Multiple pesticides in mothers' hair and children's measurements at birth: results from the French national birth cohort (ELFE).

Supplementary files

Rémi Béranger*, Emilie M. Hardy*, Anne-Claire Binter, Marie-Aline Charles, Cécile Zaros, Brice Appenzeller**, Cécile Chevrier**.

Table of Contents:

Figure S1. Directed acyclic graphs (DAGs) for birth weight models	(page 2)
Figure S2. Directed acyclic graphs (DAGs) for birth length models	(page 3)
Figure S3. Directed acyclic graphs (DAGs) for head circumference models	(page 4)
Table S1. Assessment of the linearity of the relations between outcomes and continuo and covariates, by using restricted cubic splines	us exposures (page 5)
Table S2. Population characteristics, stratified by region	(page 6)
Table S3 . Associations between selected pesticides and metabolites and birth weight, fpopulation (n= 300) and after stratification by sex	for the entire (page 7)
Table S4 . Associations between selected pesticides and metabolites and birth length, fpopulation (n= 301) and after stratification by sex	or the entire (page 8)
Table S5 . Associations between selected pesticides and metabolites and head circumferfor the entire population (n= 304) and after stratification by sex	erence at birth, (page 9)
Table S6. Sensitivity analysis: linear regression models based on the elastic net selection analyses), after exclusion of the statistical outliers	n (main (page 10)
Table S7. Sensitivity analysis: linear regression models stratified by region, based on th selection (main analyses).	e elastic net (page 11)
Table S8 . Sensitivity analysis: adding diabetes mellitus, preeclampsia, and cesarean sec circumference only) to the list of possible confounders in the elastic net regression mo	tion (head deling step

(page 12)

DAGitty output (http://dagitty.net): Directed Acyclic Graph representing the relationships among the exposure (pesticide exposures), outcome (birth weight), and related factors. **Figure S1.** Directed acyclic graphs (DAGs) for birth weight models

DAGitty output (http://dagitty.net): Directed Acyclic Graph representing the relationships among the exposure (pesticide exposures), outcome (birth length), and related factors. **Figure S2.** Directed acyclic graphs (DAGs) for birth length models

DAGitty output (http://dagitty.net): Directed Acyclic Graph representing the relationships among the exposure (pesticide exposures), outcome (head circumference), and related factors. **Figure S3.** Directed acyclic graphs (DAGs) for head circumference models

	Departure from linearity (<i>p</i> -value)					
Independent variable	Birth weight	Birth length	Head circumference			
EXPOSURE VARIABLES						
γ-HCH (Lindane)	0.6543	0.9544	0.7102			
hexachlobenzene	0.4344	0.8842	0.7089			
Pentachlorophenol	0.2353	0.1179	0.0227			
α -endosulfan	0.0664	0.1429	0.1289			
p-nitrophenol	0.7634	0.2895	0.7679			
ТСРу	0.8085	0.1804	0.6089			
DEP	0.8611	0.0322	0.7271			
DETP	0.2798	0.1640	0.1520			
ІМРу	0.8349	0.9637	0.4421			
DMP	0.3816	0.4924	0.4990			
3Me4NP	0.4661	0.9019	0.6584			
3-PBA	0.9893	0.5343	0.2669			
Cl ₂ CA	0.4207	0.4210	0.1066			
Permethrin	0.0120	0.1103	0.1368			
Cypermethrin	0.4371	0.5381	0.5391			
Carbendazim	0.1448	0.8098	0.9098			
Trifluralin	0.5836	0.5826	0.6081			
Prosulfocarb	0.7993	0.3865	0.3041			
Fipronil sulfone	0.0128	0.3794	0.1903			
Fipronil	0.0740	0.8903	0.2165			
2,4-D	0.6057	0.2408	0.6151			
MCPA	0.2661	0.2559	0.9406			
Mecoprop	0.5555	0.8884	0.5401			
Thiabendazole	0.4075	0.6604	0.4513			
Propiconazole	0.3464	0.1282	0.2471			
Oxadiazon	0.4660	0.4332	0.2244			
Terbutryn	0.6506	0.0813	0.7610			
Metolachlor	0.9808	0.5683	0.9105			
ADJUSTMENT COVARIATES						
Maternal age	0.3238	0.1876	0.6989			
Maternal weight (log)	0.0627	0.0251	0.6118			
Maternal height	0.6553	0.0618	0.5134			
Week of gestation	0.7965	0.2583	0.8271			

Table S1. Assessment of the linearity of the relations between outcomes and continuous exposures and covariates, by using restricted cubic splines

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; 3Me4NP, 3-methyl-4-nitrophenol; 3-PBA, 3phenoxybenzoic; Cl₂CA, cis-3-(2,2dichlorovinyl)-2,2-dimethylcyclopropane-carboxylic acid; DEP, di-ethylphosphate; DETP, di-ethyl-thiophosphate; DMP, di-methyl-phosphate; HCH, hexachlorocyclohexane; IMPy, 2isopropyl-4-methyl-6-hydroxypyrimidine; MCPA, 4-chloro-2-methylphenoxyacetic acid; TCPy, 3,5,6-trichloro-2pyridinol. Departure from linearity (p-value >0.05) was assessed with restricted cubic splines (Desquilbert and Mariotti 2010).

Characteristics		Southwest (n= 129)			Northeast (n= 182)			L82)
	n	%	Mean	Standard deviation	n	%	Mean	Standard deviation
Maternal age (years)	129		30.0	± 4.8	181		30.1	± 5.1
Prepregnancy maternal weight (kg)	129		62.5	± 12.4	181		63.2	± 14.3
Maternal height (cm)	129		164.6	± 5.6	181		164.3	± 6.1
Gestational age at birth (weeks)	129		39.4	± 1.2	180		39.3	± 1.1
Parity								
Nulliparous	56	43%			77	42%		
Parous	73	57%			104	58%		
Educational level								
High school or less	58	45%			82	45%		
University	71	55%			99	55%		
Tobacco consumption during pregnancy								
No	95	74%			135	75%		
Yes	33	26%			46	25%		
Fish consumption during pregnancy								
< 1 time per month	30	26%			63	39%		
At least once a month	85	74%			97	61%		
Child's sex								
Boys	60	47%			88	49%		
Girls	69	53%			93	51%		
Cesarean section								
No	107	85%			157	89%		
Yes	19	15%			20	11%		
Recruitment period								
June 27 – July 4	27	21%			50	27%		
September 27 – October 4	50	39%			61	34%		
November 28 – December 5	52	40%			71	39%		
Birth weight (g)	127		3338.4	± 422.2	173		3310.6	± 434.2
Birth length (cm)	124		49.5	± 2.0	177		49.5	±2.1
Head circumference at birth (cm)	127		34.3	± 1.4	177		34.2	± 1.5

Table S2. Population characteristics, stratified by region

	Influence on birth weight, in g		
Chemicals	n	$\beta_{adjusted}$	95% confidence interval
ALL (n= 300)			
β-endosulfan			
Medium (vs. low)	91 (vs. 120)	22	(-78, 123)
High (vs. low)	89 (vs. 120)	-80	(-182, 23)
Permethrin			
Medium (vs. low)	99 (vs. 100)	-2	(-99, 103)
High (vs. low)	101 (vs. 100)	-44	(-152, 63)
Fipronil sulfone			
Medium (vs. low)	100 (vs. 97)	150	(44, 255)*
High (vs. low)	103 (vs. 97)	28	(-84, 141)
Mecoprop (per 2-SD increase, in log)	300	-54	(-142, 35)
Bitertanol (detected vs. not)	71 (vs. 229)	82	(-18, 182)
DMST (detected vs. not)	137 (vs. 163)	56	(-33, 144)
Diflufenican (detected vs. not)	130 (vs. 170)	-62	(-146, 23)
Imidacloprid (detected vs. not)	130 (vs. 170)	-74	(-161, 13)
BOYS ONLY (n= 148)			
α -endosulfan (per 2-SD increase, in log)	148	-112	(-243, 19)
Dieldrin			
Medium (vs. low)	51 (vs. 43)	-22	(-153, 108)
High (vs. low)	54 (vs. 43)	80	(-54, 214)
β-endosulfan			
Medium (vs. low)	53 (vs. 50)	-49	(-184, 87)
High (vs. low)	45 (vs. 50)	-93	(-259, 73)
3Me4NP (per 2-SD increase, in log)	148	39	(9, 239)*
Propoxur (detected vs. not)	68 (vs. 80)	-261	(-374, -147)*
Fipronil sulfone			
Medium (vs. low)	46 (vs. 48)	216	(74, 357)*
High (vs. low)	54 (vs. 48)	-114	(-310, 82)
Fipronil (per 2-SD increase, in log)	148	169	(24, 314)*
Mecoprop (per 2-SD increase, in log)	148	-134	(-249, -18)*
Thiabendazole (per 2-SD increase, in log)	148	199	(78, 319)*
Myclobutanil (detected vs. not)	40 (vs. 108)	80	(-41, 200)
Bitertanol (detected vs. not)	32 (vs. 116)	0	(-141, 141)
DCPMU			
Medium (vs. low)	44 (vs. 60)	211	(70, 351)*
High (vs. low)	44 (vs. 60)	83	(-51, 217)
Chlortoluron (detected vs. not)	12 (vs. 136)	108	(-83, 299)
DMST (detected vs. not)	70 (vs. 78)	135	(17, 254)*
Fenhexamid (detected vs. not)	16 (vs. 132)	-256	(-427, -86)*
GIRLS ONLY (n= 152)			
3Me4NP (per 2-SD increase, in log)	152	-89	(-196, 19)
Permethrin			
Medium (vs. low)	51 (vs. 49)	10	(-117, 137)
High (vs. low)	52 (vs. 49)	-123	(-255, 9)

Table S3. Associations between selected pesticides and metabolites and birth weight, for the entire population (n= 300) and after stratification by sex

Abbreviation: 3Me4NP, 3-methyl-4-nitrophenol; DCPMU, 1-(3,4-dichlorophenyl)-3-methylurea; DMST, dimethylsulftoluidide. The table presents the best predictors identified by elastic net regression modeling. Multivariable models were adjusted for parity, maternal height, prepregnancy maternal weight, gestational age at birth, tobacco consumption, alcohol consumption, and other selected exposure variables.

· · · · ·	•	Influence on birth length, in cm		
Chemicals	n	$\beta_{adjusted}$	95% confidence interval	
ALL (n= 301)				
β-endosulfan				
Medium (vs. low)	91 (vs. 118)	-0.12	(-0.36, 0.61)	
High (vs. low)	92 (vs. 118)	-0.25	(-0.75, 0.24)	
TCPy (per 2-SD increase, in log)	301	-0.42	(-0.85, 0.00)*	
DEP				
Medium (vs. low)	101 (vs. 98)	-0.64	(-1.15, -0.14)*	
High (vs. low)	102 (vs. 98)	-0.13	(-0.64, 0.38)	
Cypermethtin (per 2-SD increase, in log)	301	-0.28	(-0.69, 0.12)	
Dichlorprop (detected vs. not)	84 (vs. 217)	-0.24	(-0.70, 0.22)	
Bitertanol (detected vs. not)	68 (vs. 233)	0.60	(0.09, 1.10)*	
Fenuron (detected vs. not)	131 (vs. 170)	-0.39	(-0.82, 0.04)	
Isoproturon (detected vs. not)	102 (vs. 199)	0.55	(0.11, 1.00)*	
BOYS ONLY (n= 141)				
Dieldrin				
Medium (vs. low)	51 (vs. 40)	0.31	(-0.45, 1.08)	
High (vs. low)	50 (vs. 40)	0.94	(0.14, 1.74)*	
β-endosulfan				
Medium (vs. low)	50 (vs. 47)	-0.29	(-1.01, 0.44)	
High (vs. low)	44 (vs. 40)	-0.77	(-1.55, 0.00)*	
3Me4NP (per 2-SD increase, in log)	141	0.11	(-0.09, 0.31)	
Bitertanol (detected vs. not)	28 (vs. 113)	0.04	(-0.74, 0.83)	
Isoproturon (detected vs. not)	43 (vs. 98)	0.43	(-0.27, 1.14)	
GIRLS ONLY (n= 160)				
Dieldrin				
Medium (vs. low)	56 (vs. 53)	-0.11	(-0.69, 0.47)	
High (vs. low)	51 (vs. 53)	-0.54	(-1.12, 0.03)	
Cypermethrin (per 2-SD increase, in log)	160	-0.34	(-0.80, 0.11)	
Carbofuran				
Medium (vs. low)	50 (vs. 55)	0.15	(-0.44, 0.74)	
High (vs. low)	55 (vs. 55)	0.38	(-0.21, 0.98)	
Dichlorprop (detected vs. not)	45 (vs. 115)	-0.27	(-0.81, 0.27)	

Table S4. Associations between selected pesticides and metabolites and birth length, for the entire population (n= 301) and after stratification by sex

Abbreviation: TCPy, 3,5,6-trichloro-2-pyridinol; DEP, di-ethyl-phosphate; 3Me4NP, 3-methyl-4nitrophenol. The table presents the best predictors identified by elastic net regression modeling. Multivariable models were adjusted for parity, maternal height, prepregnancy maternal weight (squared), gestational age at birth, tobacco consumption, alcohol consumption, and other selected exposure variables.

		Influence on	head circumference, in cm		
Chemicals	n	$\beta_{adjusted}$	95% confidence interval		
ALL (n= 304)					
β-endosulfan					
Medium (vs. low)	92 (vs. 119)	0.15	(-0.24, 0.54)		
High (vs. low)	93 (vs. 119)	-0.26	(-0.65, 0.12)		
Permethrin (per 2-SD increase, in log)	304	-0.15	(-0.46, 0.16)		
CICF3CA					
Medium (vs. low)	93 (vs. 119)	0.39	(-0.01, 0.78)		
High (vs. low)	92 (vs. 119)	0.17	(-0.20, 0.53)		
Carbofuran					
Medium (vs. low)	98 (vs. 206)	0.27	(-0.13, 0.66)		
High (vs. low)	95 (vs. 209)	-0.04	(-0.45, 0.37)		
Prosulfocarb (per 2-SD increase, in log)	304	-0.20	(-0.52, 0.11)		
Tebuconazole (detected vs. not)	143 (vs. 161)	0.31	(0.01. 0.61)*		
Prochloraz (detected vs. not)	50 (vs. 254)	0.57	(0.17, 0.97)*		
Imidacloprid (detected vs. not)	131 (vs. 173)	-0.25	(-0.56 0.06)		
BOYS ONLY (n= 144)	101 (10. 17.0)	0.20	(0.00, 0.00)		
Pentachlorophenol					
Medium (vs. low)	45 (vs. 48)	0.16	(-0.28, 0.60)		
High (vs. low)	51 (vs. 48)	0.05	(-0.54, 0.44)		
Dieldrin	51 (03. 40)	0.05	(0.34, 0.44)		
Medium (vs. low)	50 (vs. 43)	-0 17	(-0.62, 0.27)		
High (vs. low)	50 (vs. 43)	0.17	(-0.34, 0.58)		
B-endosulfan	51 (83. 45)	0.12	(0.34, 0.36)		
Medium (vs. low)	52 (vs. 17)	-0.10	(-0.57, 0.38)		
High (vs. low)	$32(v_3, 47)$	-0.51	(-1.00, -0.02)*		
B-HCH (detected vs. not)	70 (vs 74)	-0.51	(0.04, 0.79)*		
DEB (nor 2 SD increase in log)	111	0.42	(0.04, 0.75)		
DMB (per 2 SD increase, in log)	144	-0.50	(0.68,0.08)		
2ModND (por 2 SD increase, in log)	144	-0.30	(-0.08, 0.08)		
Dermethrin (per 2-5D increase, in log)	144	0.28	(-0.14, 0.71)		
CICE2CA	144	-0.02	(-0.44, 0.40)		
	$40 (y_{c} = 1)$	0.42			
	49 (VS. 51)	0.42	(-0.10, 0.88)		
nigii (VS. IOW)	44 (VS. 51)	0.39	(-0.10, 0.88)		
Proposur (detected vs. not)	00 (VS. 78)	-0.50	(-0.89, -0.10)*		
Dictiorprop (detected vs. not)	42 (VS. 102)	-0.26	(-0.70,0.18)		
I niapendazoie (per 2-SD increase, in log)	144	1.03	(0.56, 1.49)*		
repuconazole (detected vs. not)	78 (VS. 66)	0.12	(-0.24, 0.49)		
		0.50			
Medium (vs. low)	41 (vs. 59)	0.58	(0.09, 1.07)*		
High (vs. low)	44 (vs. 59)	-0.20	(-0.69, 0.28)		
Fenuron (detected vs. not)	53 (vs. 91)	-0.46	(-0.90, -0.02)*		
GIRLS ONLY (n= 160)					
Dieldrin					
Medium (vs. low)	54 (vs. 55)	0.08	(-0.37, 0.55)		
High (vs. low)	51 (vs. 55)	-0.39	(-0.85, 0.08)		
Prochloraz (detected vs. not)	24 (vs. 136)	0.72	(0.18, 1.26)*		

Table S5. Associations between selected pesticides and metabolites and head circumference at birth, for the entire population (n= 304) and after stratification by sex

Abbreviation: CICF3CA, 3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylic acid ; DCPMU, 1-(3,4-dichlorophenyl)-3-methylurea ; HCH, hexachlorocyclohexane ; DEP, di-ethyl-phosphate; DMP, di-methyl-phosphate. The table presents the best predictors identified by elastic net regression modeling. Multivariable models were adjusted for parity, maternal height, prepregnancy maternal weight, gestational age at birth, tobacco consumption, alcohol consumption, fish consumption, and other selected exposure variables.

Chemicals	n	$\beta_{adjusted}$	95% confidence interval
Birth weight (n=295)			
β-endosulfan			
Medium (vs. low)	86 (vs. 120)	-27	(-121, 68)
High (vs. low)	89 (vs. 120)	-84	(-180, 11)
Permethrin			
Medium (vs. low)	98 (vs. 98)	-10	(-104, 84)
High (vs. low)	99 (vs. 98)	-69	(-170, 31)
Fipronil sulfone			
Medium (vs. low)	97 (vs. 97)	135	(37, 234)*
High (vs. low)	101 (vs. 97)	14	(-90, 118)
Mecoprop (per 2-SD increase, in log)	295	-51	(-133, 31)
Bitertanol (detected vs. not)	69 (vs. 226)	97	(7, 193)*
DMST (detected vs. not)	134 (vs. 161)	61	(-21, 143)
Diflufenican (detected vs. not)	129 (vs. 166)	-60	(-139, 19)
Imidacloprid (detected vs. not)	127 (vs. 168)	-57	(-138, 24)
Birth length (n=299)			
β-endosulfan			
Medium (vs. low)	90 (vs. 118)	-0.19	(-0.28, 0.67)
High (vs. low)	91 (vs. 118)	-0.30	(-0.76, 0.21)
TCPy (per 2-SD increase, in log)	299	-0.42	(-0.84, 0.00)*
DEP			
Medium (vs. low)	102 (vs. 96)	-0.61	(-1.11, -0.12)*
High (vs. low)	101 (vs. 96)	0.04	(-0.54, 0.46)
Cypermethtin (per 2-SD increase, in log)	299	-0.32	(-0.72, 0.08)
Dichlorprop (detected vs. not)	85 (vs. 214)	-0.29	(-0.74, 0.16)
Bitertanol (detected vs. not)	68 (vs. 231)	0.59	(0.09, 1.08)*
Fenuron (detected vs. not)	131 (vs. 168)	-0.37	(-0.79, 0.05)
Isoproturon (detected vs. not)	102 (vs. 197)	0.55	(0.12, 0.99)*
Head Circumference (n=302)			
β-endosulfan			
Medium (vs. low)	90 (vs. 119)	0.05	(-0.33, 0.43)
High (vs. low)	93 (vs. 119)	-0.23	(-0.61, 0.14)
Permethrin (per 2-SD increase, in log)	302	-0.17	(-0.47, 0.12)
CICF3CA			
Medium (vs. low)	92 (vs. 119)	0.36	(-0.02, 0.74)
High (vs. low)	91 (vs. 119)	0.12	(-0.24, 0.47)
Carbofuran			
Medium (vs. low)	98 (vs. 109)	0.32	(-0.06, 0.71)
High (vs. low)	95 (vs. 109)	0.03	(-0.37, 0.42)
Prosulfocarb (per 2-SD increase, in log)	302	-0.26	(-0.57, 0.05)
Tebuconazole (detected vs. not)	143 (vs. 159)	0.33	(0.04, 0.62)
Prochloraz (detected vs. not)	50 (vs. 252)	0.49	(-0.10, 0.88)
Imidacloprid (detected vs. not)	130 (vs. 172)	-0.23	(-0.53, 0.07)

Table S6. Sensitivity analysis: linear regression models based on elastic net selection (main analyses), after exclusion of the statistical outliers

Abbreviation: CICF3CA, 3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylic acid; DEP, di-ethyl-phosphate; DMST, dimethylsulftoluidide; TCPy, 3,5,6-trichloro-2-pyridinol. The table presents the best predictors identified by elastic net regression modeling. Statistical outliers were defined by studentized residuals with values below -2.5 or above 2.5. Multivariable models were adjusted for parity, maternal height, prepregnancy maternal weight (squared for birth length model), gestational age at birth, tobacco consumption, alcohol consumption, fish consumption (for head circumference model only), and other selected exposure variables.

Chemicals		Southwes	t		Northeas	st
	n	$\beta_{adjusted}$	95%	n	$\beta_{adjusted}$	95%
			confidence			confidence
			interval			interval
Birth weight		n= 127			n= 173	
Fipronil sulfone						
Medium (vs. low)	44 (vs. 35)	38	(-131, 208)	56 (vs. 62)	198	(63, 334)*
High (vs. low)	48 (vs. 35)	31	(-145, 209)	55 (vs. 62)	26	(-116, 167)
Birth length		n= 124			n= 177	
DEP						
Medium (vs. low)	35 (vs. 9)	0.13	(-1.22, 1.49)	66 (vs. 89)	-0.87	(-1.45, -0.29)*
High (vs. low)	80 (vs. 9)	0.30	(-1.03, 1.63)	22 (vs. 89)	-0.15	(-1.01, 0.73)
TCPy (per 2-SD increase, in log)	46 (vs. 78)	-0.45	(-1.19, 0.29)	61 (vs. 116)	-0.43	(-0.99, 0.12)
Bitertanol (detected vs. not)	31 (vs. 93)	0.22	(-0.59, 1.02)	37 (vs. 140)	0.87	(0.20, 1.53)*
Isoproturon (detected vs. not)	26 (vs. 98)	0.84	(-0.04, 1.73)	76 (vs. 101)	0.42	(-0.11, 0.96)
Head Circumference		n= 127			n= 177	
Tebuconazole (detected vs. not)	62 (vs. 65)	0.14	(-0.35, 0.62)	82 (vs. 95)	0.34	(-0.04, 0.72)
Prochloraz (detected vs. not)	23 (vs. 104)	0.21	(-0.39, 0.82)	27 (vs. 150)	0.85	(0.33, 1.37)*

Table S7. Sensitivity analysis: linear regression models stratified by region, based on elastic netselection (main analyses).

Abbreviations: DEP, di-ethyl-phosphate; TCPy, 3,5,6-trichloro-2-pyridinol. The table presents the compounds statistically significantly associated to birth weight, birth length, and head circumference in the main analyses. Multivariable models were adjusted for parity, maternal height, prepregnancy maternal weight (squared for birth length model), gestational age at birth, tobacco consumption, alcohol consumption, fish consumption (for head circumference model only), and other selected exposure variables.

Chemicals	n	βadjusted	95% confidence interval
Birth weight (n= 300)			
β-endosulfan			
Medium (vs. low)	91 (vs. 120)	34	(-64, 135)
High (vs. low)	89 (vs. 120)	-84	(-187, 19)
Permethrin			
Medium (vs. low)	99 (vs. 100)	-14	(-116, 87)
High (vs. low)	101 (vs. 100)	-51	(-159 <i>,</i> 58)
Sum of fipronil & fipronil sulfone			
Medium (vs. low)	99 (vs. 98)	126	(19, 232)*
High (vs. low)	103 (vs. 98)	58	(-53, 169)
Bitertanol (detected vs. not)	71 (vs. 229)	76	(-24, 176)
Imidacloprid (detected vs. not)	130 (vs. 170)	-77	(-164, 9)
Birth length (n= 301)			
No change	-	-	-
Head Circumference (n= 304)			
No change	-	-	-

Table S8. Sensitivity analysis: replacing individual compounds by molar sum of parent compoundsand its specific metabolites, or compounds sharing common metabolites in the elastic net regressionmodeling step

The following molar sums replaced the corresponding individual analytes in the models: dialkyl phosphates (diethyl and dimethyl phosphates separately); fipronil and its metabolite (fipronil sulfone); diuron and its metabolites (DCPU and DCPMU); bifenthrin and its specific metabolite (CICF3CA); chlordanes; and DDT isomers and their metabolites. The table presents the best predictors identified by elastic net regression modeling. Multivariable models were adjusted for parity, maternal height, prepregnancy maternal weight (squared for birth length model), gestational age at birth, tobacco consumption, alcohol consumption, fish consumption (for head circumference model only), and other selected exposure variables.