.1.6.2 and considered here at 

the respective film interfaces with air and with the substrate by the following expressions : 
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It must be noted that the computation of R(), R’() and T() differs from that of Rg() and Tg() 

because the evaluation of YA and Ys() results from the vector sum of the field amplitudes of the 

beams bouncing back and forth from the boundaries of the coating, since the film thickness is 

supposed to be much smaller than the coherence length of the incident light. 

At wavelengths for which the substrate is slightly absorbing (s ≠0), these parameters may be 

evaluated in a similar manner, at the condition, though, that the substrate thickness ds be taken into 

account. At this condition, the expressions of the measured transmittance and reflectance become: 
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where 
4

s s


 


  is the absorption coefficient. 

 

1.4.1.4 The “V” and “W” configurations 
 

In order to correctly measure the above-mentioned quantities, it is essential to use a unique and stable 
source and the same detector to collect the flux. It is also important that the configurations for the 
test and the reference samples be as similar as possible, hence the interest of the so-called V-W 
configuration which is described in this sub-section. 
 
Figures 1.29a and 1.29b show the optical set-up of this method that can be modified from its « V » 
configuration for measuring the spectral transmittance of the sample into its “W” configuration for the 
spectral reflectance, by means of a retractable mirror, that stops the transmitted beam and redirects 
the reflected beam towards the final mirror without any modification in the external path. The angle 
of incidence is generally around 8°.  

 

  

         

Figure 1. 29a: “V”-Configuration     Figure 1. 29b: “W”-Configuration  
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Figure 1.29 c: Integrating sphere used for measuring the specular and diffuse reflectance of a rough 

surface. 

 

As shown on Figure 1.29c, the fraction Rsp() of the incident light reflected from a surface propagates 

along the direction specified by the Snell-Descartes law and corresponds to the specular reflection of 

that surface. The other fraction Rd() of the reflected light, which is scattered all over the other 

directions in space corresponds to the diffuse reflection of the surface. Consequently, the global 

reflectance Rg() of the surface is the sum of these two contributions: 

Rg() = Rsp() + Rd() (1.160) 

It can be shown that scattering of light originates from the surface roughness: if the surface is modelled 

as a Gaussian random surface of root mean square (rms) roughness r (supposed to be small compared 

to the wavelength of the incident beam), its specular reflectance is related to its global reflectance and 

to the rms roughness of the surface by the following relationship [76-78]: 

2 2 2
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sp gR R
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 
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=  (1.161),  

where  is the angle of incidence of the illuminating beam. There results that the diffuse reflectance 

of such a rough surface is: 
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Usually, the percentage of the scattering in the light being reflected by the surface is specified by the 

“Total Integrated Scattering“, or TIS of the surface, equal to:  
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R
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
   (1.163) 

1.4.1.5. Typical transmittance and reflectance outputs   
,  

It has been shown in section 1.4.1.4 that the spectral reflectance Rg() and transmittance Tg() of 

plane parallel samples can be obtained from the V-W configuration of conventional 

spectrophotometers This is illustrated in Figures 1.30a and 1.30b by the spectral transmittance graphs 

of several 2mm thick samples. Figure 1.30a concerns slabs of TAS (Te20As30Se50) and 2S1G (Ge15Sb20S65), 

and Figure 1.30b a silicon plane parallel plate, polished on both sides. The curve on Figure 1.30b shows 

the presence of the silicon cut-off wavelength at 1000 nm, below which the light is completely 

absorbed before reaching the rear interface. In the transparency domain ( > 1000 nm), some light 

reaches the second interface and rebounds from it, so that the sample reflectance is very close to

2

1

s

s

R

R
,where Rs is the reflectance at the interface air/sample. 
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Figure 1. 30: a) Spectral transmittance of two infrared bulk materials (2S1G and TAS) measured with 
the V configuration for normal incidence with air as reference. b) Spectral reflectance and 
transmittance of a thick silicon sample.  

1.4.2 Case of bulk materials 
1.4.2.1 Sample with only one flat (polished) surface 

 
In this sub-section, it is supposed that the front surface of the sample is flat and well polished, and that 
the rear one is rough (diffuse). The V-W method does not have access to the transmittance of this kind 

of sample and consequently it can only deliver the spectral reflectance Rs() of its front surface, 
without any information on its transmission and absorption of the sample itself. However, if the 
Sellmeier formula of the constitutive material is known, it should be consulted to help check the 

experimental values of Rs(), because this formula is a valuable tool for characterizing the dispersion 
of glasses and crystals. In fact, most optical glass manufacturers mention the Sellmeier coefficients of 
their materials in their catalogs. 

If one does not know the material of the sample, the K-K relationships (equations 1.28, 1.29, and 1.30) 
may be used to deduce its refractive index and extinction coefficient from the experimental values of 
the spectral reflectance (section 1.1.2.1) obtained by the W method. Since the reflectance 

measurements are realized inside a limited range (1-2), in order to correctly apply the K-K 
relationships, one must analytically extrapolate the experimental reflectance values outside of this 
range, by means of an adjusted formula, such as the following one:  

for  1 1' ( ') ( )s sR R       and for  
2 2

2

'
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s sR R


   


 
   

   (1.164), 

where a is an adjusted parameter (0< a <4). 

Alternatively, another extrapolation can be used [79]. Computational method to calculate () must 

converge with high accuracy. Since it must take into account the singularity and to divide into a number 

of domains adapted to the -broadband, for the integration calculation, the result of (ω) give directly 

the values of ns and s mentioned in section 1.1.2.1: 
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The absolute uncertainties are the following: 
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The accuracy of the K-K method is directly linked with the accuracy and value of  () for the extinction 

coefficient s.  

If we assume that the contribution of the light reflected from the (diffuse) second surface is negligible, 

it is found that the uncertainty upon the value of the refractive index is of the order of n = 2% if Rs = 

1.10-3  

 

1.4.2.2 Plane parallel plate with two polished surfaces. 
 

In this case, the light having traversed the plate may be efficiently reflected back from the rear surface 

towards the front one, as shown in Figure 1.30b, and consequently, some information can be collected 

concerning the absorption and transparency spectral domains of the material. 

The expressions 1.157 and 1.158 respectively become 1.167 and 1.168: 
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 (1. 168) 

with  

 
4

 s s





   (1. 169) 

where ds denotes the sample thickness. 

In the transparency domain where Tg0 , the refractive index ns is given by the analytic formulation 
below: 
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The associated absolute uncertainty is: 
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So it is found that 
sn  is around 0.5% and the absolute error 

gR  is of the order of 10-3. 

In the totally absorbing zone, where Tg() = 0, one can use the K-K relation mentioned in section 

1.5.1.1. For materials of low absorption such that Tg()+Rg()  1 and for samples of known thickness 
ds, analytical expressions cannot be obtained, and a computational method must be used in order to 

extract the values of the optical constants (ns and s). 

It is important to note that the sample reflectance yields information on the optical band-gap (Eg) of 

the material. The value of the corresponding cut-off wavelength g, (g (in µm)=1.234/Eg(in eV)) is 

obtained by solving 
2

2
0

g

gR

 




 
   

 [80]. 

We will see later how the optical constants (n, ) of a non-transparent substrate (or opaque metal 
layers) can be determined at normal incidence with the help of a transparent dielectric. 

1.4.3 Refractive index measurement of homogeneous dielectric thin 
films 
 

The determination of the optical parameters of weakly absorbing thin films is a problem often 

encountered in various sectors of applied physics, particularly in the micro-electronics and thin film 

technologies [81]. In order to optimize the design and fabrication of multilayers, it is essential to know 

precisely the refractive indices and extinction coefficients of the coatings. We will consider here the 

case of systems that are made up of a non-absorbing substrate coated with an absorbing thin film, as 

shown in the figure 1.31a and specified in the following way:  

1) Its materials are isotropic and homogeneous, i.e. there is no variation of the refractive index 

throughout the film; 

2) Both boundaries of the film are ideally flat, smooth and infinitely thin, i.e. without any transition 

layer; 

3) The ambient medium is non-absorbing and of refractive index n0 = 1  

4) The (non-absorbing) substrate is a plane parallel plate; Rs() and Ts() are respectively the spectral 

reflectance and transmittance of each boundary; 
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5) The global spectral quantities Tg() and Rg() measured in the V-W configuration yield the 

theoretical reflectance R() and R’() and the transmittance T() values of the coating defined by 

the equations 1.87 and 1.88. 

Figure 1.31b shows the spectral transmittance Tg1() (equation 1.150) of the bare substrate and the 

spectral transmittance Tg2() of the coated substrate. Tg2() oscillates between two envelopes 

corresponding to its maximal (Tmax) and minimal (Tmin) values . In the same figure 1.31b one notes the 

presence of four zones which are defined by the value of the ratio zA between the maximum 

transmittance of coated substrate and the transmittance of the bare substrate ( max

1

A

g

T
z

T
 ) [82]. 

These zones correspond to high (zA<0.4), moderate (0.4<zA<0.8), weak (0.8<zA<0.99) and null (zA=1) 

absorption of the sample (o). As far as reflectance is concerned, a similar behavior is observed, showing 

alternate maxima and minima. As previously described in sub-section 1.4.1.2, the oscillations observed 

between the two envelopes are  interference fringes, and the spacing of these fringes is directly linked 

to the physical thickness of the film with respect to the wavelength, as is their number, which is also 

linked to the bandwidth of the covered domain. 

We also note that the envelopes of Tmax (or Rmin) respectively converge towards the transmittance (or 

reflectance) of the bare substrate, in the case of films of weak or no absorption at all. This characteristic 

is in general the signature of a homogeneous layer. 

 

 

Figure 1.31: a) Spectral reflectance and transmittance of a bare and then coated substrate. b) Spectral 

transmittance Tg2(of a substrate with a homogeneous film, showing the envelopes of its maximum 
and minimum values.  
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Over the spectral domain without any absorption, the theory [7] demonstrates that the locations of 

minima of transmittance (or maxima of reflectance) correspond to the value
2
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admittance with:
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 (1. 172). 

And the expression of the refractive index is then:  
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  (1.173) 

In the weak absorption spectral domain of the film, the maximum value Tmax of the transmittance and 
the minimum value Rmin of the reflectance are affected. Manifacier et al. [82] demonstrated that the 
solution to the refractive index is expressed in terms of Tmax and Tmin: 

  2 2

1 1 0- ( )sn n n     (1. 174) with 
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This method consists in detecting (Fig 1.31) the wavelengths for which reflectance is maximal and 

transmittance minimal. Ohlidal [83] suggests that the index of refraction is equal to:  
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 (1. 176) 

Once the values of the refractive index are known at the wavelengths of two successive maximum 
(Tmax) or minimum (Tmin) values of the spectral transmittance, the film thickness d is given by: 
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And the extinction coefficient of the film is given by: 
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  (1.178) 

As far as uncertainties are concerned, if ns = Rmax = Tmin = 1.10-3, and if 1 = 2 = 1nm, then the 

relative uncertainties are n/n = 0.2% on the refractive index of the film and d/d = 2% on its thickness. 

Since the optical constants (n, ) are functions of wavelength, an iterative process involving smoothing 

steps of reflectance and transmittance and interpolation of the envelopes Rmax and Tmin is necessary to 

extract their values. These steps are important since the value of the wavelength corresponding to 

Rmax (or Tmin) is the key for determining the thickness of the film. In fact, in order to extract the 

refractive index, the extinction coefficient and the thickness of the film from the measurements of the 

reflectance and transmittance of the system, this method, called the “R-T method”, is an inverse 

problem. The analytical expressions of n, , and d given by equations (1.176, 1.177, and 1.178) are 

being used as starting computational solutions to extract R() and T().  



 

70 
 

The advantage of this method is that it is not based upon any approximation law for the refractive 

index (Cauchy, Sellmeier,..). However, it is necessary that the spectral reflectance graph shows at least 

one maximum in order to determine the film thickness. It must be noted that there is an infinite 

number of solutions for the refractive index values at the wavelengths corresponding to Tmax and Rmin, 

hence a very large error bar in the vicinity of these wavelengths. In contrast, the resolved value of the 

refractive index is unique at the wavelengths corresponding to Tmin and Rmax. 

In order to increase the sensitivity of the results, choosing a high refractive index for the substrate can 
be useful when characterizing low index films. The terms: “high” and “low” indices are defined in 
relationship with the reflectance of the un-coated substrate: one refers to a film as being of high index 
if the reflectance of the film is higher than that of the substrate, and vice versa. Figure 1.32 shows the 
spectral curve of the refractive index of a Zinc sulfide (ZnS) thin film in the visible range, as obtained 
by means of the R-T method. The green curve corresponds to the average value of the refractive index. 

On either side of this curve, one finds the upper and lower limits (+/- n) of the uncertainty of the 
method, computed on the basis of a homogeneous layer with uncertainty values on reflectance and 

transmittance measurements equal to R = T = 1.10-3. However, we do observe that this uncertainty 
becomes much larger in the vicinity of wavelengths where the bare and coated substrates have similar 
reflectance. 

 

Figure 1.32: Typical result given by the R-T method about the refractive index of a ZnS thin film. 

1.4.4 Case of inhomogeneous dielectric thin films  
 

Depending upon the deposition process and conditions the spectrophotometric results may show that 
the maximal transmittance and minimal reflectance values of the coated substrate do not coincide 
with the transmittance or reflectance of the un-coated substrate (fig 1.33), whereas it is found that 

the energy conservation law: R() + T() = 1, is verified. Spectrophotometry is utilized for the 
characterization of inhomogeneous films, particularly in the cases of columnar, or porous films, or of 
films with a graded composition. 
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Figure 1.33: Spectral reflectance and transmittance of an inhomogeneous film 
deposited on a transparent substrate  

 

Figure 1.34:a) Comparison between the spectral reflectance of a transparent inhomogeneous layer 
with that of a layer with a linearly graded index (positive or negative gradient) b) Simulation of a linearly 
graded index by N homogeneous layers for the case of a linear decreasing gradient (from substate to 
air). 

In order to account for the inhomogeneity of a film, one may either consider the coating as being made up 

of N homogeneous sublayers with a linear index variation, or use the R. Jacobsson method [84], which is 

based upon a matrix that takes into account the index variation with thickness. For normal incidence, 

the characteristic transfer matrix that links the electric field from one boundary to another is the 

following: 
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The values of minimal reflectance are given by: 
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It must be noticed that the Rmax values of the inhomogeneous film spectral reflectance differ from 

the Rs() values of the bare boundary. This criterion is to be used for differentiating inhomogeneous 

from homogeneous films. 

The optical admittance Ymax at Rmax is: 
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n


  (1.182) 

So the R-T method is well adapted to determining the refractive index of inhomogeneous films. With 
the starting solution to the relationship (1.176) established by Ohlidal [83], the numerical method 
explains optical properties of the film and extracts its optical constants and thickness. This method has 
been developed by J-P Borgogno and B. Lazaridès [85]. Other models exist such as that of linear 
gradient films which have been developed by Jacobsson [84] or by an approach of inverse synthesis of 
optical coating [86]. 

1.4.5 Case of metallic films deposited on a transparent substrate 
 

This section deals with moderately or highly absorbing metallic films. In the case of a completely 

opaque layer (Ts = 0), since film admittance is equal to nm-im, it is sufficient to determine Rs() and 

Rs’() in order to compute the refractive index and extinction coefficient (nm and m) of the film. If the 

thin metallic film is not quite opaque, Rs(), Rs’() and Ts() are required. Analytical expressions of the 

optical properties (Ts, Rs, Rs’, 1 s
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 (1.183)) can be found in papers of 

Heavens [74], F. Abeles [87] and S.G Tomlin [88]. 

These terms (1.183) are a priori sufficient to extract the optical constants (nm and km) and the thickness 
of the metallic film (dm), assumed to be homogeneous. If a very thin metallic film is deposited, the 

search for its parameters can be based upon a power series of (dm /). If / 1md   (1.184), a first order 
development [89], under normal incidence, allows to compute the product of the metallic layer 

parameters: 2nmmdm in equations 1.185a, 1.185b and 1.185c depending of experimental 
measurements:  
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where Rs’ (A’s) and Rs (As) are the film reflectance (absorptance) respectively on the substrate and air 
sides, and Ts is its transmittance. 
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This development shows how it is difficult to correctly evaluate the optical constants of a very 
thin metallic layer. Although the method described above delivers a partial solution, which is the 

product of nm, m, and dm, it remains inadequate. 
.  

1.4.6 Optical constant determination by the bilayer « metallic-
dielectric » method  
Since metallic layers can be inhomogeneous, depending upon their deposition process and conditions, 
there is a need for a more efficient method dedicated to determine their optical properties. That is the 
goal of the bilayer “metallic –dielectric” method, exposed below in two modes: the “Rs-Rc method” 
for opaque metallic films, and the “RsTsRcTc method” for non opaque ones. 

1.4.6.1 The “Rs-Rc method” for opaque metallic films 
 

Let the thick and opaque metallic layer to be characterized, of optical constants nm and km, be deposited 
upon a transparent substrate, be considered as a substrate. The spectral reflectance of its front surface 

Rs() is measured, and the spectral transmittance of its front and rear surfaces, Ts(), is set equal to 

0. Then, a dielectric film is deposited on top of the metallic film, and the spectral reflectance Rc() of 
the coated metallic film is measured under the hypothesis that there is no physico-chemical interaction 
at the interface metal-dielectric. Figure 1.35a shows the two phases of the Rs-Rc method, and Figure 
1.35b the typical corresponding spectral reflectance graphs. 

 

 

 

Figure 1.35: a) The two configurations of the Rs-Rc method b) corresponding spectral 

reflectance Rs() of metallic film alone, and Rc() of the same metallic film coated with a 
dielectric film. 

At each wavelength, one can write the following set of equations: 
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with 
2

d d dn d





  the phase shift introduced by the dielectric film of thickness dd. 

 

One will notice that, in the nm, m plane, equation (1.186) represents a circle centered at the point of 

coordinates 
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 ; equation 1.187 is 

that of a straight line ( 𝑚 =  𝑚0
 + 𝐴 𝑛𝑚 

 ) representative of a linear dependence of m with respect 

to nm of slope A The solution to the problem of index determination is given by the coordinates of the 
intersection points between the circle and the straight line. As shown by Figure 1.36, there may be 
several solutions. One way to eliminate this ambiguity is to make measurements on two systems 
coated with layers of the same metal but of different dielectric thicknesses, then the solution is unique.  

 

Figure 1.36: Graphical representation of the search for solutions of the optical constants of a metallic 

substrate or opaque metal layer (nm=2, m=4) and nd =2.35 for two phase retardations d = /4 and d 

= 3/4. 

The measurements should be done for a large number of wavelengths over the spectral range of 

interest.  

It can been shown, at the wavelengths where Rs=Rc, that d = p  (p integer) for the wavelengths of 
intersection where the slope of the Rc curve is positive (figure 1.35b). For these wavelengths, the 
equation 1.187 shows that the extinction coefficient 

m  . 

If the wavelength values for which d = (p+1/2)  the formulae 1.187 allows to determine the 

refractive index nm and the extinction coefficient m by: 
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These expressions of refractive index and extinction coefficient can be considered as the starting 
solutions for iterative calculations.   

  

Considering realistic values of uncertainties upon the reflectance, the reflective index and the 
thickness of the dielectric layer (such as: 0.1%

s cR R   , 0.2%
dn   and 1.5nmd  ), the 

resulting rms uncertainties on nm and m are similar, between 1% and 2%.  

 

If this method is less accurate than the one based upon the K-K relationships, it has the following 

advantages:  

- The investigated spectral range can be limited at will 

- No analytical extrapolation, as is the case for K-K relationships 

- No use of approximate laws for the optical constants, as is the case in R-T method 

- In situ reflectance measurements (Rs and Rc) can be performed 

- Method applicable to materials with strong to moderate absorption zones 

The disadvantages of this method are: 

 The dielectric film must be homogeneous 

 The dielectric layer parameters (nd and d) must be precisely characterized 

 Two reflectance values must be measured 

 The method accuracy is low for weakly absorbing layers 

 The method is critical if one needs to know the wavelength values accurately  

 Improving the accuracy necessitates the use of high index dielectrics 

; 

This “RsRc method” has been successfully used to measure the refractive indices of materials such as 

aluminum, chromium, hafnium, and nickel [92]. Figure 1.33 shows the experimental characterization 

of these opaque metallic films [92] with this method.  

For each of these metals, a high refractive index (> 2) dielectric layer was associated with the metallic 

film. In the case of aluminum, nickel and chromium, the films were deposited via the electron beam 

deposition (EBD) technology and a BAK 600 coating system, and then covered by a ZnS dielectric 

coating. In the case of Hafnium, the dielectric coating was in Hafnium dioxide (HfO2), both films being 

deposited with the Reactive Low Voltage Ion Plating (RLVIP) technology and a BAK 800 coating system. 

The optical measurements were carried out using the V-W configuration (incidence angle of 8°) of a 

Perkin-Elmer spectrophotometer model LAMBDA-19. Figure 1.38 shows the spectral curves for each 

one of these bilayers, i.e. Rs() (metallic layer alone) and Rc() (metal + dielectric layers), along with 

the optical constants (nm and m) of the opaque metallic films resulting from the use of the RsRc 

method. These results are in agreement with the ones obtained on bulk materials [Hass[94], Palik[21]]. 
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Figure 1.37: Experimental characterization of opaque metallic films by the Rs-Rc method: Aluminum, 
Chromium, Hafnium, Nickel 

 
 

1.4.6.2 Case of metal-dielectric bilayer with non-opaque metallic layers 
 

In this case, the metallic film may be traversed by some fraction of the illuminating beam, and its 

thickness dm plays an important role. 

In constrast to the Rs-Rc method, as described by figure 1.38, 4 spectral measurements (Rs(), Ts(), 

Rc(), Tc()) are necessary to obtain the 3 unknown parameters (i.e. nm, m, and dm). Figure 1.39 shows 
the corresponding schematic diagram. 
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Figure 1.38: Schematic diagram showing the parameters and measured quantities of a bilayer 
system: a) transparent substrate coated with a non totally opaque metallic film (b) same 
system covered with an additional dielectric layer. 
 
 

Electromagnetic theory shows that the potential transmittance, , of any element of a coating system 
is defined as the ratio of the output to the input irradiances, the input being the net irradiance rather 

than the incident: 
1

T T

R
 


. So: 

a) Potential transmittance is equal to 100% only if all constituents (coatings and substrate) are 
non absorbing (which is the case of dielectric film). 

b) If the system is made up of transparent substrate with of non opaque metallic layer: 

1

T s
s

s

T

R
 


 where Ts and Rs are respectively the transmittance and the reflectance of the 

system (fig1.38a). 
c) After deposition of the non absorbing dielectric, for the bilayer (metal+dielectric) the potential 

transmittance is given by 
1

T Tc
c s

c

T

R
  


 (figure 1.38b) 

Now, if one considers the case of a thin metallic film, 1md


  the Wolter relationships (equation 

1.185) give important information on the optical constants and thickness of the metallic film. 
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   (1.190) 

where As and Ac are respectively the absorptances of the following coatings: metal alone and metal + 

dielectric. The most important information from relation 1.190 is that, if T T

s c  , one may consider 

that there exists some “chemical interaction” between metallic and dielectric film, at interface and/or 
bulk film. 

Now, if it is assumed that there is no such interaction, on may consider that optical admittance 
of thin metallic film is , Ym=Xm-iZm, where Xm and Zm are functions of the optical constants and 

thickness of the metallic film. In that case Xm stands for nm and Zm stands for m in equations 1.186 
and 1.187. 

In the case of very thin metallic films, it is more difficult to dissociate the three parameters nm, 

m and dm. This can be done by numerical calculations [95] with a complex strategy using different 
merit functions of Ts, Rs, Rc, and Tc [91-92], where: 

- Rs and Ts are the air-side reflectance and transmittance of the single metallic film; 

- Rc and Tc are the air-side reflectance and transmittance after deposition of the dielectric layer 
on metallic film. 

For information, the strategy to determine optical constants is based on the use of the expressions of 
(1-R)/T and (1+R)/T [7-88-90-92]. 

This strategy has been used for nickel films of different thicknesses, obtained by an electron 
beam deposition technique: the results delivered by the numerical algorithm for these three 
parameters are satisfactory for all thicknesses. 
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However, a notable discrepancy is observed for each parameter (nm, m) if one compares the 
results obtained for different thicknesses, which means that metallic films are inhomogeneous [91-
92]. 

A simulation (figure 1.39) based upon the change in compactness inside a metallic layer [91], 
including the Maxwell-Garnett model, has been successfully developed to fabricate a broadband 
absorber (absorptance A > 99%) which operates over the visible [91-94]. 

 

Figure 1.39: Simulation of optical constants, versus thickness of a Nickel layer at= 600nm [91] 

 

In conclusion of this section, measuring the refractive index is a more difficult task for a non-opaque 
metallic film than for a dielectric film. Furthermore, it is important to note that the layer model must 
be chosen in connection with its deposition technology, and that the best results are obtained with 
homogeneous layers. 

Spectrophotometry is a simple tool to use, well adapted to the ex situ and in situ characterization of 
thin films and for the determination of optical constants. It provides a guidance for choosing the 
appropriate layer model. Every three years, at its Optical Interference Coatings conference, 
international optical coating community launches a measurement challenge [96-99].  

 :.  

  

 

 

 

 



 

79 
 

 

 

Bibliography 
[1] www.schott.com 

[2] N. G. Van Kampen, F. Lurçat, ‟Causalité et relations de Kramers-Kronig,” Le journal de Physique et 

le Radium, 22, 179-191 (1961). Trad. Nederlands Tidschrift voor Natuurkunde, 24, 1-14 en 29-42 

(1958). 

[3] V. Lucarini, J. J. Saarinen, K.-E.Peiponen, M. E. Vartiainen, Kramers-Kronig relations in optical 

materials (Springer, Verlag, Berlin Heidelberg 2005). 

[4] J. F. Ogilvie, G. J. Fee, ‟Equivalence of Kramers-Kronig and Fourier transforms to convert between 

optical dispersion and optical spectra,” MATCH Comm. Math. Comput. Chem. 69, 249-262 (2013). 

[5] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and 

diffraction of light (Cambridge University Press, 1999). 

[6] A. Hadni, Essentials of modern physics applied to the study of the infrared (Pergamon Press, Oxford 

1967) 

[7] H. A Macleod, Thin-film optical filters Fourth Edition (CRC Press, Taylor&Francis Group, Boca Raton 

London New-York, 2010)   

[8] F. Sh, Forman, AV Tikhonravov, Basics of optics of multilayer systems (Gif-sur-Yvette, Edition 

Frontieres, 1992) 

[9] PTB Website, https://www.ptb.de/cms/en.html (2015) 

[10] D.Tentori, J.R. Lerma: “Refractometry by minimum deviation accuracy analysis”, Opt. Eng. 29(2),  

160 – 168 (1990) 

[11] D.B. Leviton, B.J. Frey, T.K. Kvamme: “High accuracy, absolute, cryogenic refractive index 

measurements of infrared lens materials for JWST NIRcam using CHARMS”, Proc. SPIE 5904 (2005) 

[12] B.J. Frey, D.B. Leviton: “ CHARMS: the cryogenic, High accuracy refraction measuring system NIST 

High accuracy refractometry-UV/vis”, http://www.nist.gov/ (2015) 

[13] C. Véret: Réfractométrie, Article R 6300 Techniques de l’ingénieur, Volume «  Mesures et 

contrôle » (1995). 

[14] J. Mangin, ‟Indice de réfraction des matériaux optiques massifs”, CNRS/ROP Workshop on 

metrology of refractive indices, Paris, 24-25/11/2008 The corresponding original lecture has been 

integrally reproduced one year later by one of the present co-authors (J.-L. Meyzonnette) at URL 

http://www.rop.cnrs.fr/IMG/pdf/Indices_de_refraction.pdf.(2009) . 

[15] R.M.A. Azzam, N.M. Bashara: Ellipsometry and polarized light. (Elsevier, Amsterdam, 1987) 
 

http://www.schott.com/
https://www.ptb.de/cms/en.html
http://www.nist.gov/
http://www.rop.cnrs.fr/IMG/pdf/Indices_de_refraction.pdf
http://www.rop.cnrs.fr/IMG/pdf/Indices_de_refraction.pdf


 

80 
 

[16] G. Tompkins, and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide, 
(Wiley, New York, 1999). 
 
[17] H. G. Tompkins and E. A. Irene (eds.), Handbook of Ellipsometry, (William Andrew, Norwich, New 
York, 2005). 
 
[18] A. Rothen, “The ellipsometer, an apparatus to measure thicknesses of thin surface films”, Rev. 
Sci. Instrum., 16, 26–30 (1945) htpp://doi.org/10.1063/1.1770315 
 
[19] F. Abeles, “Surface electromagnetic waves ellipsometry”, Surface Science 56: 237-251 (1976) 
 
[20] D. E. Aspnes, J. B. Theeten, and F. Hottier. "Investigation of effective-medium models of 
microscopic surface roughness by spectroscopic ellipsometry." Physical Review B 20.8 3292 (1979) 
 
[21] E.D Palik, Handbook of Optical Constants of Solids, (Academic Press, New-York, 1985) 
 
[22] J. A. Faucher, George M. McManus, and Hans J. Trurnit: “Simplified Treatment of Ellipsometry” 
JOSA Vol. 48, Issue 1,  pp. 51-54  (1958) 
 
[23] S. Huard, Polarisation de la lumière (Ed Masson 1994) 
 
[24] R.C Jones, “A new calculus for the treatment of optical systems Part I”, JOSA, 31, 486-493 (1941) 
 
[25] R.C Jones, “A new calculus for the treatment of optical systems Part III”, JOSA, 31, 500-503 
(1941) 
 
[26] R.C Jones, “A new calculus for the treatment of optical systems Part IV”, JOSA, 32, 488-493 
(1942) 
 
[27] D.E. Aspnes, “ Spectroscopic ellipsometry — Past, present, and future”, Thin Solid Films 571 
(2014) 334–344 
 
[28] JM Frigerio:”Détermination des indices par ellipsométrie : Principes théoriques et limitations” 
Workshop MRCT-CNRS http://www.rop.cnrs.fr/spip.php?article349 (2008 and 2009) 
 
[29] F. Bernoux, J. P. Piel, B. Castellon, C. Defranoux, J. H. Lecat, P. Boher, & J. L. Stehle, Ellipsométrie-
Théorie. Traité Mesures et Contrôles, Techniques de l'Ingénieur, 1-16. (2003) 
 

[30] L. Prod’homme, ‟A new approach to the thermal change in the refractive index with 

temperature,” Phys. Chem. Glasses 1, 145-153 (1960). 

[31] A. J. Bosman, E. E Havinga, ‟Temperature dependence of dielectric constants of cubic ionic 

compounds,” Phys. Rev. 129, 1593-1600 (1963). 

[32].E. E. Havinga, A. J. Bosman, ‟Temperature dependence of dielectric constant of crystals with NaCl 

and CsCl structure,” Phys. Rev. 140, A292-A303 (1965). 

[33] J. M. Jewell, ‟Model for the thermo-optic behavior of sodium borate and aluminosilicate,” J. Non-

Cryst. Solids,. 146, 145-153 (1992). 

http://www.rop.cnrs.fr/spip.php?article349


 

81 
 

[34] G. Gosh, ‟Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical 

glasses,” Appl. Opt. 36, 1540-1546 (1997). 

[35] Zhang Ting, Wu Meng-Qiang, Zhang Shu-Ren, Xiong Jie, Wang Jin-Ming, Zhang Da-Hai, He Feng-

Mei, Li Zhong-Ping, ‟Permittivity and its temperature dependence in hexagonal structure BN 

dominated by the local electric field,” Chin. Phys. B 21, 077701-1_077701-8 (2012). 

[36] G. N. Ramachandran, ‟Thermo-optic of solids,” Proc. Indian Acad. Sci., 25A, 498-515 (1947); 

Ibidem, 25A, 280-286 (1947). 

[37] J. E. Rapp, H. D. Merchant, ‟Thermal expansion of alkali halides from 70 to 570 K,” J. Appl. Phys. 

44, 3919-3923 (1973). 

[38 ] S. Kumar, ‟Thermal expansion of simple ionic crystals,” Proc. Nat. Inst. Sc. India A25 44, 364-372 

(1959). 

[39] D. B. Sirdeshmukh, L. Sirdeshmukh, K. G. Subhadra, Alkali halides: a handbok of physical 

properties, (Springer-Verlag, Berlin Heidelberg, 2001). 

[40] H. H. Li, ‟Refractive index of alkali halides and its temperature derivatives,” J. Phys. Chem. Ref. 

Data 5, 329-528 (1976). 

[41] M. Lallemand, J. Martinet, ‟Influence de la température sur le coefficient thermo-optique des 

fluorures alcalino-terreux,” Rev. Phys. Appl. 17, 111-117 (1982). 

[42] K. F. Trost, ‟Die thermische Ausdehnung der Alkalihalogenide vom NaCl-Typ bei hohen und tiefen 

Temperaturen,” Z. Naturforschg. 18b, 662-664 (1963). 

[43] https://www.corning.com/ 

[44] http://www.korth.de/ 

[45] www.ohara-inc.co.jp 

[46] www.schott.com/advanced_optics 

[47] www.vitron.de/english/ 

[48] http://www.hoyaoptics.com 

[49] www.hikari-g.co.jp 

 [50] www.opticalmaterials.umicore.com 

[51] www.amorphousmaterials.com 

[52] https://www.fiberlabs-inc.com/ 

 

[53] D. B. Leviton, B. J. Frey, ‟Temperature dependent absolute refractive index measurements of fused 

silica,” Proc.SPIE 6273, 6273K (11p.) (2006). 

https://www.corning.com/
http://www.korth.de/
http://www.ohara-inc.co.jp/
http://www.schott.com/advanced_optics
http://www.hoyaoptics.com/
http://www.hikari-g.co.jp/
http://www.opticalmaterials.umicore.com/
http://www.amorphousmaterials.com/
https://www.fiberlabs-inc.com/


 

82 
 

[54] B. D. Frey, D. B. Leviton, ‟Automation, operation and data analysis in the cryogenic, high accuracy, 

refraction measuring system (CHARMS),” Proc. SPIE 5904,212-221 (2005). 

[55] J. F. Nye, Physical properties of crystals (Oxford, Clarendon Press, 1976). 

[56] S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, 

J. Heningsen, A. Yelisseiev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, V. Sirutkaitis, ‟Optical, 

vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate,” J. 

Opt. Soc. Am. B, 21, 1981-2007 (2004). 

[57] J. Mangin, G. Mennerat, G. Gadret, V. Badikov, J.-C. de Miscault, ‟Comprehensive formulation of 

the temperature dependence dispersion of optical materials; illustration with case of temperature 

tuning of a mid-IR HgGa2S4 OPO,” J. Opt. Soc. Am. B, 26, 1702-1709 (2009). 

[58] J. Mangin, P. Strimer, L. Lahlou-Kassi, ‟An interferometric dilatometer for the determination of 

thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826-834 (1993). 

[59] G. E. Merritt, ‟The interference method of measuring thermal expansion,” J. Res. Nat. Bur. Stand. 

(U. S.), 10, 59-76 (1932). 

[60] R. M. Walker, G. W. Cleek, I. H. Malitson, M. J. Dodge, T. A. Hahn, ‟Optical and mechanical 

properties of some neodymium-doped glasses,” J. Res. Nat. Bur. Stand. (U. S.), 75A, 163-174 

(1971). 

[61] R. M. Walker, G. W. Cleek, ‟Refractive index of fused silica at low temperatures,” J. Res. Nat. Bur. 

Stand. (U. S.), 75A, 279-281 (1971). 

[62] R. M. Walker, G. W. Cleek, ‟The effect of temperature and pressure on the refractive index of some 

oxide glasses,” J. Res. Nat. Bur. Stand. (U. S.), 77A, 755-763 (1973). 

[63] M. Okaji, H. Imai, ‟A practical measurement system for accurate determination of linear thermal 

expansion coefficients,” J. Phys. E: Sci. Instrum. 17, 669-673 (1984). 

[64] P. Hariharan, D. Sen, ‟Double-passed two-beam interferometers –II- Effect of specimen absorption 

and finite path difference,” J. Opt. Soc. Am. 51, 1212-1218 (1961). 

[65] A. P. Müller, A. Cezairlaiyan, ‟Interferometric technique for the subsecond measurement of 

thermal expansion at high temperatures: application to refractory metals,” Int. J. of Thermophys. 

12,643-656 (1991). 

[66] G. Gosh, ‟Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. 

Solids 189, 191-196 (1995). 

[67] W.J. Tropf, M. E. Thomas, T. J. Harris, ‟Optical and physical properties of crystals and glasses,” in 

Handbook of optics vol II, part 4 ch. 33, (Mc-Graw-Hill Inc. 1995). 

[68] M. V. Hobden, J. Warner, ‟The temperature dependence of the refractive indices of pure lithium 

niobate”, Phys. Lett., 22, 243-244 (1966). 

https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_s/J.+Mangin
https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_s/Gabriel+Mennerat
https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_s/Valery+Badikov
https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_s/Jean-Claude+De+Miscault


 

83 
 

[69] D. H. Jundt, ‟Temperature-dependent Sellmeier equation for the index of refraction, ne, in 

congruent lithium niobate,” Opt. Lett. 22, 1553-1555 (1997). 

[70] I. Dolev A. Ganany-Padowicz O. Gayer A. Arie·J. Mangin G. Gadret, ‟Linear and nonlinear optical 
properties of MgO:LiTaO3,” Appl Phys B 96, 423–432, (2009). 

[71] J. Mangin, G Mennerat, P Villeval, ‟Thermal expansion, normalized thermo-optic-coefficients, and 

condition for second harmonic generation of a Nd:YAG laser with wide temperature bandwidth in 

RbTiOPO4,” J. Opt. Soc. Am. B, 28, 873-881 (2011). 

[72] T. Mikami, T. Okamoto, K. Kato, ‟Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” 

Opt. Mat. 31, 1628-1630 (2009). 

[73] W. Tropf, M. E. Thomas, ‟Infrared refractive index and thermo-optic coefficient measurement at 

APL,” Johns Hopkins APL Tecn. Dig. 19, 293-298 (1998). 

[74] OS Heavens : Measurement of optical constants of thin films, - Physics of Thin Films, (Academic 

Press New York, 1964) 

[75] M. Cathelinaud : Les méthodes spectrophotométriques pour la détermination d’indice de couches 

minces, CNRS/MRCT/ROP Workshop on metrology of refractive indices, Paris, November 2008 and 

2009  http://www.rop.cnrs.fr/spip.php?article349 

[76] P. Bousquet, F. Flory, and P. Roche : “Scattering from multilayer thin films: theory and experiment” 

Journal of the Optical Society of America Vol. 71, Issue 9,   pp. 1115-1123  (1981) 

[77] A. Piegari, F. Flory: Optical thin films and coatings: From materials to applications (Woodhead 

Publishing, Oxford, Cambridge, 2013)  

[78] C. Amra: “Light scattering from multilayer optics. I. Tools of investigation” - JOSA A 11, pp. 197-

210 (1994) 

[79] S. Adachi: “Model dielectric constants of GaP, GaAs, Gasb, InP, InAs, and Insb”, Physical Review B 

Vol 35, n°14, 7454-7463, 1987 

[80] V. Kumar, S.K. Sharma,T.P Sharma, V. Singh: “Band gap determination in thick films from 

reflectance measurements” Optical Material 12,115-119, (1999) 

[81]  P.S. Hauge:: “Polycrystalline silicon film thickness measurement from analysis of visible reflectance 

spectra “,JOSA, 69(8), 1143-1152 (1979) J. Opt. Soc. Am. 69, 1143 (1979) 

[82] J C. Manifacier, J. Gassiot, J P. Fillard :” A simple method for the determination of the optical 

constants, n, k and the thickness of a weakly absorbing thin film”, J. Phys. E Sci. Instrum 9, 1002-

1004, (1976) 

[83] I. Ohlidal, K. Navrfitil, and E. Schmidt: “Simple Method for the Complete Optical Analysis of Very 

Thick and Weakly Absorbing Films”, Appl. Phys. A 29, 157-162 (1982) 

[84] R. Jacobsson : “Inhomogeneous and coevaporated homogeneous films for optical applications”, 

Physics of Thin Films, (Academic Press, New York,1975) 



 

84 
 

[85] J. P. Borgogno, B. Lazarides, and E. Pelletier : “Automatic determination of the optical constants 

of inhomogeneous thin films” Applied Optics Vol. 21,pp. 4020-4029 (1982) 

[86] J.A Dobrowolski, F.C Ho, A. Waldorf :” Determination of optical constants of thin film coating 
materials based on inverse synthesis”, - Applied optics,  Vol. 22,  Issue 20, pp. 3191-3200 (1983) 
 
[87] F. Abeles: Methods for determining optical parameters of thin films - – in Progress in optics (E. 

Wolf Ed) vol2, (Elsevier, Amsterdam, 1963) 

[88] SG Tomlin:” Optical reflection and transmission formulae for thin film”, J. Phys A Appl. Phys 

1667-1671, (1968) 

[89] H. Wolter: “Zur Optik dünner Metallfilme“, Zeitschrift für Physik, Volume 105, Issue 5, pp 269-

308, May 1937 

[90] R. E. Denton, R. D. Campbell and S G Tomlin: “The determination of the optical constants of thin 

films from measurements of reflectance and transmittance at normal incidence” Journal of Physics D: 

Applied Physics, Volume 5, Number 4, 852-863, 1972 

 [91] M. Cathelinaud, F. Lemarquis, C. Amra : “Index determination of opaque and semitransparent 

metallic films: application to light absorbers”, - Applied optics, 2002 

[92] M. Cathelinaud , F. Lemarquis , J. Loesel, B. Cousin : “Metal-dielectric light absorbers 

manufactured by ion plating” Proc. SPIE 5250, Advances in Optical Thin Films, 511 February 25, 2004  

[93] B. Badoil, M. Cathelinaud, F. Lemarchand, F. Lemarquis, M. Lequime,”Development of a Real-

Time Reflectance and Transmittance Monitoring System for the Manufacturing of Metal-Dielectric 

Light Absorber”, Sixth International Conference on Space Optics, Proceedings of ESA/CNES ICSO 2006 

[94] G. Hass, L. Hadley : Optical Constants of metals in American Institute of Physics Handbook Gray 

D E Ed (MCGraw, New York /Londen/ Hill 1972) 

[95] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., Numerical Recipes in FORTRAN: 
The Art of Scientific Computing (Cambridge Univ. Press , Cambridge) 1992 
 
[96] D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. 
Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. 
Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, and T. F. Thonn : 
“Multiple determination of the optical constants of thin-film coating materials” Applied Optics vol 23 
n°20 pp. 3571-3596 (1984) 
 
[97] A Duparré and D. Ristau: “Optical interference coatings” 2007 Measurement problem Applied 

Optics Vol 47 n°13 PP C179-C184 

[98] A Duparré and D. Ristau: “Optical interference coatings measurement problem” 2013 Applied 

Optics Vol 53 n°4 PP A281-A286 (2014) 

[99] F. Lemarchand, C. Deumié, M. Zerrad, L. Abel-Tiberini, B. Bertussi, G. Georges, B. Lazaridès, M. 

Cathelinaud, M. Lequime, and C. Amra: “Optical characterization of an unknown single layer: Institut 

http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/0022-3727/5
http://iopscience.iop.org/0022-3727/5/4
https://www.osapublishing.org/abstract.cfm?uri=ao-41-13-2546
https://www.osapublishing.org/abstract.cfm?uri=ao-41-13-2546
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.513409&Name=Michel+Cathelinaud
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.513409&Name=Frederic+Lemarquis
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.513409&Name=Jacques+Loesel
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.513409&Name=Bernard+Cousin


 

85 
 

Fresnel contribution to the Optical Interference Coatings 2004 Topical Meeting Measurement 

Problem”Applied Optics Vol 45 n°7 pp 1312-1318 (2006) 

 

 

Biography of Authors 

Jean-Louis Meyzonnette was born in 1945. He got his Master’s and PhD degrees 

respectively in 1968 from the Institut d’Optique (Orsay, France) and in 1975 from the Institute of Optics 

(University of Rochester, USA). From 1975 to 1990, he worked as a research scientist in the Optronics 

department of then Thomson-CSF (now Thales) Avionics Division, where he was a team leader in the 

design and test of infra-red, night vision and laser devices for defense applications, a large part of his 

research being dedicated to the design of coherent laser radars and active imaging sensors. In 1990, 

sponsored by an association set up by the major French optical companies in order to tighten the ties 

between the optics/photonics industry and the Institut d’Optique, he joined that academic Institution 

as a professor in instrumental optics. Since that date, he has been teaching numerous master students 

and engineers or technicians from industry with courses on optical radiometry, detection, and electro-

optical system design. He has also been participating in diverse infrared metrological projects, and 

advising a dozen PhD candidates in optical instrumentation. He retired from Institut d’Optique in 2012 

and acts now as an independent consultant. 

 

 

Jacques MANGIN received Ph. D. and Doctorate of Sciences degrees at the University 

of Nancy, France, in 1975 and 1981 respectively, and where he joined the Far-Infrared Laboratory as 

Researcher at the National Center of Scientific Research (CNRS). He held a post doctoral position in 

Lawrence Berkeley National Laboratory, University of California Berkeley in 1984-1985, working in 

very-low temperature detectors (bolometers) and optical properties of materials at cryogenic 

temperatures for space applications. In 1996 he joined as research manager the department of Optical 

Materials at LICB, Burgundy University at Dijon, where he was in charge of the growth of optical 

crystals, solid-state physics, metrology of thermo- and electro-optical properties of materials and 

nonlinear optics. He acts currently as scientific expert in several civil and/or defense projects for proper 



 

86 
 

implementation of crucial optical components. He is also co-founder of Cristal Laser Company (1990), 

leader in the development of nonlinear optical crystals like LBO and crystals of the KTiOPO4 family. 

Michel Cathelinaud CNRS Research Engineer, Ph. D at the University of Aix-

Marseille, France in 2000, has over 20-year experiences in the design, manufacture and 

characterization of optical coatings for terrestrial and space applications (Fresnel Institute Marseille 

1991-2007). From 2005 to 2007, he was responsible of technologic network in optic and photonic of 

the CNRS. He joined the ISCR in October 2013 to work on chalcogenide thin films after 6-year service 

as Deputy Head of Mission for Resources and Skills in Technology (MRCT Paris) of CNRS (DGDS / MI) 

from 2008 to 2013. 

 


