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A B S T R A C T

Neural oscillations are thought to provide a cyclic time frame for orchestrating brain computations. Following this
assumption, midfrontal theta oscillations have recently been proposed to temporally organize brain computations
during conflict processing. Using a multivariate analysis approach, we show that brain-behavior relationships
during conflict tasks are modulated according to the phase of ongoing endogenous midfrontal theta oscillations
recorded by scalp EEG. We found reproducible results in two independent datasets, using two different conflict
tasks: brain-behavior relationships (correlation between reaction time and theta power) were theta phase-
dependent in a subject-specific manner, and these “behaviorally optimal” theta phases were also associated
with fronto-parietal cross-frequency dynamics emerging as theta phase-locked beta power bursts. These effects
were present regardless of the strength of conflict. Thus, these results provide empirical evidence that midfrontal
theta oscillations are involved in cyclically orchestrating brain computations likely related to response execution
during the tasks rather than purely related to conflict processing. More generally, this study supports the hy-
pothesis that phase-based computation is an important mechanism giving rise to cognitive processing.
1. Introduction

In recent years, cognitive neuroscientists have increasingly relied on
the analysis of neural oscillations measured by M/EEG, as they appear to
be a well-suited brain phenomenon to bridge behavioral observations
with the neurophysiological mechanisms of brain computation (Buzs�aki
and Draguhn, 2004; Wang, 2010; Cohen, 2014a). An important
assumption about the role of neural oscillations that fuels current
research is that they provide a temporal reference for brain computa-
tions, with narrow time windows grouping neuronal activities (e.g.
neuronal spiking or sensitivity to inputs; Fries, 2005) that allow effective
brain computations for cognitive functions. Evidence in favor of that
claim comes notably from the phenomenon of phase-amplitude cross--
frequency coupling, and from direct observation of the coordination of
neuronal firing according to the timing of oscillations (Canolty and
Knight, 2010; Mizuseki et al., 2009). In other words, if neural oscillations
are important for neural computations that subserves cognition, the
phase of those oscillations should shape the timing of computations
(Maris et al., 2016; Bonnefond et al., 2017; Jensen et al., 2014).
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The study of cognitive control, and more specifically, of response
conflict processing, has benefited from the analytic and theoretical
framework provided by neural oscillations. Conflict processing refers to
the ability to select a relevant response among competing alternatives
that can be automatically activated. It encompasses action selection and
inhibition mechanisms and is usually studied using response conflict
tasks such as the Simon task (van den Wildenberg et al., 2010). When
facing response conflict, an increase in theta (~6Hz) narrowband power
is invariably observed around midfrontal electrodes (McDermott et al.,
2017; Jiang et al., 2018; Past€otter et al., 2013; Cohen and Cavanagh,
2011; Nigbur et al., 2011). Importantly, this increase in power is
demonstrated to reflect non-phase locked activity, suggesting that
response conflict modulates the activity of ongoing endogenous theta
oscillations in the prefrontal cortex (Cohen and Donner, 2013). Mid-
frontal theta (also sometimes called frontal midline theta) is a robust
marker of conflict detection and resolution, as conflict-related theta ef-
fects have high statistical power, show strong correlations with task
performance (reaction time), and relate to diseases such as Parkinson’s
and OCD (Cohen and Cavanagh, 2011; Cohen and van Gaal, 2014;
ter; Donders Institute for Neuroscience.
ez).
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Cavanagh et al., 2011; Min et al., 2011). Midfrontal theta phase is also
demonstrated to be relevant for conflict processing, as documented by
the numerous reports of conflict-modulated changes in phase synchro-
nization between midfrontal and prefrontal and parietal regions, which
suggest the existence of a fronto-parietal network of conflict processing
(Vissers et al., 2018; van Driel et al., 2015; Anguera et al., 2013; Cohen
and van Gaal, 2013; Cohen and Ridderinkhof, 2013; Hanslmayr et al.,
2008).

On the other hand, detailed predictions about the potential compu-
tational roles of midfrontal theta have remained elusive to the macro-
scopic scale of non-invasive human EEG, which has limited the ability to
link narrowband phases to specific aspects of behavior or neural com-
putations. One key prediction for midfrontal theta phase in conflict
processing is that it provides a rhythmic structure for alternately moni-
toring behavior and signaling the need for control (Cohen, 2014a). In
others words, this prediction implies that monitoring and signaling
processes during cognitive control are more efficient at certain theta
phases.

Here we provide novel evidence for a phase-specific relationship
between task performance (reaction time) and midfrontal theta, using
guided multivariate spatial filtering techniques to maximize the signal-
to-noise ratio of single-trial data. We found that theta power-reaction
time correlations are maximal at specific theta phase regions that were
characteristic to each individual, and that predicted the timing of beta-
band (~20Hz) bursts in a fronto-parietal network, as revealed by
multivariate phase-amplitude coupling analyses. Contrary to our hy-
pothesis, these theta phase-dependent effects were not specific to con-
ditions that maximized response conflict, but rather reflected the
temporal organization of a more general mechanism likely related to
response execution occurring during the conflict tasks we used. All of the
key findings were replicated in an independent dataset (Gulbinaite et al.,
2014). The two datasets were acquired using different conflict tasks
(Eriksen flanker task and Simon task; total N¼ 62) in two different
research centers, supporting the interpretation that these findings reflect
general neural signatures of cognitive control over behavior.

1.1. Methods

We separately applied the same analysis methods to two existing
datasets (available at : http://data.donders.ru.nl/) from studies using
response conflict tasks. Here we briefly describe the key features of these
two tasks; further details can be found in Cohen (2015) and Gulbinaite
et al. (2014).

1.2. Participants

30 students from the University of Amsterdam volunteered in study 1
(Cohen, 2015). Two datasets were excluded because of excessive EEG
artifacts. 34 students from the University of Groningen participated in
study 2 (Gulbinaite et al., 2014). In both studies, participants had normal
2

or corrected-to-normal vision. The experiments were conducted in
accordance with the declaration of Helsinki and with approval of local
ethics committees. Written informed consent was obtained from all
participants prior to the experiments.

Study 1 used a modified version of the Eriksen flanker task (Appel-
baum et al., 2011) in which participants had to respond to a central letter
while ignoring surrounding letters that acted as distractors. The strength
of response conflict was manipulated in three different types of trials
(Fig. 1A): (i) without conflict (the target and surrounding letters were
identical), (ii) partial conflict (only one side of the target had a different
set of letters), and full conflict (all surrounding letters differed from the
central letter). Each participant underwent approximately 1500 trials.
Stimulus display lasted for 200ms and participants had 1200ms to
respond using the left or right thumb. The two stimulus letters were
mapped on two responses buttons. The next trial occurred after a
1200ms inter-trial interval.

Study 2 used a Simon task with color circles as stimuli. Participants
had to press a left or right button according to the color of the stimulus
while ignoring its position. On congruent trials (i.e. without conflict),
color and location of the stimulus indicated the same response. On
incongruent trials (i.e. conflict trials), color and location indicated
opposite responses. Stimuli were displayed until response or after a
1500ms delay. After response, a fixation cross was displayed for 1000ms
before the start of the next trial. The task comprised 70 practice trials and
1024 experimental trials with the same number of possible congruency
sequences: cC (congruent following congruent), cI (incongruent
following congruent), iC (congruent following incongruent), iI (incon-
gruent following incongruent).
1.3. EEG acquisition and preprocessing

In study 1, EEG data were recorded at 512Hz from 64 electrodes
placed according to the international 10–20 system. Data were refer-
enced offline to linked-earlobes, high-pass filtered at 0.5 Hz, and then
epoched from �1 s to 1.5 s locked on stimulus onset. Additional elec-
trodes were used on both earlobes and also to acquire EMG data from
both thumbs’ flexor pollicis brevis. EMG data were used to identify small
activation of the thumb muscle prior to the response. When trials con-
tained such activation on the side of the wrong response prior to a correct
one, they were labeled “mixed correct” (sometimes referred to as partial
errors; van den Wildenberg et al., 2010). The identification of mixed
correct trials was based on changes over time in EMG variance. The
complete description of the identification algorithm can be found in
Cohen and van Gaal (2014). Given that mixed correct trials are assumed
to have the maximal amount of response conflict, their identification was
done to label the trials in which control was most strongly implemented.

All trials were visually inspected and those containing EMG or other
clear artifacts were excluded.

In study 2, EEG data were acquired from 62 channels at 500Hz. The
electrodes were placed according to a modified version of the 10-10
Fig. 1. Experiment designs. A: Eriksen flanker task
used in study 1. Stimuli could induce no conflict (all
the letters were identical), partial conflict (letters on
the left or right side differed from the target central
letter), or full conflict (all surrounding letters were
different from the target letter). B: Simon task used
in study 2. Trials could either be congruent (color
and location of the stimulus indicate the same
response) or incongruent (color and location indi-
cate different responses, hence, response conflict
occurred).
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system (electrodes FT7, PO7, O1, FT8, PO8, and O2 were placed 10%
below standard and electrodes F1, F2, CP1, CP2, FT7, and FT8 were not
measured). Data were referenced off-line to the mastoids, high-pass
filtered at 0.5 Hz, and then epoched from �1.5 s to 2 s locked on stim-
ulus onset. Two artifact rejection steps were carried out. The first con-
sisted in the manual rejection of trials containing clear muscle or blink
artifacts and the second was an independent component analysis
resulting in the subtraction of components containing eye-blinks or noise.
After artifact rejection, a surface Laplacian spatial filter was applied to
the data to attenuate spatial smearing as a result of volume conduction
(this was done in Gulbinaite et al., 2014, to facilitate connectivity
analyses).

For both studies, the epoch length was ~2 theta cycles longer than the
selected window of interest (from 300 to 1200ms) and visual inspection
of time-frequency plots did not suggest any contamination of the selected
time window by the edge artifacts.

In both datasets, the ERP was subtracted from the data (separately per
channel and per condition) prior to any other analysis to avoid stimulus-
related phase resetting. This step removes the “phase-locked” component
of the signal and ensures that the results do not reflect a stimulus-evoked
transient (Cohen and Donner, 2013). This is an important methodolog-
ical step that allows us to interpret our findings in terms of the phase of
ongoing theta oscillations, as opposed to additive stimulus-related reset
of theta oscillations. One should, however, note that there is no fully
acceptedmethod to separate the phase-locked from the non-phase-locked
activity. Nonetheless, ERP subtraction is a common way of removing the
phase-locked component, and has been investigated previously with
regards to midfrontal theta activity (Cohen and Donner, 2013).
1.4. Spatial filtering of the data

All signal analyses were performed in Matlab (The Mathworks, USA,
version 2016a) using custom written code based on published equation
(Cohen, 2014b; matlab code is available at : https://github.com/
jduprez). Because of our a priori hypotheses regarding theta-band ac-
tivity, we isolated midfrontal theta using optimal spatial filters that
maximized power in the theta band. It is important to note that this
approach to spatial filtering is based on statistical criteria (channel
covariance matrices) and is not designed for inference about potential
cortical generators. We limit our interpretations to topographical distri-
butions to facilitate embedding in the literature. Construction of the
spatial filter involves finding a set of channel weights that maximally
distinguishes theta-band from broadband multichannel activity as
measured through covariance matrices (Nikulin et al., 2011; de
Cheveign�e and Arzounian, 2015). This can be expressed via the Rayleigh
quotient, in which the goal is to find a set of channel weights in vectorw
that maximizes λ.

λ¼ wTSw
wTRw

(1)

S is the covariance matrix derived from the data narrowband filtered
in theta band (around subject-specific theta peak frequency, see below)
and R is the covariance matrix derived from the broadband signal. The
solution to equation (1) comes from a generalized eigenvalue decom-
position (GED) on the two covariance matrices, defined by the equation
SW¼RWΛ. This method has been recommended to maximize power at
low frequencies (Cohen, 2017b; Nikulin et al., 2011) and has several
advantages: it increases signal-to-noise ratio, incorporates
inter-individual topographical differences, and avoids the bias related to
electrode selection. The column of W with the highest associated
generalized eigenvalue is the spatial filter that maximizes the difference
between S and R. This spatial filter was then applied to the data as
y¼wTX where X is the channels-by-time data matrix, and w is the col-
umn of W chosen using a method specified in the next paragraphs. An-
alyses are then applied to the data (component time series) in the row
3

vector y.
The peak frequency of the temporal filter (for the S covariance ma-

trix) was defined subject-wise by searching for the frequency of peak
power in the theta band in conflict conditions at electrode FCz (conflict-
related increase in theta activity has been consistently described at this
location; Cohen, 2014a). To this end, we performed a time-frequency
decomposition of the data by complex Morlet wavelet convolution,
implemented by multiplying the Fourier transform of the EEG data by the
Fourier transform of a set of complex Morlet wavelets ei2πfte-t2/(2s2), and
taking the inverse fast-Fourier transform of the result. In the Morlet
wavelets ei2πfte-t2/(2s2), t is time, f is frequency (ranging from 1 to 50Hz in
60 logarithmically spaced steps), and s is the width of each frequency
band, which is defined by n/(2πf) (with n logarithmically increasing from
4 to 12). Frequency specific power at each time point (t) was defined as
the squared magnitude of the resulting analytic signal (Z) as real [Z(t)2]
þ imaginary [Z(t)2]. Power was baseline-corrected using a decibel (dB)
transform: dB power ¼ 10*log10 (power/baseline), with baseline power
defined as the average power across all conditions from �500 to �200
before stimulus onset. The peak frequency was then defined within a
time-frequency window of 0–800 ms and 3–10 Hz. We chose a range of
3–10 Hz to account for the subjects’ variability in theta peak. This peak
frequency was then used as a center frequency for a Gaussian
narrow-band filter (FWHM ¼ 3 Hz) to the broadband data.

The resulting theta-filtered channel data was used to compute the S
covariance matrix, defined in a 1000ms (thus including several theta
cycles) time window around the time of theta peak power. The same time
window was used to compute the R covariance matrix using broadband
channel data. The two covariance matrices then were used in GED to
construct spatial filters. Selection of the best spatial filter in the resulting
eigenvector matrix W was a two-step process. First, the 15 spatial filters
with the highest eigenvalues were applied to the temporally unfiltered
data resulting in a set of 15 components. Only those without eye-blink
activity were retained. Components with eye-blink activity were identi-
fied as those with higher averaged activity at electrodes near the eyes
(FP1, FPz, FP2) than around midfrontal electrodes (FC1, C1, CP1, FCz,
Cz, CPz, FC2, C2, CP2, for study 1; FC1, C1, FCz, Cz, FC2, C2, for study 2).
Then, the topography of the spatial filters’ activation pattern were
inspected by plotting the topographical map (using the topoplot function
of the EEGlab toolbox; Delorme and Makeig, 2004) of the activation
pattern of the filter (Sw; Haufe et al., 2014). Activation patterns should
be centered on the FCz electrode according to the conflict-related mod-
ulation of theta power reported in the literature (Cohen, 2014a). Thus,
the component with an activation pattern consistent with midfrontal
theta activity was chosen and was then analyzed using time-frequency
decomposition methods (Cohen, 2017a). In 74.2% of cases, the
selected component was the one associated with the largest eigenvalue.
In other cases, the second or third largest component that had a mid-
frontal topography (monopolar with a spatial maximum around FCz) was
selected instead. When several spatial filters with midfrontal topography
were encountered (4 subjects), the one with the largest eigenvalue was
always selected.

In this study, Morlet wavelet convolution was only used as a first step
to identify the theta peak frequency for each subject and to inspect the
overall time-frequency power maps of the theta component.

1.5. Within subject brain-behavior relationships

Brain-behavior relationships across trials were investigated by
correlating power in the theta band with reaction time (RT) for each
participant. After filtering the previously selected component around the
subject-specific peak theta power frequency found at electrode FCz
during conflict, the Hilbert transform was applied to compute the ana-
lytic signal from which power was derived (according to the same
squared magnitude method as reported above). A condition-specific
Spearman correlation coefficient was calculated between theta power
at each time point and RT resulting in a time series of correlation
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coefficient for each condition and each participant. Significance was
evaluated using a nonparametric permutation test of the null hypothesis
that the probability distribution of the participant-specific power-RT
correlations is symmetric around 0. At each of the 1000 iterations, the
time course of correlation coefficients was multiplied by�1 for a random
subset of participants and then averaged over participants in order to
generate a matrix of 1000 subject-averaged time courses under the null
hypothesis. Then we subtracted the iteration averaged time course from
the real subject averaged time course of correlation coefficients and
divided the result by the standard deviation of the iteration averaged
time course. The resulting z-valued time course was then thresholded at
p< 0.05. Multiple comparisons were addressed by the means of cluster-
based correction so that any cluster equal or larger than 99.5% of the
distribution of null hypothesis maximal cluster sizes was considered
significant. This analysis served two purposes: (i) replicate correlation
patterns usually observed between theta power and RT during conflict
and (ii) define a time window of interest (in which correlations were
significantly different from 0) for phase-resolved analyses.

1.6. Within subject phase-resolved brain-behavior relationships

In order to investigate if the theta power-RT correlations depended on
theta phase, we computed theta power-RT correlation coefficient ac-
cording to the different possible phase values in 20 discrete phase bins.
To this end, the phase angle time series of the previously Hilbert-
transformed theta-defined component of each trial was divided in 20
linearly spaced phase bins with values ranging from -π to π. For each
theta phase bin, the corresponding power was extracted and averaged for
that trial. For instance, the different power values extracted when phase
equals π/2 across the phase angles time series were averaged in order to
get the mean power at the π/2 phase for that trial (Fig. 2 B and C). This
operation was repeated for all trials and separately for each condition.
Phase-specific mean power was then correlated with RT, resulting in 20
power-RT coefficients for each condition and subject (Fig. 2 D). These
phase-specific correlation coefficients were then averaged across subjects
for each condition (Fig. 2 E).

1.7. Within subject phase-resolved power-RT correlation analyses

In order to test whether power-RT correlations significantly varied
according to phase, we fitted the correlation values to sine waves for each
subject and condition. These analyses were done using R (version 3.4.2; R
Development Core Team, 2017) and the {minpack.lme} package for
nonlinear least square fitting (Elzhov et al., 2016). Data were fitted by
applying the nlsLM function to the model: ρ~A*sin (2*π*F*phasebinþθ),
where ρ is the correlation coefficient, and A, F and θ, are the amplitude,
frequency, and phase parameters to estimate, respectively. Parameter
estimates were then used in a harmonic addition of a sine and a cosine
(which is equivalent to a single sine wave allowing for a phase shift) to
enter in a linear model following: ρ ~(Asin(2πF*phasebinþ θ) þ
Acos(2πF*phasebinþ θ)). This was done in order to estimate the overall
significance and the goodness of fit of the estimated sine parameters.

The amplitude parameter and the model R2 were compared at the
group-level between all conditions using wilcoxon paired tests with a
Bonferroni corrected threshold of p< 0.05/10¼ 0.005 because of the 10
possible conflict condition comparisons. We also statistically tested the
null hypothesis that the population distribution of preferred phases is
uniform on the circle using Rayleigh’s Z.

1.8. Cross-frequency coupling

We next sought to investigate whether higher-frequency dynamics
were locked to midfrontal theta phase in a manner relevant to the phase
of peak power-RT correlations. Assessing the modulation of higher-
frequency power by lower-frequency phases is usually performed by
means of a phase-amplitude coupling index. However, here we chose a
4

different approach that would take into account the results of theta
phase-resolved power-RT correlations. We used GED (Cohen, 2017a) to
define a component that maximizes activity around the phase of
maximum brain-behavior correlation. For each subject, the Rmatrix was
defined as the data filtered between each subject theta frequency þ2 Hz
and 80 Hz. This frequency range was selected to eliminate both theta
activity and higher-frequency activity unlikely to reflect brain dynamics.
For the Smatrix, the same filtering was applied but we extracted the data
around the empirically determined phase of maximum theta power-RT
correlation. We identified each occurrence of the preferred theta phase
in each trial (between 300 and 1200ms), then extracted the data from 1/8
of a theta cycle before that phase to 1/8 of a cycle after that phase (the
exact number of ms depended on subject-specific theta frequency); the
covariance matrices from these time windows were averaged to create
the S covariance matrix. The spatial filter with the largest generalized
eigenvalue was selected to define the component. In this case, rather than
isolating narrowband theta dynamics, GED served the purpose of
enhancing the signal’s characteristics in higher frequencies occurring
around the phase of maximum theta power-RT correlation.

Next, we applied time-frequency decomposition on the selected
component to compute power for each frequency (from 10 to 50Hz)
resolved according to the phase of the GED-identified theta component
which was divided into 51 bins (we used more bins than for phase-
resolved power-RT correlation to have a better phase resolution for the
phase-frequency power maps). We used the same Morlet wavelet
convolution methods as described above. Each phase-frequency map was
phase-shifted so that phase¼ 0 corresponds to each subject’s phase of
maximum theta power-RT correlation. Then, decibel-transformed power
(computed using the same methods and baseline as described above) was
z-scored for each frequency in order to quantify phase-specific modula-
tion of power. Finally, clusters of significant phase-specific changes in
power were defined using permutation testing. For each iteration, all the
data after a randomly-defined relative theta phase (between the 10th and
the 40th bins) were shifted and a difference map between the phase-
shifted map and the original unshifted map was calculated. This opera-
tion was carried out 10,000 times, generating a distribution of difference
maps under the null hypothesis. The average real data map was z-scored
using the mean and the standard deviation of the difference maps. The
resulting map was then thresholded at p< 0.001. Multiple comparisons
were addressed by the means of cluster-based correction so that any
cluster equal or larger than 99.9% of the distribution of null hypothesis
cluster sizes was considered significant. Power data from the biggest
significant cluster was then extracted and compared at the group level
between conflict conditions using a one-way ANOVA.

2. Results

2.1. Behavioral results

The classical slowing of RTs as a function of conflict was observed in
both studies (study 1: F (1, 26)¼ 6.17, p¼ 0.016; study 2: F
(1,32)¼ 20.81, p< 0.001). Conflict trials were also significantly less
accurate in study 1 (study 1: F (1, 26)¼ 60.6, p< 0.0001), and showed a
similar trend in study 2 (F (1,32)¼ 3.54, p¼ 0.069). For a more detailed
description of behavioral results, please refer to Cohen (2015) and Gul-
binaite et al. (2014).

2.2. GED results, component topography, and time-frequency power

Given our a priori focus on the theta band, we applied GED to find a
spatial filter that best isolates theta band activity from the broadband
activity in the signal. Data reduction using GED was implemented using
the theta-filtered channel covariance matrix data as the S matrix (mean
theta frequency used for filtering: study 1: 4.6� 1.6 Hz, study 2:
5.4� 0.7 Hz) and the broadband data channel covariance matrix as the R
matrix. Fig. 3 A and D show the topography of the activation pattern of



Fig. 2. Overview of the method used to compute phase-resolved power-RT correlations. Each trial (A) was filtered using the theta frequency of maximum power
previously found at FCz, and the Hilbert transform of that filtered signal was taken to extract phase and power. Power at each corresponding theta phase bin was
extracted (B) and the average power for each phase bin was computed for all trials (C). Then, Spearman’s ρ between power and RT were calculated at each phase bin
for all subjects (D) and were then averaged across subjects (E).
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Fig. 3. A: Topographical map showing the activation pattern of the spatial filter designed by GED in study 1. B: Time-frequency plot of power (decibel-transformed) of
the component defined by GED in study 1. C1 and C2: theta power time courses (vertical dashed lines indicate the time window selected to compute the peak of power)
and peak of power according to the strength of conflict. D to F2: same plots for study 2.
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the selected spatial filters averaged across participants. For both studies,
a clear higher activation can be seen around midfrontal electrodes,
consistent with the topography of what is usually reported in the litera-
ture as midfrontal theta. Time-frequency decomposition of the selected
component in study 1 shows a clear increase in power compared to
baseline in the theta band (Fig. 3B). This power increase was stronger
with increasing conflict strength and was the highest for errors
(Fig. 3C1). Fig. 3C1 and C2 shows the same pattern focusing on the power
time course of the peak theta frequency and the peak of power for that
frequency respectively. In study 2, the same results were observed with a
clear theta power increase that was stronger in the situations of strongest
conflict (cI trials) compared to all other trials (cC, iI, and iC trials; Fig. 3E,
F1 and F2). As in study 1, errors showed the strongest increase in theta
power. As a whole, these results show that applying GED for spatial
filtering successfully produced a signal that exhibits all effects that are
typically reported in conflict resolution studies. Given that the data in
study 2 were Laplacian-transformed (which was not the case in study 1),
we Laplacian-transformed the data from study 1 and recomputed the
GED spatial filters as well as the time-frequency power maps to ensure
that the main results did not depend on Laplacian transformation.
Applying the Laplacian transform did not change the results both at the
subject- or at the group-level with similar topographies and nearly
identical time-frequency power maps (see Supplemental Fig. S1).

2.3. Theta power-RT correlations

Following previous reports (Cohen and van Gaal, 2014), we first
investigated brain-behavior relationships by means of cross-trial corre-
lations between power and RT (ignoring theta phase). This analysis also
served the purpose to define a time-window of significant theta
power-RT correlation to investigate the potential modulation according
to theta phase. For each subject and each condition, Spearman’s rho was
computed across trials between power at the peak theta frequency and
RT at each time point, resulting in one time course of power-RT rho
values per subject and condition (see Fig. 4, for group average result). In
both studies, an increase in theta power-RT correlation began around
200–300ms, peaked around 500–600ms and was immediately followed
by a decrease in all conditions, except error trials. The pattern of
power-RT correlation for errors was clearly distinct, beginning with a
sharp decrease around 200–300ms, followed by an increase peaking
around 600–700ms and finally a return to zero. Using cluster-based
permutation tests, we tested the null hypothesis that the population
distribution of the power-RT correlations is symmetric around zero.
Rejection of the null hypothesis at p< 0.05 was observed from roughly
300ms–1200ms in Study 1 (Fig. 4A), and from 200ms to 1200ms in
Study 2 (Fig. 4C). Based on this result, for subsequent phase-resolved
6

analyses we selected the following time windows: 300–1200ms for
study 1 and 200–1200ms for study 2.

In both studies, and consistent with previous reports (Cohen and
Cavanagh, 2011; Cohen and van Gaal, 2014), the highest peak of cor-
relation was observed for the trials with the strongest conflict (mixed
correct and cI trials respectively). However, statistical testing confirmed
this was the case only in study 1. We extracted the peak of maximum
correlation from the time windows defined above and applied pairwise
Wilcoxon paired test to compare between conflict conditions. We found
that partial errors were indeed the situation in which RT-power corre-
lations were maximal (mixed correct vs. no conflict: p ¼ 1.26*10�6;
partial error vs. partial conflict: p ¼ 7.2*10�5; full conflict vs. no
conflict: p¼ 0.0014; all other conflict conditions comparisons were
non-significant at p> 0.005 using Bonferroni correction). However, in
study 2, the peak of maximum correlation did not differ between conflict
conditions (all p> 0.005).

2.4. Phase-resolved theta power RT correlation

We further investigated the influence of theta phase on brain-
behavior relationships. We reasoned that if theta phase defines certain
time-windows of behaviorally-relevant brain computations, fluctuations
of theta power-RT correlations would vary as a function of theta phase.
To test this, we averaged power in 20 discrete theta phase bins (in pre-
viously defined significant theta power-RT correlation time windows),
and correlated this phase-resolved average theta power with RTs. This
was done separately for each subject and condition. Given that the size of
the selected time windows was 900ms for study 1 and 1000ms for study
2, and given that the average theta frequency was 4.6� 1.6 Hz in study 1
and 5.4� 0.7 Hz in study 2, all phase-resolved theta power-RT correla-
tions were obtained based on at least 4 theta cycles.

At the group-level, correlations were higher for some theta phases
than for the others in all conditions and in both studies. This can be seen
in Fig. 4B1 and D1, but is more evident in the detrended coefficients in
Fig. 4B2 and D2. Closer inspection, however, revealed subject-level phase
preferences across conditions and subjects (see sine fit plots in Fig. 5A).
We therefore computed nonlinear least square estimations for each
subject and for each condition, specifying a sine function with sine pa-
rameters to be estimated from the data. The estimated parameters were
then entered in a linear model to inspect overall significance and the
goodness of fit of the models.

2.5. Sine fit

All sine fit graphs are depicted in Supplementary Figs. S2 and S3, and
an example fit can be seen in Fig. 5A. For each condition and in both



Fig. 4. Time course of Spearman’s ρ between theta power and RT averaged across subjects for each condition in study 1 (A) and 2 (C). Horizontal bars above the x-axis
denote windows of statistical significance at the group-level. B1 and B2: phase-resolved Spearman’s rho between theta power and RT. These plots show the average
(B1) and detrended (B2) theta power-RT correlation coefficient according to theta phase. D1 and D2: same plots for study 2.
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studies, sine waves were significant predictors for the observed phase-
resolved power-RT correlations, across subjects and conditions in both
studies. Since the amplitude parameter is the best predictor of the size of
the phase-resolved effect, we only report these results here (see Supple-
mentary Table S1 to see the proportion of subjects with significant pa-
rameters r). In study 1, 100, 96, 96, 100 and 100% of the nls fits showed
significant amplitude parameters for the no conflict, partial conflict, full
conflict, mixed correct, and error conditions respectively. In study 2, 100,
97, 100, 97, 97% of the nls fits showed significant amplitude parameters
for the cC, iC, iI, cI and error conditions respectively. Overall, for both
studies, 95.8% of the linear models using nls-defined parameters signif-
icantly fitted the data. This indicates that in both studies, and in all
conditions, theta power-RT correlations were stronger for some phases
than for others.

2.6. Group-level amplitude and R-squared comparison

We tested whether the theta phase influence on brain-behavior re-
lationships depended on the strength of conflict, assessed as the ampli-
tude of the fitted sine wave, as this indicates the magnitude of theta phase
on theta power-RT correlations. We performed pairwise Wilcoxon tests
on the condition-specific amplitude parameters, using a significance
threshold of p< 0.005 (Bonferroni correction for 10 comparisons). As
can be seen in Fig. 5B1 and C1, the amplitude parameter was not sta-
tistically different across correct conditions, and was different for error
trials. Indeed, amplitude for errors was significantly higher than for other
conditions in both studies (all error-other condition pairwise wilcoxon
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paired test were significant at p< 0.0001 in both studies; all other
pairwise comparisons were non-significant). We subsequently tested
whether the strength of conflict impacted the fit of the models to the data
(R2). In both studies, R2 did not significantly differ between conditions
(all pairwise wilcoxon paired test were non-significant) (Fig. 5B2 and
C2), suggesting that the goodness of fit of the models were similar across
the different levels of conflict in both studies.

2.7. Phase consistency

Given the fluctuations of theta power-RT correlations according to
theta phase, we also investigated whether the phase preference (the
phase of maximal theta power-RT correlation defined by the empirical
data) was consistent across subjects in each condition. To that end, we
computed phase clustering of the phase of maximal theta power-RT
correlation for each condition (see Supplemental Fig. S4). Preferred
phase was not clustered and was relatively homogeneously distributed,
except for errors in study 2 which showed significant clustering
(p¼ 0.002) around phase¼ 0. In all other cases, clustering measures
were non-significant, confirming that the phase of maximum theta
power-RT correlation was subject- and condition-specific.

2.8. Power and RT as a function of phase

To further contextualize the theta-phase-modulated brain-behavior
correlations, and to evaluate whether the fluctuating correlations were
due to information fluctuations in the individual variables, we examined



Fig. 5. A: example of the sine fit for 18 subjects in the no-conflict condition in study 1. All sine fit plots can be seen in supplementary figure S2 and S3. B1 and C1:
average amplitude parameter according to conditions for study 1 and 2, respectively. In both studies, errors had a significantly higher amplitude parameter than all
other conditions (p< 0.001). B2 and C2: average R-squared according to condition for study 1 and 2 respectively. Color coding of conditions is the same as in Fig. 4
(weaker to stronger conflict and errors from left to right). Error bars represent the standard error of the mean.
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whether theta power or RT independently were modulated by theta
phase. We used the same theta phase discretization as for the correlation
analyses, but now focusing on theta power and RT separately rather than
on their correlation. Supplementary figure S5B1-D1, and S5B2-C2 show
the detrended average theta power and standard deviation, respectively,
according to phase for study 1 and 2. Theta power and its standard de-
viation in both studies displayed a clear modulation according to phase,
thus indicating that power was stronger at certain theta phases and lower
at others. Such asymmetries in power over phase bins also point to a non-
sinusoidal waveform shape (Cole and Voytek, 2017). Conversely,
average RT and its standard deviation in both studies (supplementary
figure S5F1-H1 and S5F2-H2) showed no clear evidence of
phase-dependent fluctuations.

2.9. Control analyses

Although all the results argue in favor of the hypothesis that theta
phase influences brain-behavior relationships, we wanted to test whether
the effect we found was specific to the theta band and whether the effect
was reproducible within each dataset individually (cross-validation). We
chose to test phase-resolved brain-behavior correlations in the beta band,
since beta suppression is also typically observed around RT in conflict
tasks (see Fig. 3B and E) and since beta activity has been shown to relate
to RT and errors (Doyle et al., 2005; Torrecillos et al., 2015).

2.10. Theta band specificity - test of beta phase-resolved power-RT
correlations

We extracted power from the Hilbert transform of the beta bandpass-
filtered (between 15 and 20Hz) theta-defined component and computed
power-RT Spearman correlations at each time point. We selected the beta
band because it is another frequency range that is observable in mid-
frontal topographical regions during conflict tasks (Fig. 3). As can be seen
in Supplementary Figs. S6A and S6C, the patterns of power-RT correla-
tions are clearly different from the theta results in both studies. For all
conditions in study 1, only negative correlations can be observed
8

occurring between around 500 and 1000ms and with an effect roughly
half the size of what was observed in theta. Study 2 shows the same
pattern of negative correlation occurring this time mostly between 500
and 900ms with a significant increase beginning at 1000ms.

In order to test theta-specificity of phase-resolved results, we
computed beta power-RT correlation for the 20 beta phase bins during
the significant theta power-RT correlation time window. Supplementary
figure S6B1-B2 and S6D1-D2 show the average and detrended version of
the phase-resolved beta power-RT correlations for study 1 and 2. Even
though visual inspection did not suggest an effect of phase, given a high
interindividual variability in theta phase preference when investigating
theta phase-resolved power-RT correlation, we nonetheless inspected
beta phase-resolved results at the subject level and performed the same
sine wave modeling as for the theta results. As expected, no clear oscil-
lation of correlation according to the beta phase was observed: sine wave
model accounted for the data with 50, 39, 28, 25 and 25% of significant
nls fits for the no conflict, partial conflict, full conflict, mixed correct, and
error conditions respectively in study 1. For study 2, the same results
were observed with 41, 29, 26, 35, and 47% of significant nls sine fits
amplitude parameter for the cC, iC, iI, cI and error conditions respec-
tively (see Supplementary Table 1 for details of all parameters). This
control analysis provides further support for theta-band specificity in
phase dependent power-RT correlations.

2.11. Split-half reliability

In order to evaluate if the phase dependent theta power-RT correla-
tion effect was consistent across trials within subject, we re-analyzed all
the data separately for two halves of the data collapsed across conditions.
This operation was repeated 100 times by randomly selecting two groups
of trials. In both studies, results matched the pattern of theta power-RT
correlation observed when analyzing all the data. We next examined
whether the preferred phase that maximized power-RT correlations was
consistent between the two halves of the data. We therefore computed
the subject-averaged difference in preferred phases between the two
halves, for each iteration; this generated a distribution of 100 phase
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difference values, on which we computed phase clustering. If the
preferred phases are consistent, the different distribution should cluster
around 0 radians across subjects. We observed significant clustering of
the phase differences around 0 for both studies (study 1: p< 0.001, study
2: p< 0.001; Supplemental Figs. S7A and S7B). We further inspected the
overall correlation between the two halves of the data for those 100 it-
erations and observed significant positive correlations in 100% of the
cases in both studies (mean ρ¼ 0.48, mean p< 0.0001 for study 1 and
mean ρ¼ 0.44, mean p< 0.0001 for study 2. Taken together, these re-
sults show that the phase effect we found was consistent across the
experiment.

2.12. Cross-frequency coupling

The previous sets of analyses demonstrated that theta phase is rele-
vant for brain-behavior relationships. We next investigated whether this
same theta phase is relevant for higher-frequency EEG activity. We
focused on phase-amplitude CFC (Canolty and Knight, 2010) under the
assumption that if theta phase is relevant for brain computations that
serve behavior, then specific patterns of CFC could appear around the
phases of maximal power-RT correlations.

We applied the GED framework to identify a component that maxi-
mizes EEG activity around the phase of maximum theta power-RT cor-
relation at higher-frequencies. Fig. 6A1 and A2 show the topography of
the activation pattern of the spatial filter for study 1. Fig. 6A2 is the
laplacian-transformed spatial filter topography that we computed in
order to better compare with the topography of study 2 (Fig. 6D) in which
the data were scalp-Laplacian-transformed. In both studies, but even
more so in study 2, the topographies highlighted centro-parietal and
Fig. 6. A1-A2: topography of the spatial filter defined by GED (A2 is the scalp Laplacia
both studies, activation around centro-parietal and parietal electrodes can be observed
power map for study 1 and 2, respectively. Contour lines show significant clusters (w
correction of permutation testing). B2 and E2: power extracted from the common clu
computed by averaging the maps calculated using a cross-validation approach from s
from study 1 and 2, respectively. Color coding of conditions is the same as in previou
Error bars represent the standard error of the mean.
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parietal electrodes. In study 1 higher activation was observed around
midfrontal electrodes.

We inspected power at each theta phase bin (51 bins) and for each
frequency. Fig. 6B1 and E1 show theta phase-frequency power maps for
study 1 and 2 respectively. In both cases cluster-corrected permutation
testing revealed significant increases in power between 0 and -π/2 and in
the upper alpha-beta frequency range (biggest cluster in the map) (power
peaks were at phase -π/5 and at 19 Hz for study 1 and at phase -π/6 at
17 Hz for study 2). Note that these phase angles are relative to subject-
specific peak power-RT correlations, not absolute theta phase angles.
Power was extracted in the biggest significant cluster and was compared
between conditions (Fig. 6B2 and E2). In both studies, power did not
differ between conflict conditions (study 1: F (4, 135)¼ 0.44, p¼ 0.8;
study 2: F (4, 165)¼ 0.62, p¼ 0.65), suggesting that phase-specific in-
crease in power reflected a general mechanism that was related to
response execution but not specific to conflict processing.

To ensure that these results were robust, and that they were not
biased by overfitting, we re-analyzed the data using a cross-validation
approach. We used 90% of the data to compute the cross-frequency-
coupling spatial filter using the same criteria as previously described,
and applied it to the remaining 10% of the data. This operation was
carried out 10 times, and the resulting phase-frequency maps were
averaged over iterations for each subject. The same permutation testing
as in the original CFC analyses was then applied. The spatial filter to-
pographies looked the same as the ones in our first set of analyses, and
thus are not depicted in Fig. 6. Although some differences with the first
analyses can be seen, the previously described common cluster was also
present here with a significant increase in power between 0 and -π/2 in
the upper alpha-beta band (Fig. 6C1 and F1). In both studies the
n-transformed topography) in study 1. D: spatial filter topography for study 2. In
. More midfrontal activation is seen in study 1. B1 and E1: theta phase-frequency
ith sizes exceeding the mean cluster size plus 2 standard deviations after cluster
ster of study 1 and 2, respectively. C1 and F1: theta phase-frequency power map
tudy 1 and 2, respectively. C2 and F2: power extracted from the common cluster
s figures and goes from weaker to stronger conflict and errors from left to right.
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frequency and theta phase of the peak of power from that cluster was
very similar to the first analysis with a peak at 22.8 Hz -π/5 for study 1
and at 24.8 Hz and -4π/7 for study 2. Similar to the first analysis, power
extracted from those clusters did not show any significant change ac-
cording to the strength of conflict (Fig. 6C2 and F2; study 1: F (4,
135)¼ 0.48, p¼ 0.7; study 2: F (4, 165)¼ 0.87, p¼ 0.5). As a whole,
both the cross-validation approach and the replication in the 2 inde-
pendent datasets strongly suggest that there was a specific increase in
power in the beta band around -π/5 relative to the phase of maximum
power-RT correlation that was not specific to the strength of conflict but
rather generally involved in response execution.

3. Discussion

In their formulation of the theta-gamma neural code, Lisman and
Jensen (2013) emphasized that theta oscillations may “provide a way of
ordering multipart messages.” Although their conclusions specifically
related to the role of hippocampal theta phase in spatial location and
memory, this formulation also echoes with the proposal that neural os-
cillations have a general role in providing time references for brain
computation (Fries, 2005; Voytek and Knight, 2015). With this study we
investigated a key hypothesis of one potential role of midfrontal theta
oscillations, namely, whether they define specific time windows during
which brain computations that are relevant for response conflict pro-
cessing occur (Cohen, 2014a). We computed phase-resolved brain-be-
havior correlation based on a multivariate analysis method that
maximizes signal-to-noise ratio of relevant features of the EEG signal.
Results from two independent studies confirmed the robustness of the
findings.

3.1. Implications for the role of midfrontal theta in brain computations

Although theta phase has already been shown to be important for
perceptual and motor activities (Drewes and VanRullen, 2011; Tomassini
et al., 2017; Han and VanRullen, 2017), to our knowledge this study
provides the first empirical evidence of a temporal organization relying
on an internal reference frame defined by the phase of ongoing theta
activity around midfrontal electrodes during cognitive control (Panzeri
et al., 2010). It has been proposed that different computations for conflict
processing would be implemented by a neural microcircuit in the mid-
frontal cortex in a layer-specific manner (Cohen, 2014a). Although it
would be hazardous to speculate on the contribution of the layer-specific
activity in the scalp EEG signal and their theta phase-relative organiza-
tion, if midfrontal theta oscillations organize conflict processing, it is
plausible that different theta phase regions could provide temporal
constraints for computations occurring in different cortical layers. In that
manner, specific computations during conflict processing may take place
at specific theta phases. For instance, the relevant phase described in this
study could be specific to a largely motor-related mechanism that un-
derlies response execution, while time windows of opposite phases could
preferentially support conflict integration, or communication with long
range task-relevant cortical areas responsible for selective inhibition or
modulation of attention. A more physiologically detailed understanding
of the role of midfrontal theta oscillations in conflict processing will
require additional work with invasive recordings (including local field
potential and single units). However, the results of this study provide
strong evidence for the oscillatory nature of the signals involved in
conflict processing and, most importantly, gives insights on the existence
of a temporal organization during conflict processing by midfrontal theta
oscillations in humans.

Our findings also have implications for ongoing discussions about the
nature of midfrontal theta. In particular, whether the EEG signature of
response conflict monitoring truly reflects a “neural oscillation” or simply
a non-oscillatory transient remains debated (Yeung et al., 2007; Trujillo
and Allen, 2007; Cohen and Donner, 2013). Our phase-dependent
brain-behavior findings provide new evidence for the interpretation of
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a neural oscillation. A phase-specific finding that is present after
removing the phase-locked part of the signal reflects amplitude modu-
lations of ongoing narrowband activity, and thus is inconsistent with an
interpretation of the conflict-modulated theta burst as an additive tran-
sient (which was removed from the data prior to our analyses).

3.2. Midfrontal theta phase influences the strength of brain-behavior
relationships

Midfrontal theta has been consistently shown to be relevant for
behavior during conflict processing, as RT strongly correlates with power
(McDermott et al., 2017; Jiang et al., 2015a, 2015b, 2018). This corre-
lation is especially strong for high-conflict trials and immediately pre-
ceding the response (Cohen and Cavanagh, 2011; Cohen and van Gaal,
2014). The present study provides yet another replication of these results
(in Study 1) and, in line with our hypothesis, further shows that the
strength of these correlations depends on the phase of the ongoing
midfrontal theta oscillation. The effect was specific to the theta band and
reliable across the experiments in two different conflict tasks (Eriksen
flanker task and Simon task). Furthermore, specific investigation of
phase-resolved power revealed that theta power was non-uniformly
distributed around the theta cycle, which is indicative of a
non-sinusoidal waveform shape (Cole and Voytek, 2017). This suggests
that the influence of theta phase on brain-behavior relationships may
have resulted from the waveform shape of the midfrontal theta oscilla-
tion. The phase effect on RT-power correlation was independent on the
strength of conflict, which points to a general response execution
mechanism occurring during conflict processing rather than a purely
conflict-related mechanism as we hypothesized. We nonetheless
observed some condition differences, with a greater phase effect for er-
rors compared to all other conditions. This error-specific modulation is
consistent with a general observation that errors have qualitatively
distinct patterns of theta-RT correlations compared to correct responses,
with negative correlations followed by positive correlations while only
positive correlations occur in correct responses (Cohen and van Gaal,
2014). EEG signatures of errors also differ from those of conflict in cor-
rect responses because of their additional recruitment of delta power
(Yordanova et al., 2004; Cohen and van Gaal, 2014) and phase-locked
component (Trujillo and Allen, 2007; Munneke et al., 2015).

An intriguing point is that the phase of maximal power-RT correlation
was not only subject-specific, but also condition-specific. This pattern,
although robust in the results, is hard to interpret. Indeed, we don’t have
any evidence that the different conflict conditions might re-align the
phase of maximum correlation because stimuli in both studies were
randomly displayed. Moreover, this was especially true for mixed correct
trials, which were not even an experimental condition per se but a way to
isolate the situations of high conflict based on the participants’ behavior
(muscular activation of incorrect and correct responses). Further work
will be needed to clarify this point.

3.3. Midfrontal theta “clocks” large-scale cross-frequency coupling

A phase-dependency of a brain-behavior correlation suggests that
certain computations are more likely to occur at certain theta phases. An
ideal analysis to evaluate this hypothesis is to test for phase-specific
activation of cell assemblies. In lieu of such an approach, however, we
turned to phase-amplitude coupling, with the hypothesis that the
behaviorally-optimal theta phase should also predict activity repre-
sented in higher frequencies. We applied a recently developed multi-
variate phase-amplitude coupling method that allowed us to
differentiate between topographies of the phase-providing and the
power-responding networks (Cohen, 2017a). This analysis revealed that
cross-frequency interactions were most pronounced in a fronto-parietal
topography in the Simon task, and a fronto-lateral topography in the
Eriksen flanker task. These topographical differences may be attributed
to differences in the source of response conflict in these two tasks:
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although both tasks generate conflict as incongruency in response
hands, spatial incongruity elicits conflict in the Simon task, whereas
stimulus identity incongruency elicits conflict in the Eriksen flanker task.
Such task differences have been shown to elicit slight differences in
temporal and spatial dynamics of the brain activity (Frühholz et al.,
2011; Nigbur et al., 2011).

Importantly, the pattern of theta-phase-locked time-frequency power
looked remarkably similar despite the topographical idiosyncrasies,
suggesting that the conflict-related theta rhythm provides a fundamental
organizational principle that is used in similar ways by potentially
distinct task-specific networks. In particular, the relevant theta phase was
associated with power bursts in the beta band. This pattern was consis-
tent across both datasets and was robust to two distinct statistical eval-
uation methods (permutation testing and cross-validation). Beta
oscillatory activity has consistently been associated with motor control
(Kilavik et al., 2013; Neuper et al., 2006), notably because of the exag-
gerated beta activity in Parkinson’s disease (Oswal et al., 2013).
Motor-related beta is centered around the motor cortex and emerges as
short-lived burst that are suggested to underlie response execution
(Feingold et al., 2015). This suggests that the theta-phase-locked beta
power bursts we found around motor areas relate to response execution.
Moreover, we did not detect condition-specific modulations of multi-
variate phase-amplitude coupling. This also argues for a signature of a
general response-related mechanism. On the other hand, condition dif-
ferences might be too subtle or small-scale to be reliably detected with
extracranial EEG. It is also possible that theta phase is regulating rhyth-
mic fluctuations in attention through rhythmic enhancement of visual
processing (Fiebelkorn et al., 2018), which might be important for task
performance but equally prevalent across conditions.
3.4. Guided source separation for guided network discovery

The kinds of findings reported here may be subtle (low signal-to-noise
at the level of EEG), temporally transient, and spectrally narrowband.
However, they are linearly distributed over many electrodes, which
means that targeted multivariate analysis methods can help reveal pat-
terns in the data that may be too mixed to uncover when analyzing only
individual electrodes. We used a blend of hypothesis-driven (e.g.,
defining a component that maximizes theta activity) and data-driven (to
define a component that maximizes specific theta phase activity) ap-
proaches in applying generalized eigendecomposition as spatial filters.
This increased the signal-to-noise ratio and highlighted features of
behaviorally-relevant brain activity that otherwise might have remained
too subtle to be observed. We believe that these kinds of methods may be
useful for elucidating subtle brain-behavior relationships in other con-
texts as well.
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