Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, Marie-Axelle Granie

To cite this version:
Cléo Deroo, Angélique Montuwy, Béatrice Degraeve, Jean-Michel Auberlet, Anne-Hélène Olivier, et al.. Pedestrian collision avoidance on narrow sidewalk: a meeting between psychology and virtual reality. TRB 2019 - Annual Meeting on Transportation Research Board, Jan 2019, Washington, United States. hal-02396553

HAL Id: hal-02396553
https://univ-rennes.hal.science/hal-02396553
Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PEDESTRIAN COLLISION AVOIDANCE ON NARROW SIDEWALK: A MEETING BETWEEN PSYCHOLOGY AND VIRTUAL REALITY

Context: NARROW SIDEWALKS

Goal: to simulate a social virtual pedestrian (non player character) in order to study this kind of situation in virtual environment

Problem: why do we choose to step down or stay on the narrow sidewalk when we encounter a pedestrian walking in the opposite way?

Impact of 3 personal factors were studied

- Speed (fast – slow)
- Sex (Male – Female)
- Distraction (texting – non texting)

First Experiment – Questionnaire

- 64 videos of pre-jousting, before any modification of trajectory
- 64 videos of complete jousting with the new model

Social Perception Model

- Speed and attention influence the decision to step down
- N.B.: the virtual pedestrian sees pedestrian in the public space, and detects him in the social space

For the participants,

- Influence of speed and attention
- For the participants, no gender effects

We avoid the collision by modifying our trajectory

First Experiment – Results

- Pedestrian is expected to step down when:
 - he walks fast
 - he is attentive

To keep a safety zone

To anticipate the collision

Second Experiment – Results

- Credibility of model-based videos and fake videos according to the subjects’ answers

Overall ranking of the model-based videos, Median = 4

Social Perception Model

- Speed and attention influence the decision to step down from the narrow sidewalk

Assumptions:

- speed and attention increase the detection time in the ORCA model.
- Detection time is then a score.

Discussion

- To use Social Pedestrian Non Player Characters in VR environment is feasible
- Needs to take into account the empowerment/authority