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Glossary  

2D, 2-dimensional; 3D, 3-dimensional; ADME, Absorption, Distribution, Metabolism Excretion; ADR, 

Adverse Drug Reaction; ADRs, Adverse Drug Reactions; AE, Adverse event; AEs, Adverse events; 

APAP, acetaminophen; ATF6, Activating transcription factor 6; ATP, adenosine triphosphate; BA, bile 

acid; BAC, bacterial artificial chromosome; BC, bile canaliculi; BCRP, breast cancer resistance protein; 

Bip, Binding immunoglobulin protein; BSEP, bile salt export pump; CsA, cyclosporine A; CA, cholic 

acid; CADs, Cationic amphiphilic drugs; CDCA, chenodeoxycholate; CHOP, C/EBP homologous 

protein; ClogP, The logP value of a compound; Cmax, maximum concentration; CPT-1, carnitine 

palmitoyltransferase-1; CRM, chemically reactive metabolites; Css, Concentration at Steady State; 

CTLA-4, cytotoxic T-lymphocyte-associated protein 4; CYP, cytochrome P450; DAMPs, damage-

associated molecular patterns; DCA, deoxycholate; DIC, diclofenac; DILI, drug-induced liver injury; 

DILI-sym, drug-induced liver injury modelling software; EFPIA, European Federation of 

Pharmaceutical Industries and Associations; ENT, equilibrative nucleoside transporter; ER, 

endoplasmic reticulum; GCDCA, glycochenodeoxycholate; GFP, green fluorescent protein; Glu-Gal, 

glucose-galactose; GSH, glutathione; HCA, high-content analysis; hENT1, human endonucleoside 

transporter-1; HLA, human leukocyte antigen; HMGB1, high mobility group box protein-1; ICAM1, 

intercellular Adhesion Molecule 1; IFN-, interferon-; IL-1β, interleukin-1 β; IL-8, interleukin-8; iPS, 

induced pluripotent stem cells; IRE1α,  inositol-requiring enzyme 1 α; IVIVE, in vitro-in vivo; LCA, 

lithocholic acid; LPS, lipopolysaccharide; LSEC, liver sinusoidal endothelial cell; luc, luciferase; MATE, 

Multidrug and toxin extrusion protein; MICS, microphysiological systems; MIP-DILI, Mechanism-

Based Integrated Systems for the Prediction of Drug-Induced Liver Injury; MLC, myosin light chain; 

MLCK, myosin light chain kinase; MRP, multidrug resistance-associated protein; mtDNA, 

mitochondrial DNA; NCE, new chemical entity; NCEs, new chemical entities; NFkB, nuclear factor-

kappa B; NK, natural killer; NPCs, non-parenchymal cells; Nrf2, nuclear factor erythroid 2–related 

factor 2; NTCP, Na+-taurocholate co-transporting polypeptide; OATP, organic anion transporting 

polypeptide; OAT, Organic Anion Transporter; OCT, organic cation transporter; OST, Organic solute 

transporter; PBMC, peripheral blood mononuclear cells; PD1, Programmed cell death protein 1; 

PERK, protein kinase RNA-like endoplasmic reticulum kinase; PHH, primary human hepatocyte; 

PKPD, Pharmacokinetics & pharmacodynamics; PL, phospholipidosis ; R&D, research and 

development; RelA, REL-associated protein; ROCK, Rho kinase; ROS, reactive oxygen species; 

S100A9, S100 calcium-binding protein A9; SCHH, sandwich-cultured human hepatocyte; SOS, 

sinusoidal obstructive syndrome; SRXN1, sulfiredoxin 1; TCA, taurocholic acid; TCR, T-cell receptor; 

TK-NOG, thymidine kinase transgene incorporated into immunodeficient NOG mice; TNF-, tumor 

necrosis factor-; TRAF2, TNF receptor-associated factor 2; Tregs, regulatory T cells; VBDS, vanishing 

bile duct syndrome; UPR, unfolded protein response; XBP1, X-box binding protein 1. 
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Abstract 

Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological 

process that cannot yet be recapitulated in a single in vitro model. Current pre-clinical testing regimes 

for the detection of human DILI thus remain inadequate.  A systematic and concerted research effort 

is required to address the deficiencies in current models and to present a defined approach towards 

the development of new or adapted model systems for DILI prediction. This Perspective defines the 

current status of available models and mechanistic understanding of DILI, and proposes our vision of 

a roadmap for the development of predictive preclinical models of human DILI.  
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Introduction 

Adverse drug reactions (ADRs) are a major clinical problem in terms of patient morbidity, patient 

mortality, cost to healthcare systems and failure of drugs in development.  The liver is one of the 

organs most susceptible to drug toxicity, and in the clinic, drug-induced liver injury (DILI) has 

accounted for more than 50% of acute liver failure cases1.  Excluding acetaminophen, DILI accounts 

for approximately 14% of acute liver failures with a mortality rate of up to 10%2.  DILI is also a major 

cause of drug attrition, leading to withdrawal of potentially valuable therapies, both during preclinical 

testing, clinical trials and post-marketing3,4.  Importantly, the FDA has annotated 750 drugs that have 

some degree of DILI risk5.  However, it is clear that current preclinical testing paradigms based on a 

combination of various in vitro and in vivo models are poorly predictive, at a quantitative and 

mechanistic level, of the potential of a new drug candidate to cause DILI in humans, in particular those 

drugs that show poorly defined dose-response relationships and/or human specific mechanisms of 

toxicity.  

There is an emerging body of evidence that DILI, as it occurs in humans, can be a multi-step and 

multicellular disease process with a diverse range of chemical aetiologies (Figure 1)6-8.  This means 

that prediction of all forms of DILI may be inherently intractable to simple solutions, such as single cell 

culture screening strategies. Thus, a much better understanding of the mechanisms underlying DILI is 

essential in order to a) evaluate the strengths and weaknesses of currently available test systems and 

b) inform the design and construction of new improved predictive models.  Crucially, we must define 

not only whether a test system is fit-for-purpose, but more critically “what particular purpose is a test 

system fit for”. In addition, we need to be aware of which forms of DILI we can predict and which 

forms of DILI we cannot predict, when there is no human experience with the drug. 

Given the multifactorial mechanisms of DILI, which contribute to drug attrition in development and in 

clinical practice, there is a need for new thinking in terms of the development of a holistic approach 

to the early detection of chemical liabilities which are predictive of DILI. Such an approach must be 
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mechanism-based, pragmatic and sufficiently adaptable to be of practical application to 1) influence 

drug design early enough in the discovery phase and 2) manage risk assessment in drug development, 

which is amenable to evaluation by drug regulators, but cognisant of current limitations in our 

understanding of DILI. This is particularly important when human risk factors dominate over chemical 

risk factors, e.g. for idiosyncratic drug toxicity.  

It is clear from a review of the literature, that no single system is fit-for-purpose as a universal test for 

DILI in humans, which is a patient-specific, temporal, multifactorial pathophysiological process. 

Therefore, what is required is a portfolio of robust and well-characterised predictive DILI platforms 

that have their purpose well-defined, and acceptable in a theoretical and practical sense to academic, 

industry and regulatory agencies.  

This perspective presents our vision for a DILI roadmap, with the aim of managing DILI risk and 

ultimately assisting in the design and development of safer and more effective medicines. Our 

approach is comprised of a tiered system, which integrates established and emerging cell-based 

technologies into a coherent map for drug development and, ultimately, for drug regulation.   
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Proposed DILI Roadmap  

Potential strategies to de-risk DILI in drug discovery have previously been published. These 

approaches, whether presented as in vitro hazard/liability matrices9,10 or tiered testing cascades, are 

typically those of a single institution or focus only on single mechanisms, proprietary test systems11-

14, legacy compound datasets15, and/or technology platforms16,17. For this reason, there has 

remained little or no consensus on the use or approach to de-risk DILI. Moreover, many of these 

strategies may not be readily amenable for adoption by small enterprises and start-ups where in-

house capacity and availability of proprietary compounds to validate such approaches are lacking.   

The DILI Roadmap discussed in this Perspective was established by nine medium-large EFPIA 

pharmaceutical companies, SMEs and academic partners as a holistic strategy to manage human DILI 

risk. Our approach delivers an in-depth inter-laboratory evaluation of the fundamental and 

reproducible performance of assays, to identify chemical liabilities in drug discovery and to manage 

DILI risk in development. Our roadmap (Figure 2) integrates established and emerging test systems, 

and is based on a 3-tiered approach, whereby the complexity of the model increases progressively 

from single cell 2D to multi-cell 3D systems through to systems that incorporate human individual-

specific factors, such as genetic- or disease-related factors.  

As the Roadmap incorporates assays and cell models which are well-characterized and have proven 

their utility18-20 as well as emerging novel systems with anticipated future benefit, this enables the 

versatility of the Roadmap to evolve with the advent of future qualified complex DILI models  

Cell Models  

There are numerous examples of significant interspecies differences in DILI, caused for example by 

species variations in the specificity of drug metabolism and exerted toxicity. Accordingly, human-

based in vitro systems for predicting in vivo DILI in man are preferable. The in vitro systems should 
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exert a relevant phenotype, mimicking the functionality of hepatocytes in vivo and, since many drugs 

exert a delayed DILI response, the system must exhibit long-term stability.  

Much attention has been placed on the refinement of 2D cell systems and development of a 3D 

spheroid system based largely on primary hepatocytes, where the transcriptomic, proteomic and 

metabonomic profile as well as the functionality of the spheroids are very similar to the specific donor 

liver18,21-23. Such spheroids have also been shown to imitate liver disease induced by altered 

physiological conditions24. When challenged in long-term cultures with 122 drugs with or without 

direct implication in clinical DILI, this spheroid system successfully detected 69% of all hepatotoxic 

compounds without producing any false positive results (100% specificity), thereby exceeding all 

previously published in vitro assays at substantially lower drug concentration levels, that approach 

Cmax or Css in blood with drugs known to cause human DILI23. Single cell models, whether primary or 

immortalised, nevertheless lack the intricacies of a multicellular environment, and whilst a range of 

inventive technologies have been developed to build complex 3-D structural models, none published 

so far has been able to recapitulate the complex physiology of the intact liver.  

Much effort is now being directed to develop different kinds of more physiologically-relevant in vitro 

systems such as 2D and 3D multi-cellular tissue chip and microfluidic systems which can provide a 

relevant cellular milieu for studies of liver function and DILI25,26. In addition, microfluidic 

microphysiological (organ-on-chip) systems are being built in a multi-organ fashion which in the future 

may be able to further integrate complex mechanisms relevant for the production of idiosyncratic 

human DILI27.  

However, despite significant efforts towards developing the next generation of advanced in vitro-

based liver models with greater physiological relevance, none are presently in routine use by industry. 

This in part is due to remaining technological challenges and a required demonstrable ‘paradigm shift’ 

in predictive power yet to be established28-30.  2D cell-based assays platforms therefore remain 
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common practice for screening due to their ease of use, availability and suitability for HTS28,31, despite 

their reported limitations of physiological relevance8,32.  

It may not be possible to combine all features of a fully functioning liver in microphysiological tissue-

based systems (MPS) models, thereby requiring the integration of input from more than a single test 

system. Nevertheless, there is an opportunity to capitalize on the use of established 2D cell models 

and assays in a tiered and congruent manner that applies physiological and pharmacological 

knowledge, advantages and limitations of these 2D cell models, with more advanced models as they 

become available and qualified for use. Cell-based 2D models currently comprise traditional liver 

derived cell-lines and primary hepatocytes. Features facilitating use of 2D cell models such as HepG2, 

HepaRG, and primary hepatocytes are summarized elsewhere33 and in Table 1, and represent the most 

commonly available and widely used cell models by industry. Given this, along with the breath of 

available literature on the characterization of HepG2 and HepaRG, this prioritizes the use of these cell 

models in a tiered approach for screening of key mechanisms associated with human DILI.  

In addition, the strategy described in this Perspective for assessing DILI risk encompasses the 

application of cell models most appropriate for a given mechanism being studied (sections 3-8; 

mitotoxicity, ER stress, or bile canilicular dilatation).  Hence, each individual cell model is not only 

defined as uniquely a TIER 1 or TIER 2 test, but also by the toxicological endpoint(s) under evaluation  
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Physicochemical characteristics associated with DILI risk 

High daily doses and high systemic exposures to drugs are associated with increased risk of DILI34,35. It 

is therefore important to account for the intended pharmacological drug exposure (concentration) 

and ADME data alongside the use of the in vitro DILI roadmap (Figure 2), to help integrate 

concentration-effect relationships for the prediction of DILI.  Low doses are desirable and ideally doses 

< 100 mg/day should be targeted for oral drugs36. For example, evaluation of the top 200 oral drugs 

in 2009 in the USA and of 68 drugs recalled or associated with a black box warning due to idiosyncratic 

toxicity, indicated that the major differentiating factor between the two groups of drugs was the total 

daily dose37. Likewise, the vast majority of oral drugs with reported idiosyncratic liver toxicity are 

administered at high clinical doses38.  

Not surprisingly, given their influence on efficacious doses, some physicochemical properties (e.g. 

lipophilicity, polar surface area, number of hydrogen bond donors and acceptors) have also been 

shown to be associated with an increased risk of DILI. For this reason, determining the physiochemical 

properties of a compound is important.  Computational tools are available as TIER 1 assays to guide 

early drug design by predicting physicochemical properties or sites of metabolism, metabolite 

structure, cytochrome P450 (CYP) binding/inhibition, and CYP induction39,40.  Examples include the 

Meteor program, MetaSite, and ADMET Predictor39,41,42. The links between compound characteristics 

of interest (e.g., physicochemical properties, bioactivation, and general toxicity) and molecular 

structure (i.e., ‘the similarity principle’) form the basis of these in silico applications that differ only in 

terms of complexity and performance43. For example, various toxicophores or problematic 

substructures can be identified with this approach44,45. These computational assessments are typically 

conducted prior to TIER I assays in order to prevent the synthesis of compounds with low probability 

of success or to prioritize screening of subsets of compounds, thereby optimizing drug discovery 

efforts. However, in silico tools still have some limitations and traditional “wet-lab” experimentation 

with data generation as depicted in the Roadmap as TIER 1 assays is recommended for screening of 
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compounds to confirm predicted readouts from these in silico applications (i.e., spot-checking 

exercise). Several quantitative systems toxicology platforms have been proposed to predict and 

understand DILI.  DILIsym® is an in silico approach to predict DILI based on known mechanisms46. The 

software relies on predetermined mechanisms, such as oxidative stress, glutathione metabolism, 

mitochondrial dysfunction, and ATP depletion to simulate a DILI outcome41. The DILI prediction system 

(DILIps) uses a quantitative structure-activity relationship (QSAR) approach to classify a compound’s 

propensity to induce DILI47 by use of drugs known to cause DILI. Whilst retrospective analyses of 

known hepatotoxic drugs help to identify potential hazard, quantifying risk and predictive value and 

identification of some types of DILI, such as idiosyncratic DILI in patients is not yet achievable.  The 

main points concerning the importance of dose and physicochemical properties are presented in BOX 

1 and discussed in further detail in the supplementary section.  

Intracellular perturbations associated with DILI liability  

A number of intracellular chemical perturbations elicited by pharmaceutical compounds are 

associated with a DILI liability, including mitochondrial dysfunction, inhibition of biliary efflux, 

lysosomal impairment, production of reactive metabolites, endoplasmic reticulum stress,  as well as 

involvement of the immune system (Figure 1). Below we will discuss these factors and examine how 

they can be evaluated using our tiered testing strategy as shown in the DILI roadmap (Figure 2).  

Mitochondrial dysfunction 

In a recent study of 300 drugs, 50-60 % of those that can elicit idiosyncratic toxicity cause 

mitochondrial perturbation, whereas amongst non-DILI drugs this falls to <5%48, (supplemental 

section, Figure 1). However, in many cases where hepatotoxicants have been shown to contain 

mitochondrial liabilities, there is limited clinical evidence linking this mitochondrial dysfunction to the 

onset of DILI.  
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Over the past decade the pharmaceutical industry has sought to incorporate the detection of 

compounds capable of inducing mitochondrial dysfunction into preclinical testing strategies49.  The 

mainstay of such testing stems from the recognition that the use of cells of a tumorigenic nature 

obscures detection of mitotoxicity. This is due to an altered bioenergetic phenotype which enables 

them to use glycolysis to produce ATP, not mediated via mitochondrial oxidative phosphorylation, to 

sustain continued growth and proliferation. To circumvent this, the technique of metabolic 

modification to identify compounds which contain mitochondrial liabilities was described50,51.  

Specifically, HepG2 cells are adapted to culture in either glucose- or galactose-containing media over 

a period of weeks and then exposed to compounds for 24 hours.  A rightward shift in cell death or ATP 

dose-response curves in galactose media, due to a complete dependence upon oxidative 

phosphorylation for ATP generation, provides evidence for mitochondrial dysfunction.  However, 

despite widespread adoption, the glu-gal assay has low prediction rates and subsequent work 

amended the original protocol52.  For  example, acute exposure (2-8 hours) of HepG2 cells to test 

compounds and dual assessment of cellular ATP content and cell death in cells in which the metabolic 

switch is made over 2 h53,54 enables an additional evaluation of whether mitochondrial dysfunction is 

a cause of cell death53.  Characterisation of this HepG2 model revealed its utility to detect and rank, in 

terms of potency, those compounds, parent or synthetic equivalents of any human metabolites, which 

directly induce mitochondrial dysfunction via interference with the electron transport chain.  

However, its evaluation using a larger set of compounds is still required to determine whether these 

changes result in a significant improvement in specificity and selectivity.  The simplicity and ease of 

the acute metabolic switch (glu-gal) assay when used over an acute period, in contrast to other forms 

of this assay, facilitates its use as a TIER 1 assay; i.e. to be adopted early in the preclinical testing 

strategy to rapidly screen compounds.  The principle of in vitro, metabolic modification is applicable 

to other methods of screening for mitochondrial dysfunction, in particular mitochondrial membrane 

potential, respirometry or high content analysis, which can be used as an alternative option to identify 

compounds with a mitochondrial liability. If a compound is identified as positive, the subsequent 
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investigation to confirm classification and define mechanisms can include traditional respirometry in 

isolated mitochondria or the use of a Seahorse extracellular flux analyser for membrane potential. 

These two assays allow the measurement of both oxidative phosphorylation and glycolytic function in 

real-time, in whole and permeabilised cells or isolated mitochondria53,55.  

After an initial screen of hazard identification on a large-scale, the next stage of mitochondrial testing, 

TIER 2, should take place in more complex models designed to have greater physiological relevance 

and closer relevance to clinical exposure i.e. over weeks instead of days.  This is particularly important 

as drug-induced mitochondrial dysfunction can often form part of a multi-mechanistic pathway, 

working in concert with other processes within the hepatocyte, such as biliary transport and 

xenobiotic metabolism49. Furthermore, mitochondrial toxicity often has a delayed presentation over 

several months in the clinic due to an apparent threshold effect due to the multiplicity of mitochondria 

alongside a complex array of protective and compensatory mechanisms56. In practice, this means that 

a certain amount of damage must be sustained before toxicity becomes apparent. A clear example of 

this is the induction of mitochondrial hepatotoxicity by fialuridine, which caused several deaths during 

clinical trials57-59.  Toxicity was only induced following 13 weeks of exposure due to the inhibition of 

mitochondrial DNA replication.  To replicate long-term exposure in vitro, the HepaRG model is an 

appropriate choice for TIER 2 mitotoxicity testing to assess chronic drug exposure-effect on 

mitochondrial function independent of hepatocyte cell death. Research has demonstrated that these 

cells are compatible with the metabolic modification assay under short exposure times (2 – 24 h)60. 

Furthermore, the ability of this model to detect delayed mitochondrial toxicity has been shown for a 

panel of mitotoxicants with varied mitochondrial targets, including mitochondrial DNA, mitochondrial 

protein synthesis and fatty acid oxidation61,62. Importantly, this model enabled the pathway of 

mitochondrial toxicity to be delineated at concentrations in the region of drug exposure (Cmax, Css) 

in clinical practice. The metabolic modification assay (glu-gal) has also been shown to be applicable 

for cases of delayed toxicity in the HepaRG model.  Importantly, it was able to identify fialuridine as a 

mitotoxicant after 2 weeks of exposure with subsequent mechanistic studies, performed over 4 
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weeks, confirming the mechanism of toxicity via inhibition of mitochondrial DNA replication63.  The 

use of this model to assess mitochondrial toxicity against a background of underlying liver pathology 

has also been described. In particular, steatotic HepaRG models have been developed, and used to 

evaluate the effects of steatosis on cellular bioenergetics and individual susceptibility to 

mitotoxicants61.  

TIER 2 mitotoxicity testing can also encompass 3D cell systems, such as spheroids, which represent a 

more functionally-relevant liver system64. Work to create 3D spheroids of primary human hepatocytes 

(PHH) has revealed an increased sensitivity to fialuridine over extended periods, with effects beginning 

at 7 days and increasing over 28 days of exposure21. Such studies reveal the importance of temporal 

toxicodynamic events not captured in short-term assays.  

Although TIER 1 and TIER 2 testing has developed to improve the detectability of mitotoxicants, these 

results must always be viewed as identification of chemical liabilities in the absence of quantitative 

IVIVE extrapolation and PKPD clinical readout. Traditionally, it has been difficult to bridge from in vitro 

studies to humans using animal models of mitotoxicity. Specifically, in vivo studies do not adequately 

represent the clinical situation as they are often performed in young and healthy in-bred rodent 

models which have therefore a reduced sensitivity to mitotoxicants65.  As such, TIER 3 systems for 

evaluating mitotoxicity remain less well-defined. However, one successful example was the 

susceptibility of the chimeric TK-NOG mouse with humanised liver to fialuridine-induced 

hepatotoxicity, at doses approximately ten times the therapeutic exposure, which presented with 

clinical and pathological features in line with the DILI observed in humans66.  

It is clear that the current DILI roadmap for mitotoxicity testing can identify certain mitochondrial 

liabilities.  However, there is still no clear path to predicting potential risk in patients.  In silico 

modelling is beginning to provide systems with which to bridge this translation by taking into account 

patient-specific factors, for example, individual health or disease state, in order to assess impact on 

mitochondrial toxicity. One example of such modelling is found in DILI-sym®, i.e. mitoSYM®, which has 
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been developed to aid the mechanistic understanding of clinical hepatotoxicity and was used 

successfully to determine retrospectively the role of mitochondria in tolvaptan hepatotoxicity and 

most recently macrolide antibiotics and TAK-87567-70. Overall, the last 10 years have seen significant 

advances in the development of models and test systems to identify mitochondrial toxicity. Practically, 

it is recommended that they are deployed in preclinical safety testing in a step-wise approach; TIER 1 

is suitable for the risk assessment of many compounds, whilst TIER 2 and subsequent mechanistic 

work incorporating temporal toxicodynamic events can be used to follow-up on selected compounds 

of interest. TIER 3 remains a work in progress which is continuing to develop as the fundamental 

mechanisms directing inter-individual variation and species selectivity are discovered. Until such 

further progress is made, TIER 3 can function as an opportunity to retrospectively assign mechanisms 

and understand at-risk populations once clinical signals of hepatotoxicity have been observed.  

Energy metabolism and in particular, mitochondria respiration are key processes in the build-up of 

fatty liver deposits as the site of fatty acid oxidation, and many of the drugs known to interact with 

the mitochondria at the level of β-oxidation, electron transport chain or mtDNA are associated with 

hepatic steatosis71. Drugs implicated in hepatic steatosis affecting the electron transport chain (ETC) 

and β-oxidation of fatty acids is metabolically linked, such that drugs affecting ETC pathway invariably 

inhibit β-oxidation. The rate-limiting step for fatty acid oxidation is the mitochondrial carnitine-

palmitoyl transferase-1 system; when mitochondrial β-oxidation is severely inhibited, fatty acyl-CoA 

β-oxidation is impaired with increased fatty acyl-CoA and fatty acids. These fatty acids are converted 

into triglycerides that are believed to be hepato-protective mechanisms of importance in 

mitochondrial toxicity72.  Further details on the assessment and mechanisms of steatosis and 

detection thereof are provided in section 3 of the supplementary information.  
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Transporters in drug- and bile acid (BA)- induced liver injury  

Drug-induced cholestatic liver disorders are among the most severe clinical manifestations of human 

DILI and account for almost half of the cases of drug-related hepatotoxicity73,74. These liver disorders 

are broad, yet are characterized by acute and chronic impaired hepatocellular secretion of bile, with 

accumulation of systemic BAs and their bile salts, bilirubin and cholesterol (Supplementary 

information).    

In many cases, the disruption of BA secretion results from functional changes in the hepatobiliary 

transporter system. These membrane transporters facilitate uptake and efflux of endogenous 

substances and drugs between the basolateral, sinusoidal and apical (bile canalicular) membranes of 

the hepatocyte. Many drugs are also identified as inhibitors of these membrane transporters (Figure 

3). The localization of membrane transporters, expression of family and sub-family members, and 

polarity of transporter proteins convey the highly-regulated physiological and pharmacological role in 

the hepatobiliary transport of BAs (supplemental text). 

Many drugs inhibit the biliary excretion of conjugated bile salts, mediated by BSEP75. Trafficking of 

intracellular pools of membrane transporters, such as BSEP, can be swiftly recruited and inserted into 

membranes as a result of drugs or increases of intracellular BAs.  BSEP inhibition studies have been 

proposed for the assessment of human DILI and the cholestatic potential of drugs76-78. These inhibition 

studies are often implemented as non-cell-based screening TIER 1 assays to rank compounds that 

inhibit BSEP alongside other hepatobiliary transporters. Nevertheless, there are false positives and 

false negatives identified when solely screening for liabilities associated with BSEP inhibition77,78, as 

not all cholestatic drugs inhibit BSEP and detection of BSEP inhibition will be dependent to some 

extent on the methodologies and test systems employed31. A further complexity are drugs (e.g. 

captopril and cimetidine) known to cause cholestasis without apparent interaction with BA 

transporters79 or transporters associated with BA-independent flow. Therefore, correct classification 

of drugs on the basis of liver-induced severity may also explain some conflicting results. Using the FDA 
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DILI severity assessment, published BSEP inhibition datasets were recently re-examined, and it was 

concluded that the inverted vesicle assay is not predictive of the toxic potential of drugs80.   

Inverse membrane vesicles expressing human transporters allow us to detect only direct interactions 

with drugs. The influence of cellular factors that can be critical in the occurrence of DILI can be 

investigated only with polarized functional hepatocytes as part of a TIER 1 testing strategy. Sandwich-

cultured human hepatocytes have been widely used to evaluate BA disposition; indeed over time in 

sandwich configuration, hepatocytes develop functional bile canalicular networks and express hepatic 

transport proteins on the correct membrane domains. This cell model has served widely for studies 

on drug-induced alterations of BA disposition using taurocholate as a model BA. Effects of drugs on 

canalicular versus basolateral efflux, measurements on BA accumulation in cells and bile canaliculi 

versus medium have been extensively analyzed81-86. However, published data sets are scarce. The 

sandwich-cultured human hepatocyte model has allowed a better separation of BSEP inhibitors 

associated with severe DILI (e.g. cyclosporine, ritonavir, troglitazone) from those with no DILI or mild 

DILI (e.g. rifampicin)78.  Despite many studies to try and relate BSEP inhibition and DILI, there is a 

recognized lack of causality between drug exposure and BSEP inhibition and human DILI87. 

A fraction of bile canaliculi (BC) appear irregularly dilated with conspicuous alterations of microvilli in 

cholestatic liver88. Cultured PHH and HepaRG hepatocytes exhibit an early response to cholestatic 

drugs by the deregulation of bile canaliculi dynamics through the Rho-kinase and Myosin Light Chain 

kinase kinase (MLCk) kinase pathways, with or without inhibition of BSEP and NTCP activities89. These 

effects of deregulation of bile canaliculi dynamics occur through the constriction or dilatation of bile 

canaliculi associated with actin cytoskeleton disruption, and the extent of these effects are time- and 

drug concentration-dependent. These features further support the secondary effects of enhanced 

basolateral excretion of BAs and down-regulation of genes related to bile transport, synthesis and 

detoxification90,91.   
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Early BC deformation associated with deregulation of the Rho-kinase and MLCK pathways appear to 

represent common features induced by cholestatic drugs. Importantly, a causal relationship between 

drug exposure and BC deregulation appears evident for drugs with known clinical cholestatic or rare 

cases of cholestatic potential in human.  Drugs recognized as cholestatic or involved in only rare cases 

of clinical cholestasis were found to cause dilatation or constriction of BC8,20,92. An additional drug, i.e. 

macitentan, which possesses a similar chemical structure to bosentan was also classified as 

cholestatic8. It is noteworthy that the first case of acute liver failure associated with macitentan 

treatment was only recently reported, and that histology revealed chronic hepatitis associated with a 

process of micronodular cholestatic cirrhosis93. 

Little information exists on the early changes in BA total content and profiles in human liver exposed 

to cholestatic drugs. Hydrophobic BAs are much less hepatotoxic in humans than in various animal 

species85,94. Accordingly, GCDCA and LCA were found to be cytotoxic in in vitro only at very high 

concentrations85,95.  PHH and HepaRG hepatocytes synthesize, conjugate and secrete BAs in vitro95,96. 

However, only transient cellular accumulation (if any) can be detected in hepatocytes cultured in a 

serum-free medium.  BA production is too low and in addition, synthesis and efflux can be inhibited 

and compensatory secretion via the sinusoidal transporters MRP3/4 activated by cholestatic drugs97.  

In fact, the cells have to be incubated with exogenous BAs at physiological or higher serum 

concentrations to observe any cellular accumulation of BAs. In such conditions, cellular accumulation 

of unconjugated CDCA and DCA and their conjugates, as well as of LCA and sulfated LCA and to a lesser 

extent unconjugated CA and its conjugates, can be observed with cholestatic compounds after 24h 

treatment at non-cytotoxic concentrations92,98. These results support the likelihood of an inhibition of 

BA conjugation and sulphation activities; they also indicate that cellular accumulation of BAs rapidly 

follows impairment of BC dynamics and that LCA, the most lipophilic BA, is the first to accumulate 

within hepatocytes after addition of cholestatic drugs. Together with BC dynamics, the impairment of 

cellular accumulation of hydrophobic BAs could represent potent biomarkers of the cholestatic 

potential of new compounds92 and form part of a TIER 1 testing strategy to confirm results from non-
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cell-based transport inhibition screening studies. Another method that has been developed for the 

evaluation of the cholestatic potential of drugs is based on the inhibition of urea production in 

sandwich-cultured human hepatocytes co-exposed to drugs and an exogenous BA mixture99. 

Compared to the preceding method that measures cellular accumulation of toxic BAs, this drug-

induced cholestatic index likely reflects BA-enhanced cellular toxicity of cholestatic drugs rather than 

changes in BA secretion and formation. In addition, 3D PHH spheroids have been used for predicting 

drug-induced changes in BA transport and hepatocellular toxicity. Highest sensitivity is seen during 

prolonged incubation time of the spheroids in the presence of exogenous BAs and the drug and 

sensitivity might be somewhat improved100,101.  

The difficulties in interpreting transporter data using inverted membrane vesicles clearly warrants 

confirmatory studies by the use of well-characterized phenotypically-stable cell models. Sandwich-

cultured PHH and HepaRG hepatocytes currently appear to be the most appropriate cell models for a 

TIER 1 test system. They possess both physiological and anatomical features of the native hepatocyte 

with correctly polarized transport proteins and bile canaliculi. Of the two cell models, HepaRG 

hepatocytes are easier to handle and functionally relatively stable over several weeks in 2-D 

configuration102. Both models can serve as a priori TIER 1 assays for early hazard identification of drugs 

to cause acute and even chronic changes in BA transport and secretion processes. 3-D cultures can 

also be obtained with PHH and HepaRG cells, and may serve as TIER 2 confirmatory test systems. In 

general, functions are better preserved over several weeks and co-cultures with other hepatic or non-

hepatic cells can be performed. Recently, 3-D models of cholangiocytes have also been developed; 

they could be used to analyze extrahepatic mechanisms of toxicity induced by some compounds that 

cause damage to bile ducts103. 

Of the TIER 1 cell-based models for the study of in situ hepatobiliary transporters, only cell-lines are 

readily amenable to HCA screens due to matrices required for PHH to maintain cell 

differentiation90,91,104-106 and subsequently existing methodologies for PHH are low-throughput. 
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Robust quantifiable readouts required for ranking sets of compounds by use of transporter-selective 

probe substrates are not yet available. Most importantly, 2D PHH models do not permit time-resolved 

studies over extended treatment periods of several days to assess delayed onset of drug treatment 

without underlying changes in the constitutive phenotypic expression of DMEs and transporters. 

Opportunities for the use of advanced cell-based TIER 2 assays for the study of ‘long-term/chronic’ 

drug treatment on transporter function, BAs and on multiple indirect and direct targets should be 

more fully explored. For example, CsA and chlorpromazine exhibit concentration-dependent effects 

on mitochondrial membrane permeability and ER stress, respectively, which in turn may have longer-

term implications on hepatobiliary transporter function. Advanced TIER 2 models, with incorporation 

of NPCs, would also permit more comprehensive mechanistic studies on the role of innate immune 

function in the initiation, adaptation and progression of changes in hepatobiliary transport function 

and BA secretion by drugs; the association between indirect and direct effects on the role of 

transporters on BAs secretion and transport, and role of the immune system are well-described107,108. 

Furthermore, technological advances in the development of in vitro models to explore the role of 

innate and adaptive immunity (TIER 3) in cholestasis is still required and remains an important focus 

for future research efforts to understand human DILI.  

Lysosomal perturbation  

Drug-induced phospholipidosis (PL) is the accumulation of phospholipids in cells, characterized by 

lamellated, membranous deposits in lysosomes. The accumulation of phospholipids can occur in any 

tissue, is often first observed as lung “foamy macrophages” in pre-clinical studies, and is confirmed 

ultrastructurally. Cationic amphiphilic drugs (CADs), such as amiodarone, perhexilene, and 

chlorphentermine, are typical molecular structures associated with PL. Lysosomal trapping is the 

mechanism by which CADs accumulate109. CADs are neutrally-charged when crossing the lysosomal 

membrane, but become positively charged in the acidic lysosomal compartment and thus, less 

membrane permeable. Once trapped in lysosomes, CADs may directly inhibit phospholipase activity 
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leading to reduced ability to process phospholipids, or bind to phospholipids, resulting in a large 

complex that cannot be metabolized or processed110.  

In the context of DILI, the consequences of PL remain the subject of debate. Some association between 

DILI and PL has been proposed for drugs like amiodarone and perhexilene maleate111; however, the 

literature and supporting data are not very clear, not confirmatory of a real association, and suggest 

that the primary mechanism of toxicity is more related to mitochondrial dysfunction, disrupted ATP 

production and fatty acid catabolism.  For example, perhexilene is a carnitine palmitoyltransferase-1 

(CPT-1) inhibitor with multiple effects on mitochondrial function and in vivo evidence of fatty acid 

metabolism inhibition112.  This mechanism is more consistent with the histopathological appearance 

of the DILI cases that have been called “pseudo-alcoholic hepatitis,” rather than a classic case of 

phospholipidosis. Likewise, the histologic appearance of amiodarone DILI cases suggests that PL is an 

independent and non-related phenomenon113. Other hypotheses have suggested that PL is a novel 

protective mechanism of the cell, in which CADs are sequestered in the lysosomes preventing their 

migration and damage to critical organelles114. 

In general, the pharmaceutical discovery strategy is to lessen the propensity of candidates to induce 

PL. However, in the absence of other issues or toxicity, PL has not been necessarily considered a signal 

sufficient to halt drug development. To optimize compounds toward reduced PL propensity, various 

in silico tools can be used to complement a TIER I approach complemented or not by in vitro assays 

(e.g. LipidTox assay) or high content screening approaches to identify general PL risk, often using a 

standard CAD as a reference control (e.g. amiodarone)115,116; these activities can often be timed with 

the characterisation of the physicochemical properties of compounds described in section 3. If PL 

remains a concern, then it will be necessary to determine if PL occurs in vivo and at what exposure 

along with the identification of target organs (e.g. liver PL may present less risk than neuronal or retina 

PL) and concurrent histopathology and ultrastructural changes. Since in vitro and in silico assays have 

some good predictive value in terms of risk identification but are limited in terms of risk assessment, 
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the primary objectives of an in vivo evaluation are to establish a better understanding of the safety 

margins associated with PL (and consequently, good estimates of systemic exposures are required) 

and the nature of the target tissues which will determine the level of risk.  These in vivo studies are 

typically first conducted routinely for practical reasons and since the type of molecules associated with 

PL usually have a high volume of distribution, dosing for more than a week is preferable. In addition 

to traditional histopathology evaluation, special immunohistochemical methods and biomarkers may 

be used to strengthen the assessment117,118. Determining reversibility of PL in toxicology studies and 

developing a strategy for clinical monitoring may be warranted in some situations. 

Reactive metabolites and oxidative stress  

Numerous experimental and clinical investigations have demonstrated that chemically reactive 

metabolites (CRM) are produced during the biotransformation of many pharmaceuticals, including 

those linked with DILI in patients7,15,119,120. The microsomal CYPs are dominant hepatic catalysts of drug 

bioactivation and responsible for the transformations of the many drugs developed before limiting 

bioactivation became a major objective of medicinal chemistry119,121,122.  Whilst this strategy has not 

guaranteed safety for all newly-developed drugs, it has reduced the chemical liability of molecules 

with respect to DILI. Nevertheless, there remain complex challenges of managing CRM in the 

development of safe drugs, as exemplified by the case of fasiglifam (TAK-875) which was withdrawn 

from a Phase III clinical trial due to hepatotoxicity that has since been linked to protein adduction by 

a reactive acyl glucuronide metabolite123. As the role of CRM in DILI has been reviewed 

extensively121,122,124, it will not be detailed again here.  

A biochemical perturbation commonly associated with, but also known to occur in the absence of, 

CRM formation (for example, as a consequence of mitochondrial impairment) is oxidative stress, the 

excessive cellular generation of reactive oxygen species (ROS) and other organic radicals that has been 

associated with a DILI liability125,126. Oxidative stress is typically determined through the direct 

quantification of ROS, assessment of the deleterious cellular consequences of ROS accumulation (i.e. 
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lipid peroxidation, glutathione depletion) or the evaluation of key adaptive responses (i.e. increased 

activity of the Nrf2 stress response pathway). In the former case, there is evidence of inadequate 

specificity, risking misplaced biochemical perceptions, when using some of the older and 

technologically less demanding ROS assays127-129, thereby promoting an unproductive proliferation of 

reports of oxidative stress. It is likely that the fundamental understanding of a ‘probe’ compound’s 

chemistry can deliver a much more accurate assay of a ROS130 as well as more accurate biochemical 

understanding, leading ultimately to more accurate assessments of biological risk. Such considerations 

are important when probes are included in high content screening assays using simple cell models in 

TIER 1.  

Whilst activation of the Nrf2 stress response can be determined by measuring changes in the 

expression level of the transcription factor and/or its conserved target genes (e.g. sulfiredoxin 1; 

SRXN1) in standard cell platforms, such analyses are generally more suited to low-throughput, 

endpoint studies. To overcome this limitation, HepG2 cells have been genetically engineered to 

express GFP-tagged SRXN1 and other stress response markers, thereby enabling quantitative 

assessment of the dynamics of the Nrf2 response in real-time using automated live cell imaging131,132. 

This platform represents a TIER 1 test system within the DILI roadmap (Figure 1), but could in principle 

be adapted to more complex models including 3D/spheroid cultures for use in Tier 2, where metabolic 

relevance is enhanced, as has been shown for HepG2 cultured in 3D133.  In TIER 3, the transgenic Nrf2-

luc reporter mouse134 has shown promise for detection of the Nrf2 response to drug-induced oxidative 

stress at the whole body level135. Using real-time bioluminescence imaging, localised signals were 

detected in the liver (acetaminophen) and kidneys (cisplatin) in vivo and ex vivo, consistent with 

immunohistochemical analysis that showed an elevated expression of luciferase in centrilobular  

hepatocytes and in tubular epithelial cells, respectively. As a low-throughput in vivo test system, 

the Nrf2-luc reporter mouse could be employed in bespoke mechanistic investigations (TIER 3) at 

later stages in preclinical drug development. In a tightly-focussed in vivo experiment, this would 

indicate tissue-selectivity and temporal dynamics of the physiological response to oxidative stress 
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in a fully metabolically-competent model – this is relevant for human translation as it will allow a 

better association with dose and PK, also enabling repeat dosing and monitoring of adaptation.  

Acetaminophen is typically considered to be the paradigm compound for the study of CRM and 

oxidative stress in hepatotoxicity136.  It is well-established that cytochrome P450 (CYP)-mediated 

bioactivation of acetaminophen to the CRM N-acetyl-p-benzoquinoneimine results in the depletion of 

hepatic glutathione and the consequent accumulation of ROS and covalent modification of numerous 

protein targets.  From the clinical perspective, it is interesting to note that delayed idiosyncratic DILI 

for acetaminophen has not been described, despite the fact that thousands of people take it daily for 

osteoarthritis. In the context of the DILI roadmap (Figure 2), it is important to note that simple cell 

systems such as HepG2 generally lack metabolic competence and are therefore largely incapable of 

reflecting the mechanisms underlying acetaminophen hepatotoxicity in vivo (extensively reviewed 

in137), although genetic manipulation of cells to restore expression of selected CYP enzymes has been 

shown to improve sensitivity to acetaminophen and other selected hepatotoxicants11. In the future, 

as more CRM-forming drugs become eliminated from preclinical programs121, the metabolic 

deficiencies of simple cell systems could become less of a hindrance in early drug safety testing. 

Experimental confirmation of the value of a test system for examining the toxicity associated with 

acetaminophen and similar compounds can be gained by assessing the impact of CYP inhibition (e.g. 

with 1-aminobenzotriazole) on drug-induced changes in pertinent cellular readouts. For example, such 

an intervention was found to ameliorate the hepatotoxicity and localised reporter signal in 

acetaminophen-treated Nrf2-luc mice135, which is consistent with the role of CRM formation and 

oxidative stress in the activation of the Nrf2 stress response in this setting. 

Beyond acetaminophen, a key question that remains to be addressed is whether other drugs are 

capable of inducing toxicologically-relevant oxidative stress in human, considering differences in daily 

dose (acetaminophen dosing is up to 4 g per day, newer drugs are typically administered < 100 mg per 
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day) and the very high concentration of the hepatic glutathione pool (5-10 mM) that must be depleted 

in order to allow CRM and/or ROS to accumulate to toxic levels.  

Endoplasmic reticulum stress  

Direct hepatotoxic drugs can induce oxidative stress in different organelles, such as endoplasmic 

reticulum (ER), leading to necrosis or apoptosis.  Such stress will induce adaptive stress response 

pathways, including the ER unfolded protein response (UPR), which is initiated by three ER 

transmembrane proteins: IRE1α, PERK, and ATF6138. Under physiological conditions, the unfolded 

proteins accumulated in the ER can activate these three signalling proteins either through the ER-

resident chaperone Bip or through direct binding to them. The activation of these proteins is 

important to restore ER homeostasis by increasing expression of ER chaperones and antioxidant 

response through the Nrf2 pathway, decreasing mRNA translation, and enhancing degradation of 

misfolded proteins139,140. When the activation of the UPR fails to protect survival, the cell actively 

pursues the proapoptotic pathway, ultimately leading to apoptotic cell death, inflammation and/or 

fat accumulation. This includes hyperactivation of protein kinase R-like ER kinase (PERK)/ATF6 

mediated activation of C/EBP homologous protein (CHOP), IRE1-mediated activation of TRAF2, and 

increased Ca2+ release from the ER141. The precise point at which this shift from adaptation to 

apoptosis occurs is not certain but clearly is influenced by the degree and the duration of the ER stress.  

ER stress has been associated with various drug-induced liver lesions and recently a clear link between 

ER stress pathway activation and drug-induced cholestasis has been reported92, where penicillinase-

resistant antibiotics (flucloxacillin, cloxacillin and nafcillin) caused early cholestatic effects through the 

induction of ER stress. 

The exact cause and effect relationship between ER stress and the mechanism of induced cell injury 

remains unclear. There appears to be a complex interplay between ER stress, conditions that promote 
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it, and those that result from it, giving rise to a cycle in which ER stress can eventually promote 

inflammation, cell injury and steatosis, all of which can (subsequently) exacerbate ER stress142.  

Wink et al131 have recently established a robust high-throughput imaging-based platform for the 

single-cell assessment of adaptive stress response pathway activation, based on a specific BAC-GFP 

HepG2 reporter cell line reflecting ER stress / UPR response pathways (specific biomarkers – XBP1, 

ATF4, BiP and CHOP). These UPR reporters have been applied together with above-mentioned Nrf2 

pathway reporters to evaluate these reporter systems against a panel of >100 DILI compounds with 

different DILI risk132.  

The immune system in DILI  

Immune-mediated DILI is rare and the mechanism of tissue injury is believed to be a complex multi-

cellular event. There is currently no screening strategy that can detect and eliminate candidates that 

may cause immune-mediated DILI.  Below,  we will review the evidence that implicates the innate 

(non-specific) and adaptive (antigen-specific) immune system in DILI at the chemical and cellular level, 

and critically assess what test systems might eventually be used for predicting hazard of NCEs using 

the DILI roadmap.  

Detection of drug-specific T-cells in patients with DILI 

The adaptive immune system has been implicated in DILI when there is a delayed onset. Histological 

investigation of liver from a patient with idiosyncratic DILI revealed an accumulation of granzyme B-

secreting T-lymphocytes alongside apoptotic hepatocytes, suggesting that T-lymphocytes participate 

in the adverse event143. Moreover, it has been possible to isolate drug-specific T-cells from PBMC of 

patients with DILI, but not drug-exposed tolerant controls. Using the lymphocyte transformation test 

it was possible to detect drug-responsive lymphocyte responses in approximately 50% of patients with 

DILI144.  Furthermore, the lymphocyte transformation test was reported to be positive in 95% of 

isoniazid DILI cases, whereas lymphocyte responses were not detected in patients receiving isoniazid 
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without evidence of liver damage145. Cloning T-cells from patients with isoniazid-induced DILI 

identified CD4+ T-cells that release an array of cytokines following drug stimulation146.  A range of anti-

drug and autoantibodies have been identified in patients with isoniazid-induced DILI147, but not 

detected in tolerant patients. In recent years, flucloxacillin-, amoxicillin- and clavulanic acid-responsive 

T-cells were isolated from patients with DILI and characterized in terms of cellular phenotype and 

mechanisms of drug antigen presentation148-150. When activated with the drug, the flucloxacillin-

specific T-cells killed hepatocyte-like cells expressing the relevant HLA allele in an in vitro model151. 

These studies are clearly beginning to define an immune basis for DILI. 

For an increasing number of DILI drugs (e.g., flucloxacillin152, augmentin153, lumiracoxib154, lapatinib155, 

ximelagatran156, isoniazid157, ticlopidine158, minocycline159, terbinafine160), genome-wide association 

studies have detected specific HLA alleles as important susceptibility factors. These data suggest that 

a highly restricted drug-derived antigen interacts with the HLA molecule to activate T-cells in 

susceptible patients. In fact, activation of flucloxacillin-responsive CD8+ T-cells from patients with 

flucloxacillin-induced liver injury has been shown to be HLA-B*57:01-restricted, which links the 

genetic association to the tissue injury148,151. 

However, it should also be noted that the majority of individuals who carry HLA risk alleles do not 

develop DILI when exposed to the culprit drug, and for most HLA-associated DILI drugs, many patients 

that develop DILI will not carry the risk allele.  

For this reason, although HLA associations represent strong evidence for an adaptive drug-specific 

immune response, they are not unqualified indicators of risk.  There is a need to characterize the 

chemical (e.g., drug-modified peptides naturally eluted from HLA molecules) and immunological 

parameters (e.g., immune regulation) that are superimposed onto the HLA association and HLA-

restricted T-cell activation to determine why specific individuals develop DILI.  
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Two hypotheses that are pertinent to the development of test systems for the assessment of new 

drugs are (1) liver injury inducing drugs activate innate signalling, and hence provide the surge of co-

stimulatory signalling and a cytokine environment rich in inflammatory mediators, to promote the 

drug-specific T-lymphocyte response and (2) susceptibility relates to dysregulated expression and 

activity of immune regulatory pathways (cell surface receptors, Tregs, cytokines, and innate cells, 

including NK T-cells, neutrophils, macrophages), which are influenced by the host’s genetic makeup 

alongside disease and environmental factors (including infections, diet, co-exposure to other drugs). 

Figure 4 summarizes our current understanding of the role of the adaptive immune system in drug-

induced liver injury, focussing on flucloxacillin reactions as a model form of HLA allele-associated 

immunological DILI.  

Involvement of innate and adaptive immune system in animal DILI models 

A limited number of animal studies show DILI involves dysregulation of innate or adaptive components 

of the immune system. In some cases, additional factors are required for liver injury to develop. These 

include microbial factors (i.e. LPS) or cytokines (in particular TNF-161,162). This has been demonstrated 

with amiodiarone161, trovafloxacin162, diclofenac163,164 and chlorpromazine. Of these animal models, 

the trovafloxacin-model is the most extensively studied. However, the onset of DILI is rapid and thus 

does not mimic immunological DILI in humans. Trovafloxacin causes cellular stress and apoptosis, 

while TNF- induces the influx and activation of monocytes and neutrophils in response to tissue 

damage162,165. Recent studies on the induction of DILI with amodiaquine demonstrated an important 

role for immunoregulatory T cells in conjunction with other cells, e.g. CD4, CD8 and NK1.1 cells. After 

3-4 weeks of oral exposure mice developed mild DILI, which resolved after 6 weeks, possibly due to 

PD1+ regulatory T cells and also damage-controlling macrophages. Indeed, immune tolerance-

breaking conditions (anti-CTLA4 in PD-1-negative mice) worsened the condition and prevented 

resolution of liver injury166-168.  Whilst the documented studies do not currently describe a widely 

applicable animal model for prediction of DILI, they do illustrate our limited knowledge of the complex 
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roles the innate and adaptive immune systems play in DILI. The main reason animal models cannot be 

used as a surrogate for human immunological drug reactions is that they do not contain fully 

integrated human innate and adaptive immune function. In the most recent advance in this field,  HLA-

B*57:01-transgenic mice were generated to study HLA-linked skin reactions and a single compound, 

abacavir, was demonstrated to activate CD8+ T cells and induce inflammation in the skin when 

regulatory pathways were perturbed169. Despite this, the tissue injury did not mimic that seen in 

humans. It is possible to consider the use of mice with humanized livers for toxicity testing purposes; 

however, such models have disrupted immune systems and therefore have limited application for 

immunological drug reactions that target liver.  There is therefore a need to study human DILI in 

physiologically- and immunologically- relevant models using human cells, and focussing on the 

parameters that have been defined in patients (HLA, TCR, immune regulatory pathways). 

There have been attempts to enhance the relevance of hepatocyte cell lines and co-culture systems 

with hepatocytes and macrophage-like cells using three-dimensional culture170. Drugs such as sulindac 

sulphide, chlorpromazine, diclofenac, and trovafloxacin have been shown to synergize with the 

cytokines TNF- and IFN- to kill hepatocytes in single cell culture162,171-173, indicating that it might be 

possible to develop relatively simple TIER 1 systems to explore innate immune signalling and drug-

induced hepatocyte death. Monocyte-derived hepatocyte-like cells from DILI patients have been used 

for causality assessment of drug-specific immune-mediated reactions174, in which in vitro toxicity 

testing revealed that DILI patient cells are more susceptible to culprit drugs. It will be interesting to 

see whether this approach can be applied to a pre-clinical setting.  

In vitro culture systems to explore the role of the immune system in DILI 

In order to improve the predictability of DILI risk using in vitro assays, a new cell-based assay evaluating 

immune and inflammatory gene expression has been developed175. The human HepaRG or HepG2 cell 

lines were exposed to 96 compounds and supernatants were then incubated with human 

promyelocytic neutrophil-derived cells (HL-60), followed by the evaluation of immune and 
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inflammatory genes. Using a combined score of S100 calcium-binding protein A9 (S100A9), IL-1β and 

IL-8 gene expression, the authors classified test compounds as DILI-positive and DILI-negative. To 

progress this assay towards a predictive test for NCEs, human drug exposure levels must be considered 

and whether inflammatory signals from HL-60 cells are an accurate marker for human DILI must be 

determined. More recently, freshly-isolated PHH have been used to characterise drug-specific 

signalling between the liver and innate immune cells176. Drug-treated PHH released damage 

associated molecular patterns, particularly HMGB1, in a drug- and dose-dependent manner. 

Furthermore, hepatocyte-conditioned media stimulated dendritic cells to secrete pro-inflammatory 

cytokines. However, the construction of in vitro systems to study the interface between the immune 

system and parenchymal cells is beset by a number of theoretical and practical obstacles. 

Transcriptomic analysis177 has revealed that freshly-isolated hepatocytes closely resemble “damaged” 

hepatocytes, which is perhaps not surprising given the conversion of intact tissue into a suspension of 

free cells. The theoretical concern is that such “damage” may inadvertently result in an undefined 

“danger signal”178 that will trigger the innate response in an uncontrolled fashion. This represents an 

important challenge for the engineering of organ-on-chip models which must be constructed from 

materials that are inert with respect to immunological activation.  Ultimately, this is one of the reasons 

why relatively long-term 3-D hepatocyte culture21 hold promise in this area, along with iPS or adult 

stem cells179-184 for differentiation towards hepatocytes, hepatic stellate cells and cholangiocytes as 

well as hepatic organoids, once these models are proven to exhibit sufficient maturity.  As an 

important aside, the conventional inclusion of supraphysiological concentrations of steroids in 

hepatocyte media may dampen immune responses, and this needs to be considered carefully when 

conducting any hepatic cell-based assays. 

To study the cellular mechanisms of immune-mediated DILI in vitro, an HLA-typed PBMC bank from 

1200 healthy volunteers has been established185. Furthermore, a cell culture method to assess the 

immunogenicity of drugs has been developed and used to explore primary T-cell responses to DILI 

drugs and the additional immunological parameters that determine whether formation of drug-
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protein adducts will result in an antigen-specific T-cell response186-189. Since cross-talk between 

hepatocytes and immune cells is likely to be critical in determining the outcome of drug exposure, it 

will be necessary to develop a co-culture system using immune and iPS-derived hepatocyte-like cells 

from the same donors with which to begin to explore the antigenic and polarizing signals released 

from hepatocytes, T-cell activation and whether the activated T-cells kill hepatocytes.   

In the context of the DILI roadmap (Figure 2), efforts are made to minimize exposure to chemical 

liabilities without biological evaluation (see section 3).  This is of importance as reactive species bind 

covalently to selective proteins generating neo-antigens for the immune system. However, this form 

of assessment alone overestimates risk as many compounds that form chemical liabilities are not 

associated with human DILI. Furthermore, compounds such as abacavir and allopurinol that activate 

T-cells through unique pathways would give false negatives in screening assays for chemical liabilities 

or covalent binding. TIER 2 systems based on 2D or 3D microtissues consisting of liver and dendritic 

cells could be used to explore whether hepatocytes deliver drug metabolites and/or tissue-derived 

signals that result in dendritic cell activation or polarization. However, co-culture systems for 

screening compounds in discovery are not routinely applied for use in drug candidate screening,  

possibly due to the lack of guidance on how to handle the results and relate them to decision-making 

or the clinical situation. TIER 3 systems are proposed to explore drug-specific T-cell and antibody 

responses.  A diagnostic toolbox of assays (e.g. lymphocyte proliferation assay, cytokine release assay, 

generation and characterization of antigen-specific T-cell clones) is now available to study human DILI 

when AEs are identified in clinical trials or when a new drug enters widespread use.  Furthermore, T-

cell priming assays with PBMC from HLA-typed healthy donors can be used as a retrospective 

investigative tool to study mechanisms of T-cell activation and to explore immunological liability of 

structurally-related compounds when a reaction has been seen in patients186,187,190. However, there is 

currently no test system available to the non-clinical scientist at present that predicts ab initio the 

likelihood that a compound, which is clearly tolerated by 99.9% of the human population, will induce 

immune responses in patients. For this reason, there is no signal identified in Phase I or Phase II 
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studies, or animal models which are intrinsically less heterogeneous with respect to human variables 

so far discovered for idiosyncratic toxicity, such as the HLA immune system. Nevertheless, we can 

clearly reduce some of the overall risk by eliminating compounds with particular DILI mechanisms in 

reproducible and well-defined models as described.  

Outlook 

The development of predictive models of DILI has been driven by the complementary imperatives of 

the pharmaceutical Industry and academic research. Industry requires serviceable predictive models, 

suitable for routine use in the support of drug candidate selection and decision-making that can aid a 

deeper understanding of the various factors that culminate in the manifestation of toxicity and can be 

confidently used to translate to the patient setting.  

From a general perspective, whilst single cell model systems are invaluable within the tiered screening 

process, it is unlikely in the short-term that any single system is able to incorporate physiologically-

relevant aspects of all of the mechanisms of DILI that have been described in the clinic and thereby 

demonstrate genuine predictive clinical safety of new drugs. At the same time, novel complex model 

systems are being used largely to further our understanding of the mechanisms involved in DILI.  

The DILI roadmap (Figure 2) proposed in this perspective has therefore been developed as a guide for 

early drug safety evaluation, and the selection of particular test systems, with careful reference to 

their pharmacological and physiological relevance to the new chemical entity under consideration, 

before use for any toxicological investigation. Since no single currently-used model is able to 

recapitulate all of the mechanisms of human DILI, we believe that there exists a need for a systematic 

tiered approach, in which model systems of increasing biological complexity can be utilised efficiently 

and effectively at different points, and on different scales, in the drug discovery and development 

process. This tiered approach can then ultimately be connected using mathematical models.  The DILI 

roadmap illustrates not only what can be achieved at present, but also what cannot be predicted in 
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preclinical drug development at the present time, which is critical for drug regulation and public 

education.  

A potential limitation of our strategy is that we focus predominantly on hepatocellular damage in the 

progression of events in human DILI.  There are important examples of other forms of DILI, that require 

improved in vitro models for assessment of risk, and that could be introduced into the current 

roadmap strategy. In this Perspective, we have attempted to concentrate on the earliest chemico-

biological signals that can represent perturbation in the most numerous and metabolically-active cells 

of the liver (the hepatocyte compartment) which can provide a biologically meaningful signal for 

interpretation in evaluating a range of chemical candidates.  Other cells which are the primary target 

of compounds known to cause DILI manifestations such as sinusoidal obstructive syndrome, or 

vanishing bile duct syndrome – i.e. the liver sinusoidal endothelial cell (LSEC) and the biliary epithelial 

cell – have not been specifically examined using the roadmap approach.  Nevertheless this approach 

would be feasible; there are established experimental protocols for isolation of these cells, and there 

are emerging protocols available for generating stem cell-derived LSECs and cholangiocytes191,192.  

Therefore, future work can apply the roadmap outlined here for establishing assays using these and 

indeed other non-hepatocyte liver cells and the suite of mechanistic targets discussed(e.g. 

mitochondrial stress, ER stress etc.) to assess the human relevance of these new cell models in 

screening for a range of manifestations of human DILI. 

A major gap in the present armamentarium of test systems for DILI is a model which faithfully 

recapitulates the interaction(s) of cells of hepatic origin with cells of the immune system. The advent 

of more complex multicellular systems alongside MPS technologies provides much hope for the future 

in this respect, but such systems should be used in the first instance to understand mechanisms of 

immune DILI so that their pharmacological, physiological and immunological relevance can be 

assessed before deployment in the toxicological assessment of a new drug.  Despite the many MPS 

and advanced tissue-based models currently available, few if any of these models appear fully 
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integrated as a part of the drug discovery platforms in pharmaceutical R&D27,193. Several factors can 

be attributed to slower than expected uptake in R&D, including: 

1) On-going company-specific evaluations rather than a coordinated effort across industry to unify 

on a common platform or agreed set of platforms and clear added value194,  

2) Substantial body of work required to thoroughly evaluate the physiological and pharmacological 

characteristics of these models and to assess their fidelity with fresh human-derived liver tissue195,  

3) Curated test-set and training set of compounds to permit evidence-based step-change and 

improved detection of chemical insult196 and relevance to human when compared to traditional 

2D hepatocellular-based culture models.  

4) Confidence in preclinical to clinical PK predictions, for plasma and liver, to enable concentration-

effect understanding of DILI data.  

5) Few data describing MPS responses to biologics.  

Given that the immunogenic response to NCEs in idiosyncratic DILI, and also to biologics176,197,198, 

remains a key safety challenge, future MPS systems will necessitate bioengineering and integration of 

both the innate and adaptive immune biology to study mechanisms and emulate the response in 

hypersensitivity reactions.  This must be supported by the continued development of novel safety 

biomarkers with mechanistic and translational value for use in drug discovery and clinical research199. 

Parallel valuation(s) of disease models of the liver to define changes in the safety margins of drugs in 

healthy tissue versus disease models must be performed.   

Currently, MPS and advanced models are predominantly focused on the development of platforms for 

the study of chemical insult in humanized models. However, it is similarly imperative to demonstrate 

the predictive value of MPS and advanced models through use of animal MPS models for toxicology 

to establish a translational bridge from in vitro to in vivo pre-clinically. Human-relevant test systems 
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that have been designed by retrospective analysis of DILI in humans are also needed for prospective 

risk assessment, representing a strategic pathway of “Human to molecule and back again”.  

Drug-induced liver injury in man is a function of the chemistry of the drug, the dose (mass & duration) 

and human biological variables. The roadmap provides context of use of existing test systems to 

mitigate against DILI in humans. The roadmap also provides a future guide where the continuing 

efforts must shape the distinct and focused direction of linking technologies to build-in physiologically 

relevant and pharmacologically phenotype required of in vitro systems, which not only mimic human 

exposure to drug and metabolites during therapeutic conditions but also take into account the 

spectrum of therapeutic modalities and ever-changing nature of therapeutic innovations.  
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BOX 1.  Role of dose and physico-chemical properties in the context of DILI 

Human evidence  

1. Majority of oral drugs with reported idiosyncratic liver toxicity are administered at high 
clinical doses 

2. Lipophilic drugs have higher DILI risk, explained by the increased promiscuity of high cLogP 
compounds. Carboxylic acid drugs metabolized by acyl glucuronidation have been 
associated with idiosyncratic, often liver toxicity  

Key points:  

• A low daily drug dose (<100 mg/day) is a key attribute for lower DILI risk. 

• Daily dose is a function of target potency, dose interval, and pharmacokinetic parameters  

• The “rule of two” states that a high daily dose (>100 mg/day) and lipophilicity (LogP >3) 
enhance the risk of DILI. 

• Daily dose, solubility, and lipophilicity are the three most important measures of 
compound quality from a medicinal chemistry perspective. 

• Other physico-chemical parameters useful to assess DILI risk include carbon bond 
saturation and acid/base characteristics. 

• Reactive metabolites can be risk factors for DILI due to their ability to bind cellular 
macromolecules and form adducts. 

• Computational tools are available, such as structural alerts, metabolite and toxicophore 
prediction, CYP binding and inhibition, to guide medicinal chemists and toxicologists in the 
design of safer drugs. 
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BOX 2.  Role of mitochondrial perturbation in DILI 

Human evidence  

• Retrospective analysis showed that 50% of drugs with a black-box warning for 
hepatotoxicity contained a mitochondrial liability200. 

• A PubMed search of “mitochondrial toxicity” + “drug induced liver injury” returns 332 
publications since 2013 

• Fialuridine, an example of a mitotoxicant with clear evidence in human57,201: targets 
mtDNA, localised to the mitochondria by hENT1 (human-specific).  

Application of the tiered system 

• The HepG2 glucose/galactose (glu-gal) model is based on modification of the cellular 
bioenergetic phenotype and can be used to define chemical entities, which have a direct 
effect upon mitochondrial function via the electron transport chain50,53. 

• Using the glu-gal model to simultaneously assess ATP cellular content and cell death can 
classify compounds as 1) mitochondrial toxicants and 2) mitotoxicants that lead to cell 
death. The assay can be used to screen parent compounds in TIER 1 to rank compounds 
in terms of mitotoxic liability53,54. 

• The glu-gal model is compatible with other methods to detect mitotoxicity. 

• Primary human hepatocytes lack the bioenergetic flexibility essential for differentiating 
mitotoxicity from non-mitochondrial toxicity, although they are still useful for detailed 
mechanistic studies. 

• TIER 2 mitotoxicity testing encompasses models which allow for drug interactions with 
other biological systems, including xenobiotic metabolism and biliary transport, such as 
HepaRG cells or 3D models. These also allow longer incubations with increased clinical 
relevance.  
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BOX 3. Role of transporters and bile acids (BAs) in DILI 

Human evidence  

• Hepatobiliary membrane transporters play a central role in the vectoral transport of BAs 
and secretion of cholephilic substances required for bile formation. 

• Bile canalicular membrane transporters are highly specialized proteins, which secrete bile 
salts, bilirubin glucuronides, GSH conjugates and sulfoconjugated BAs. 

• Drugs and metabolites directly and indirectly perturb hepatobiliary function, in particular 
bile canalicular function of the liver. 

• Impaired bile formation and excretion arrests bile flow, characterized by accumulation of 
BA in the liver and systemic blood202. 

• Arrest in bile flow leads to liver dysfunction, clinical cholestasis and concomitant 
hyperbilirubinemia with chronic impairment, leading to severe liver injuries including 
cirrhosis and liver failure203   

• Progressive familial intrahepatic cholestasis type 2 (PFIC-2) is caused by mutations in 
BSEP204 

Application of the tiered system 

• Hepatocellular-based models required to assess direct and indirect effects of drugs on 
hepatobiliary transporter function (TIER 1).  

• Well-characterised physiological, pharmacological and phenotypically stable cell models 
required to study drugs and metabolites on transporter function, BA uptake and efflux205 

• Key features of TIER 1 cell-models are well-formed bile canaliculi, polarized transporters 
and drug-metabolising enzymes, enabling the study of the effect of drugs and metabolites 
on BA uptake and efflux206 

• Deregulation of bile canaliculi dynamics and cellular accumulation of hydrophobic BA 
appears a unifying feature of early events in drug-induced cholestasis.  

• TIER 2 cell models would permit study of the late onset of hepatocellular dysfunction and 
toxicity, or adaptation, and help facilitate the extrapolation of mechanistic findings 
associated with hepatobiliary transport and secretion. 

• TIER 3 advanced test systems would permit the study of multicellular biological 
interactions, including role of innate and adaptive immune function on hepatobiliary BA 
transport. 
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BOX 4. The role of chemically reactive metabolites (CRM) and oxidative stress in DILI 

Human evidence: 

• Significant evidence indicates that reactive metabolites are formed from drugs known to 
cause hepatotoxicity. The best exemplar from clinical and preclinical studies is 
acetaminophen. 

• The molecular signatures of drug-induced oxidative stress have been detected in many 
test systems for many compounds, but the relevance of these signatures to liver damage 
in humans, remains to be determined. 

 
Application of the tiered system: 
 
Chemically reactive metabolites 

• Microsome-based assessment of CRM formation is a useful pre- TIER 1 chemical assay, 
although it takes no account of the crucial cellular context in which CRM are formed. 

• In TIER 1, an accurate assessment of the extent, nature and impact of CRM formation 
cannot be derived from hepatocyte cell models that have been shown to lack adequate 
CYP activity such as HepG2 and iPSC-derived differentiated hepatocytes (see Table 1). 

• If fresh PHH are unavailable, HepaRG cells, which contain significantly more CYP activity 
(particularly CYP3A4207) than more basic cell lines can be used. 

• In TIER 2, various novel cell-based models, such as 3D primary hepatocytes21 and 3D 
HepaRG cells are now being assessed to determine their metabolic competence. 

• In TIER 3, humanised animal in vivo models may be used for mechanistic investigations on 
a case-by-case basis. 

 
Oxidative stress 

• In TIER 1, ROS formation can be quantified with fluorescent probes as part of a high-
content screening strategy in simple cell systems such as HepG2 or PHH. 

• Genetically-modified HepG2 cells expressing GFP-tagged SRXN1131,132 can be used in TIER 1 
to monitor adaptive responses to oxidative stress in higher throughput using automated 
fluorescence microscopy. 

• In TIER 2, 3D models can enable more complex biological variables, such as xenobiotic 
metabolism and biliary transport, and longer incubations can be used. 

• In TIER 3, the transgenic Nrf2-luc reporter mouse135  can be used for investigations in a 
whole body context. 
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BOX 5.  Role of endoplasmic reticulum (ER) stress in DILI 
 
Human evidence? 

• Elevated ER stress markers reported in human liver cell lines (e.g. HepG2, HuH7, HepaRG), 
primary human hepatocytes and human liver slices (e.g.208) following exposure to several 
drugs, including acetaminophen, diclofenac, clozapine and efavirenz.  

• ER stress studied to a far lesser extent than other mechanisms in DILI. 

• More work is required to understand if ER stress is a direct causative mechanism for 
certain forms of human DILI, or merely a consequence of other perturbations that are 
more closely related to the mechanism of hepatotoxicity. 

Application of the tiered system 

• In tier 1, HepG2 cells can be used to examine the potential for compounds to cause ER 
stress, through measurement and imaging of components of UPR pathways131, and the 
use of UPR inhibitors to examine the effects on drug-induced toxicity. 

• In tier 2, human liver slices have been used to demonstrate an UPR response to 
hepatotoxic drugs.  

• In tier 3, western blotting and tissue staining can be used to assess the role of ER stress in 
the liver in vivo. Circulating biomarkers of the ER stress response will need to be identified 
for human translation. 
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BOX 6.  Role of the immune system in DILI  

Human evidence  

• Histological evaluation reveals innate immune cell infiltration in liver sections taken during 
transplantation or liver biopsy of patients with DILI  

• Human evidence to support the idea that the adaptive immune system is involved in DILI: 

 ○ HLA association  
 ○ Presence of T cells in liver biopsies (flucloxacillin, sulfasalazine)  
 ○ Detection of anti-drug and auto-antibodies (isoniazid)  
 ○ Isolation of drug-specific T cells (flucloxacillin, isoniazid, amoxicillin, clavulanic acid) 

Application of the tiered system 

• Currently no validated assays available in TIER 1 or TIER 2 to assess the role of the innate or 
adaptive immune system in DILI. 

• TIER 1 assays are being developed to study the release of mediators direct from the hepatocyte 
that have the potential to activate and recruit innate immune cells such as DAMPs. HepG2 GFP-
reporters for NFkB signalling (RelA and ICAM1) have been established to monitor the effect of 
compounds on disturbance of cytokine signalling172.  

• TIER 2 assays being developed allow the investigation of cell-cell communication through direct 
contact or via soluble mediators. Attempts are in progress to integrate innate immune cells 
within 2D or 3D liver microtissues. 

• Co-culture of liver cells and T cells requires an HLA-matched system. Development of stem cell 
technology to generate the different cell types from the liver is required before these assays 
can be developed. 

• In TIER 3, many mouse models use supra-physiological doses and do not mimic the features of 
DILI in man.  

• In TIER 3, in vitro T-cell assays are being developed to advance our understanding of the role of 
the adaptive immune system in DILI. Current applications include: 

 ○ Examination of drug-specific T cells in patients with DILI. These assays can be used to 
diagnose the culpable drug. 

 ○ Priming of naïve T cells. 
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Figures 

 

 

Figure 1. Various chemical insults can lead to diverse clinical manifestations of DILI.  

DILI can be caused by various chemical insults (1.-5.) and present as an array of different pathologies, 

dependent on the specific function of the liver that is impaired. Furthermore, recruitment of the 

immune system (6.) can result in a prolonged or altered pathological phenotype, adding further 

complexity to the clinical presentation of the condition. 
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Figure 2. Roadmap for the development of ‘fit-for-purpose’ predictive models of human DILI  

The proposed DILI Roadmap is a tier-based testing strategy incorporating present Test Systems and 

future expectations of advanced models for DILI testing.TIER ONE comprises single cell systems that 

report on immediate chemical/biological effects such as bioactivation, drug or bile acid accumulation 

due to transporter inhibition, mitotoxicity, and signalling associated with oxidative stress, 

endoplasmic reticulum stress and inflammatory signalling. TIER TWO comprises more complex 

systems containing liver cells in a more physiologic state, enabling assessment of the consequences of 

chronic drug exposure.  TIER THREE comprises complex test systems in which a specific biological 

variable (e.g. HLA phenotype or inflammation) is introduced in a manner that can be used for both 

hazard identification and risk assessment related to idiosyncratic DILI.  Underlying this philosophy, we 

believe it to be essential that the pharmacological and physiological phenotype of the test system is 

considered (Phenotype → Functions), before undertaking toxicological investigations, to ensure that 

the most appropriate methods are used to determine the potential DILI liability of a new drug.  To 

integrate findings from different test systems and to dissect the multi-level impact of compounds, 

mathematical models will also be useful.  
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Figure 3.  Hepatocyte couplet illustrating the basolateral and canalicular location of transport 

proteins. Bile acids (BAs): Unconjugated BA species (BA); monovalent BA (mBA), BA-G 

(glucuronidated BAs); BA-S (Sulpho and sulpho-conjugated BAs). Examples of different classes of 

drug substrates (blue), inhibitors (red) and inducers (purple) across multiple transporters are given. 

Some drugs are both substrates and inhibitors of transporter proteins depending on the affinity of 

respective drugs. Selectivity of transporters for the different monovalent, divalent and conjugated 

forms of BAs (green) across the basolateral and apical membranes illustrates the multiplicity of 

transporters involved in bile uptake and efflux. The heterodimeric organic solute transporter 

OSTα/OSTβ an efflux transporter, but also bidirectional transporter for some organic anions. Some 

amphiphilic BAs passively diffuse across the basolateral membrane. Phosphatidylcholine (PC) is a 

physiologically important substrate for MDR3 and its inhibition may play an important role in 

cholestasis and vanishing bile duct syndrome (VBDS). The role of taurocholic acid (TCA) in micelles 

has an important role on MDR3 activity. See supplementary information for transporter protein 

homology, function and drug interactions.  
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Figure 4. The role of the adaptive immune system in drug-induced liver injury 

(A) Several thousand HLA allelic variants encode human MHC molecules. MHC molecules expressed 

on the surface of antigen-presenting cells are responsible for presentation of processed peptides to 

T-cells. Several forms of drug-induced liver injury have been shown to be strongly associated with 

expression of a single HLA. To activate T-cells, the drug must associate MHC molecules expressed on 

the surface of antigen-presenting cells, the peptide bound to within the MHC peptide-binding 

groove and T-cell receptors. To do this, drugs bind directly via a labile readily reversible interaction. 

Alternatively, drugs and drug metabolites act as haptens and bind covalently to protein. The 

resultant adduct is taken up by antigen-presenting cells and processed. The derived peptides then 

associate with MHC class I or II molecules for presentation to CD8+ and CD4+ T-cells, respectively 

(signal 1). Antigen-presenting cells receive stress signals from damaged tissue. This leads to altered 

expression of co-stimulatory and/or co-inhibitory receptors that interact with cognate receptors on 

T-cells to control the nature of the drug-specific response (signal 2). T-cells displaying reactivity to 

several DILI drugs have recently been isolated from PBMCs of patients with liver injury, but not 

tolerant controls. Furthermore, drug-specific T-cells can kill hepatocyte-like cells expressing the MHC 

molecule for drug presentation.  
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TABLES 

Table 1: Relative advantages and disadvantages of the most popular single cell hepatocyte models 

for industry DILI assessment, including their position in the proposed tiered testing system 

Cell Type/Tier Advantages  Disadvantages  

HepG2/TIER 1 Human hepatic origin.  

Easy to culture.   

Inexpensive.   

Consistent, reproducible, fast turnaround 

assay performance for the toxicological 

endpoint under investigation.   

No donor variation.   

Easily adaptable for specific assays – e.g. 

mitotoxicity assay, high-content screening. 

Can be cultured in 3D.  

Large, publicly-available datasets for 

cytotoxicity & gene expression assists risk 

assessment. Popular for use in HTS approaches 

and toxigenomics 

Cancer-derived.  

Many clonal variants exist with 

different cellular characteristics.  

Relative lack in expression of 

drug metabolizing enzymes and 

transporters. Majority of genes 

expressed in HepG2 cells are also 

expressed in primary 

hepatocytes, yet 30% of the gene 

expression profiles are unique to 

HepG2209. 

HepaRG/ 

TIER 1 or TIER 2 

Human hepatic origin. Relatively 

straightforward to culture.   

More consistent than primary hepatocytes.   

Cancer cell.   

More costly and time-

consuming to culture than 

HepG2.  
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Some defined Phase 1 activity (especially P450-

3A4). After exposure to CYP inducers CYP450s 

and transporter protein activities are induced 

making them amenable for the studies of 

ADMET mechanisms and use of gene 

expression profiles209,210.  Functional bile 

canaliculi.  

Can be cultured in 3D. 

Requires proprietary media for 

stable phenotype 

Human Primary 

Hepatocytes 

 

TIER 1 or TIER 2 

The closest approximation to a liver-resident 

hepatocyte.  More metabolic activity than any 

other liver cell model in short term cultures.  

Can be cultured in 3D. Donor-dependent 

metabolic phenotype allows refined risk 

assessment. 

Loses metabolic activity rapidly 

during culture.  Variability in 

phenotype between donors. 

Greater cost vs cell lines. 

Exhaustible cell supply.  

Stem cell-

derived 

hepatocytes / 

hepatocyte-like 

cells/ 

 

TIER 2 

Reproduces many  hepatocyte functions  

Possibility of deriving hepatocyte-like cells and 

other liver cell types from the same human 

donor  

Patient specific genotype/phenotype (e.g. 

derived from DILI patients).   No need to isolate 

liver tissue per se.   

Large-scale investment in this area.  

Expensive 

Not as reproducible as other 

liver cell models 

Relative cell immaturity  

Lack of available robust 

differentiation protocols 

available – different protocols 

led to high variations in 
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transformed hepatocyte like 

cells 

Requires further 

characterisation/ validation  

Liver slices Maintains the architecture and 

microenvironment (cell-cell interactions) of 

fresh tissue and therefore highly relevant to 

the in vivo situation.  

Good correlates of ex vivo transcriptomic 

profiles with in vivo tissue. Coordinated 

regulation of CYP and transporter proteins in 

human tissue211. Liver function test remain 

stable211,212. Recent technology developments 

permit maintenance for 6-days213. 

Expression of CYP enzymes 

remains stable for only 24h.  

Limited availability of human 

fresh tissue. 

Not amenable for HTS drug 

screening.  
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