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Summary

 In the processes controlling ecosystem fertility, fungi are increasingly acknowledged as key

drivers. However, the understanding of the rules of fungal community assembly regarding the

effect of soil fertility level is still limited.

 Using soil samples from typical tea plantations spanning approximately a 2,167 km north–east

to south–west across China, this study investigated the assemblage complexity and assembly

processes of 140 fungal communities along a soil fertility gradient.

 The community dissimilarities of total fungi and fungal functional guilds increased with

increasing soil fertility index dissimilarity. The symbiotrophs were more sensitive to the

variation of soil fertility than those of pathotrophs and saprotrophs. Fungal networks exhibited

larger size and higher connectivity as well as greater potential for inter-module connection in

more fertile soils. Environmental factors had a slightly greater influence on fungal community

composition than spatial factors. Species abundance fitted the Zipf-Mandelbrot distribution

(niche-based mechanisms), which provided evidence for deterministic-based processes.

 Overall, the soil fungal communities in tea plantations responded in a deterministic manner to

soil fertility, with high fertility correlated with complex fungal community assemblages. This

study provides new insights that might contribute to predictions of fungal community

complexity.

Keywords ： Community assembly; Ecological processes; Fungal ecology; Fungal functional 

guilds; Soil fertility
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Introduction

A central challenge in ecology is the identification of the community assemblage patterns and 

related fundamental assembly processes (Weiher et al., 2011). The assembly of microbial 

communities has become a major research focus in ecology (Hanson et al., 2012; Nemergut et al., 

2013), as soil microbes are major drivers on biogeochemical cycles at a global scale and play vital 

roles in the regulation of natural ecosystems (Falkowski et al., 2008; van der Heijden et al., 2008; 

Bardgett & van der Putten, 2014). Some of these soil microorganisms display intimate 

relationships with plants that are critical for plant productivity, resistance, and resilience 

(Vandenkoornhuyse et al., 2015). In the soil microbial community, fungi are ecologically 

important because they mediate soil carbon and nutrient cycling, and are involved in nutrient and 

water uptake to support plant nutrition and protect the plant from biotic and abiotic stresses such 

as drought and phytopathogen attacks (Read & Perez-Moreno, 2003; Sikes et al., 2009; Schneider 

et al., 2012; Tedersoo et al., 2014). Soil fungi are often regarded as important drivers of soil 

fertility (Duhamel & Vandenkoornhuyse, 2013) and help to feed the world (Marx, 2004). Thus, 

knowledge of the characterization, ecological function, and assembly process of soil fungal 

community are current hot topics in microbial ecology.

The current ecological theories implied that a positive feedback relationship was existed 

between soil fertility and soil biodiversity (Delgado-Baquerizo et al., 2017). Soil fertility is under 

the control of the ecological efficiency of soil fungi as decomposers and other functional guilds 

involved in symbiotic relationships with plants (Kyaschenko et al., 2017). In turn, fertility-related 

soil properties can control soil fungal community structure and function by allowing the more 

appropriately adapted species to grow (Abbott & Johnson, 2017). However, soil fertility is 

multifactorial, whereas the majority of studies addressing soil fertility have focused mainly on one 

particular component, most often the mineral nutrient concentration, which may not accurately 

represent the soil fertility-related ecosystem service. Despite this fact, most studies aiming to 

address patterns of soil fungal assemblages were often developed under the focus of isolated soil 

characteristics, including soil pH (Rousk et al., 2010; Tedersoo et al., 2014), salinity (Mohamed & 

Martiny, 2011), organic matter/carbon content (Liu et al., 2015) and soil nutrient content A
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(Egerton-Warburton & Allen, 2000). Distinct soil fertility components that potentially exhibit 

synergistic or antagonistic biotic interactions may result in differences between soil fungal 

assemblages (Siciliano et al., 2014; Grau et al., 2017). In this study, we used a soil fertility index 

(hereafter called the soil fertility proxy) as a quantitative measurement of soil fertility (Andrews et 

al., 2004; Shang et al., 2014) to explicitly link the multiple soil fertility components and the 

complexity of soil fungal assemblages.

The assembly of microbial communities has traditionally been considered predominantly 

driven through deterministic (e.g., selection) processes (Fierer & Jackson, 2006; Lozupone & 

Knight, 2007). It can be suggested that a given combination of microbial species will be selected 

deterministically according to environmental filtering through the organisms’ fitness (De Wit & 

Bouvier, 2006). Emerging evidence has demonstrated that deterministic processes alone are not 

sufficient to explain the inherent variance in microbial community composition observed in 

natural ecosystems (Ramette & Tiedje, 2007). A large portion of the remaining unexplained 

variation reflects the existence of ecological stochasticity (Zhou & Ning, 2017), which implies that 

the community patterns with respect to species dynamics may be a result of stochastic processes 

through birth, death, and dispersal events (Chave, 2004). As opposed to a dichotomous debate, a 

more comprehensive perspective suggests that both deterministic and stochastic processes are 

jointly responsible for microbial community assembly (Dumbrell et al., 2010; Wang et al., 2013; 

Morrison-Whittle & Goddard, 2015; Tripathi et al., 2018). Despite the well-recognized role of 

these ecological processes, the debate regarding the relative importance of deterministic and 

stochastic processes to soil fungal community assembly remains largely unresolved.

Tea plants (Camellia sinensis L.) are perennial shrubs that grow preferentially in acidic soils. 

Given that fungi generally exhibit a higher tolerance to acidic conditions than bacteria (Rousk et 

al., 2010), soil fungi have been assumed to be more important than bacteria in tea plantation 

ecosystems (Huang et al., 2017). Extensive tea cultivation in South China provides a system for 

studying patterns and processes of soil fungal community assembly at a broad scale. In this study, 

a total of 140 soil fungal communities inhabiting fourteen representative tea plantations across 

eleven provinces of South China spanning 2,167 kilometers were analyzed and evaluated. Using A
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this design, variations in fungal community assemblages along a soil fertility gradient were 

explored, and the relative importance of deterministic and stochastic processes in defining fungal 

community assembly was examined. Specifically, considering the mechanistic links between soil 

fertility and soil mycobiota, we hypothesized that the complexity of fungal assemblages could be 

closely dependent on the soil fertility condition, that is, the more soil fertility proxy is, the more 

complex of fungal community. We also addressed the possible mechanisms that explain the fungal 

community assembling along soil fertility gradient.

This study aimed to provide a better understanding of fungal community diversity along a 

soil fertility gradient by analyzing key fungal functional guilds, namely, plant symbionts, 

decomposers (saprotrophs), and plant pathogens. A second objective of this study was to 

characterize the relative importance of deterministic and stochastic processes to fungal community 

assembly. In a broader view, this work aimed to highlight the importance of considering fungi and 

fungal community assemblages as important compartments that drive ecosystem fertility.

Materials and Methods

Soil sampling, physicochemical analyses, and soil fertility assessment

Soils were sampled from 14 tea plantation sites across eleven provinces of South China 

(spanning approximately 21.99°–32.10°N and 100.43°–119.89°E, an approximately 2,167 km 

north–east to south–west gradient; Figure 1a) in between mid-November to mid-December 2016. 

Within each sampling site, ten plots were randomly selected, and a composited soil sample 

(consisting of five discrete soils, 0–20 cm depth) was collected from each plot. A total of 140 soil 

samples (fourteen sites × ten plots) were included in the present study. Each fresh soil was sieved 

through a 2-mm mesh to remove visible roots and rocks. Then soil sample was further 

homogenized before subdividing each for analyses. Aliquots of samples were stored at −80 °C 

until the molecular analyses. The remaining samples were air-dried for the assessment of soil pH, 

electrical conductivity (EC), soil organic matter (SOM), total nitrogen (TN), available phosphorus 

(AP), and available potassium (AK). 

Soil pH and EC were determined in a soil-water (1:2.5 mass/volume) suspension using a A
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combination electrode (PE-10, Sartorious, Germany) and conductivity meter, respectively. Soil 

organic carbon (SOC) and TN content were measured by a vario MACRO cube element analyzer 

(Elementar Analysen systeme GmbH, Hanau, Germany). A conversion factor of 1.724 from SOC 

to SOM was used to calculate the SOM content (Maillard & Angers, 2014). Soil AP content was 

analyzed following the molybdenum-blue colorimetric method after soil samples were extracted 

by NaHCO3 (0.5 M). Soil AK was extracted with a 1 M ammonium acetate solution and then 

determined by flame photometry (AP1200, Shanghai Aopu Analytical Instruments Co., Ltd., 

China).

To obtain a quantitative index of soil fertility for each soil sample, the evaluation method 

based on the soil management assessment framework (SMAF) was used as previously described 

(Andrews et al., 2004; Shang et al., 2014). Briefly, all the measured physicochemical properties 

were considered in a total data set (TDS). After the TDS was established, factor analysis (FA) was 

performed, and the commonality explained by each soil fertility parameter based on the load 

matrix was calculated. Each parameter of soil fertility was weighted by the ratio of its 

communality with the sum communalities of all parameters in the TDS (Shukla et al., 2006). Each 

soil parameter in the TDS was transformed and normalized to a value ranging from 0.1 to 1.0 

using the standard scoring function (SSF) method. Three types of SSF equation were chosen to 

standardize the TDS parameters (Karlen et al., 2003). If, when increasing the level of the 

parameter, the fertility of the soil increases, the “more is better” curve equation is used. 

Conversely, the “more is worse” curve equation is suitable for decreasing soil fertility with a 

decreasing parameter level. Lastly, the “optimum” curve equation scores those parameters that are 

positively associated with soil fertility up to an optimal level, but beyond that point, they are 

negatively related to soil fertility. Descriptions of detailed scoring function values and weights 

assigned to the selected soil fertility parameters are available in Table S1. Following this, the soil 

fertility index was determined as follows:

                                     𝑆𝑜𝑖𝑙 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = ∑𝑛
𝑖 = 1𝑊𝑖 × 𝑆𝑖

where W is the assigned weight of each parameter, S is the parameter score, and n is the number of 

parameters in TDS (Shang et al., 2014). In the model, a higher index score indicates greater soil A
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fertility. This soil fertility index corresponds to a proxy for the fertility. All physicochemical 

properties and the soil fertility index are given in Table S2.

Geographic information and climatic data collection

The longitude and latitude of each sampling site were recorded at the time of soil sampling. 

Mean annual temperature (MAT) and mean annual precipitation (MAP) (average of the three 

years from 2013 to 2015) were obtained from the National Meteorological Information Center 

(http://data.cma.cn). The geographic and climatic data are also shown in Table S2.

Soil DNA extraction, fungal ITS1 sequencing, and bioinformatic analysis

DNA was extracted from 250 mg of homogenized fresh soil according to the DNeasy 

PowerSoil Kit (Qiagen, Hilden, Germany) procedure. The quality and quantity of soil DNA were 

analyzed with a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE). 

Isolated DNA was stored at −20 °C for further analyses.

The broad-spectrum fungal primer set ITS5 (5′- GGA AGT AAA AGT CGT AAC AAG G-3′) 

and ITS2 (5′- GCT GCG TTC TTC ATC GAT GC-3′) with adaptors and barcodes was used to 

amplify the first internal transcription spacer (ITS1) region (White et al., 1990). For each sample, 

three replicated PCR amplifications were performed. The 25-μl PCR mixture contained 5 µl of 5× 

reaction buffer, 5 µl of GC buffer (5×), 2 µl of dNTPs (2.5 mM), 1 µl of both forward and reverse 

primers (10 µM), 2 µl of DNA template, 0.25 µl Q5 DNA polymerase, and 8.75 µl of ddH2O. 

Amplification was performed with an initial denaturation of 2 min at 98 °C, followed by 30 cycles 

of 15 s at 98 °C (denaturation), 30 s at 55 °C (annealing), 30 s at 72 °C (extension), and a final 

extension at 72 °C for 5 min. Paired-end (2×250) sequencing was performed on the MiSeq 

platform (Illumina, USA) by Personal Biotechnology Co., Ltd. (Shanghai, China).

Raw paired–end sequences were processed and analyzed using USEARCH (version 10 for 

Windows 32 bit) according to the UPARSE pipeline (Edgar, 2013). After forward and reverse 

reads were merged, low quality sequences (quality score < 20, length < 150 bp, total expected 

errors > 0.5) were filtered. After exclusion of chimeras and singletons, the remaining sequences 

were clustered into operational taxonomic units (OTUs) by UPARSE with a 97% similarity 

threshold. Finally, representative sequences of each OTU were matched against the UNITE A
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database (Koljalg et al., 2013) using the Ribosomal Database Project (RDP) classifier (Release 

version 11.5) (Wang et al., 2007). Nonfungal OTUs and rare OTUs (with relative abundance < 

0.005%) were removed from the dataset. Five fungal functional groups (i.e., arbuscular 

mycorrhizal (AM) fungi, ectomycorrhizal (EcM) fungi, ericoid mycorrhizal (ErM) fungi, plant 

pathogens, and saprotrophs) were identified according to FUNGuild (Tedersoo et al., 2014; 

Nguyen et al., 2016). To obtain an equivalent sequencing depth for downstream analyses, all 

samples were rarefied to equivalent sequencing depth (mean 17,795 sequences per sample) using 

MOTHUR (Schloss et al., 2009).

Fungal community diversity analyses

Both the Chao 1 (community richness) and Shannon (community diversity) index were 

calculated on the rarefied data using MOTHUR (Schloss et al., 2009). Linear regression analyses 

were conducted on the relationship between Chao 1/Shannon and the soil fertility index when the 

Pearson correlations were significant (R Version 3.3.3, “lm” function).

In addition to a description of α- and γ-diversity (fungal community diversity within a given 

sample and global fungal diversity, respectively), a deep analysis of β-diversity has been 

performed to address the working hypotheses.

Dissimilarities in the fungal community between each pair of samples were calculated based 

on relative abundance data (Bray-Curtis distance) and presence/absence data (Sorensen distance). 

Moreover, dissimilarities resulting from species replacement (species turnover) and nestedness 

(nestedness-resultant) (Baselga, 2010), two patterns of total β-diversity based on presence/absence 

data (Sorensen dissimilarity), were computed using the betapart package in R. Nonmetric 

multidimensional scaling (NMDS) ordinations were performed to visualize the β-diversity (based 

on both Bray-Curtis and Sorensen distances) of the fungal communities between soil samples with 

different soil fertility index values or sample sites using the “metaMDS” function in the vegan 

package of R software. Given the stress values obtained we have chosen to build 3D-NMDS (i.e. 

0.14-0.15). Permutational multivariate analysis of variance (PERMANOVA) and analysis of 

similarity (ANOSIM) were conducted to test the significance of fungal community dissimilarity 

by using “adonis” and “anosim” functions (999 permutations) in the R package Vegan, A
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respectively. The relationships between the dissimilarity of the fungal community and the 

Euclidean distance of the soil fertility index and geographic distance were estimated based on 

Pearson correlations using the Mantel test in R (vegan package). Standard major axis regression 

(Model II regression) that usually used to estimate how one variable scales against another was 

also used to develop linear models relating soil fertility index dissimilarity and fungal community 

dissimilarity. The heterogeneity between the scaling regression slopes of different fungal guilds 

was assessed by using the likelihood ratio test (smatr package in R).

Network construction and analyses

Molecular ecological networks were constructed for soil fungal communities based on 

high-throughput sequencing data at each sample site using the random matrix theory (RMT)-based 

network approach (Zhou et al., 2010; Zhou et al., 2011; Deng et al., 2012; Ling et al., 2016). 

Briefly, covariations were measured across 10 soil samples at each sampled site to construct the 

networks. Only OTUs detected in 8 out of 10 samples were kept for network construction. This 

filter standard of OTUs (an occurrence of 80% per sample) could reduce the appearance of 

pseudo-correlation and enhanced the accuracy of network structure. Similarity matrices were 

measured by Spearman correlation coefficients. To compare network topologies, all networks 

were generated with a similar and appropriate similarity threshold (St = 0.81-0.84), identified 

based on RMT. For each created network, network topological properties such as network size 

(nodes), connectivity (links), average connectivity (avgK), average clustering coefficient (avgCC), 

and network modularity were characterized according to Deng et al. (2012). All the network 

analyses were performed using the Molecular Ecological Network Analyses (MENA) Pipeline 

(http://ieg2.ou.edu/MENA/). Networks were visualized using the Gephi 0.9.2-beta software 

(Bastian et al., 2009). The correlations between parameters of network complexity (network size, 

connectivity, and average connectivity) and the average soil fertility index of each sample site 

were characterized by regression analyses when the Pearson correlations were significant. 

Similarly, the relationships between inter-/intra-module connections and the average soil fertility 

index were analyzed.

Quantifying the effects of environmental and spatial variablesA
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Variation partitioning analysis (VPA) was used to evaluate the relative contribution of the 

environmental and spatial processes in shaping the soil fungal community with adjusted R2 

coefficients based on redundancy analysis (RDA) (Peres-Neto et al., 2006). Before the RDA 

analysis, the fungal OTU data were Hellinger-transformed to make the data appropriate for 

analysis using the linear model (Legendre & Gallagher, 2001), and the environmental variables 

and spatial variables with significant explaining factors (P < 0.05) were selected by forward 

selection (Blanchet et al., 2008). Here, spatial components were calculated by the principal 

coordinates of neighbor matrices analysis (PCNMs) based on the longitude and latitude 

coordinates of each sampling site (Borcard et al., 2011). The relative contribution of deterministic 

and stochastic processes was explained by pure environmental variation (ENV | SPA), pure spatial 

variation (SPA | ENV), and the combined effects of both space and environment (SPA ∩ ENV). In 

the VPA analysis, the residual proportion represents the unexplained variance. Moreover, Mantel 

and partial Mantel tests were conducted to determine the relationships between soil fungal 

community dissimilarity and spatial/environmental variables. All analyses were performed in R 

(Vegan, PCNM, SpacemakeR, and Packfor package).

Niche-based and neutral model fitting

In order to confirm whether the niche-based or neutral mechanisms determined the soil 

fungal communities, fungal OTU rank relative abundance distributions were fitted to pre-emption, 

broken stick, log-normal, Zipf, Zipf–Mandlebrot, and zero-sum multinomial (ZSM) models, 

respectively. The ZSM model representing neutral theory was conducted using TeTame21 (Jabot 

et al., 2008), and the other models representing niche theory were generated using the command 

“radfit” in the R package vegan. The fit qualities of the statistical models were compared based on 

the Akaike Information Criterion (AIC). The lowest AIC value indicated the best fit model 

(Dumbrell et al., 2010).

Results

Overall fungal community characteristics

Analyses of the high-quality sequences from the 140 soil samples at 14 typical tea plantations A
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across South China (Figure 1a) revealed the presence of 1078 fungal OTUs. Across the soil 

sampling sites, the most abundant soil fungal phylum was Ascomycota, which varied in relative 

abundance from 29 to 72% (Figure S1a). At the class level, soil fungal communities consisted 

predominantly of the class Sordariomycetes, which accounted for an average relative abundance 

of 23% of the fungal sequences from the soils, followed by Tremellomycetes (18%), and 

Eurotiomycetes (10%) (Figure S1a). In terms of the fungal functional guilds which were identified 

by comparison of taxonomy to FUNGuild, saprotrophs, plant pathogens, ectomycorrhizal (EcM) 

fungi, ericoid mycorrhizal (ErM) fungi, and arbuscular mycorrhizal (AM) fungi accounted for 

44.5%, 2.0%, 0.3%, 0.2%, and 0.1% of the sequences, respectively (Figure 1b). Fungal functional 

guilds showed variations among and within sites (Figure 1b and Figure S2, respectively).

Correlation of community diversity and soil fertility

The Chao 1 index of the fungal community was positively correlated with the soil fertility 

index (R2 = 0.14, P < 0.001), and a weak relationship existed between the Shannon index and the 

soil fertility index (r = −0.01, P = 0.907) (Figure S3a-b). NMDS ordination plots based on both 

Bray-Curtis and Sorensen distances showed that the soil fungal community compositions among 

sites were significantly different (Bray-Curtis dissimilarity: PERMANOVA: R2 = 0.51, P = 0.001; 

ANOSIM: R = 0.83, P = 0.001; Sorensen dissimilarity: PERMANOVA: R2 = 0.67, P = 0.001; 

ANOSIM: R = 0.97, P = 0.001) (Figure S1b-c). Fungal communities from each site were clustered 

by geographic location. Additionally, analyses of β-diversity from both Bray-Curtis and Sorensen 

distances confirmed that the soil fungal community distribution is related to the soil fertility index 

gradient (Bray-Curtis dissimilarity: R2 = 0.06, P = 0.001; Sorensen dissimilarity: R2 = 0.07, P = 

0.001) (Figure 2). Mantel tests corroborated this pattern, indicating a strong and positive 

relationship between soil fertility index dissimilarity and fungal community dissimilarity (Figure 

S3c, Figure 3). Partitioning the total β-diversity of the fungal community showed that 

differentiation among communities was primarily explained by OTU turnover (99.6%) instead of 

nestedness-resultant (0.4%) (Table S3). The association between the turnover component of 

β-diversity and the soil fertility index was significant (P = 0.001, Figure 3). Similar to the total 

fungi community, with increasing soil fertility index dissimilarity, the community dissimilarity A
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and turnover of fungal functional guilds (i.e., AM fungi, EcM fungi, ErM fungi, plant pathogens, 

and saprotrophs) significantly increased (Figure 3). The slopes of dissimilarity and turnover for 

AM fungi, EcM fungi and ErM fungi were remarkably steeper than those for plant pathotrophs 

and saprotrophs (P < 0.001, Figure 3 and Table S4).

Characteristics of constructed networks

The curves of network connectivity distributions followed the power-law model (R2 values 

range from 0.729 to 1.00) (Table S5). Modularity values (M) were higher than those in the 

corresponding randomized networks, and the metrics of the empirical networks were different 

from those in the random networks (Table S5). These overall topological properties indicated that 

all the network structures were scale-free, modular, and nonrandom. Distinct fungal co-occurrence 

patterns were detected at different sample sites, and the networks became more clustered as the 

soil fertility index increased (Figure 4a). Regression analyses showed that the size, connectivity, 

and average connectivity of the fungal networks were correlated with the average soil fertility 

index of each sample site (size, R2 = 0.38, P = 0.02; connectivity, R2 = 0.51, P = 0.004; average 

connectivity, R2 = 0.35, P = 0.03) (Figure 4b-d). The intra-module connections of networks 

increased with increasing average soil fertility index (R2 = 0.39, P = 0.02), whereas the 

inter-module connections showed a weak and non-significant relationship to average soil fertility 

index (Figure S4).

Relative importance of spatial processes and environmental factors

Correlation analysis showed that the dissimilarity in the fungal community was significantly 

and positively correlated with geographic distance (Bray-Curtis dissimilarity: Mantel r = 0.33, P = 

0.001; Sorensen dissimilarity: Mantel r = 0.58, P = 0.001) (Figure 5a-b); that is, a strong distance 

decay in fungal community similarity existed. The RDA ordinations showed that five spatial 

factors (PCNM 1-5) and eight environmental variables (soil pH, EC, SOM, TN, AK, MAT, MAP) 

contributed to explaining the variation in the soil fungal community by using forward model 

selection (P < 0.05) (Figure S5). The variation partitioning analysis (VPA) based on relative 

abundance data revealed that the spatial and environmental variables taken together explained 35.8% 

of the variation in fungal communities, whereas the unexplained factor represented ~64% of the A
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variance (Figure 5c). In more details, the environmental selection accounted for ~14% of the 

variation in soil fungal community composition, the spatial processes were estimated to account 

for ~13.0%, and covariation related to both environmental constraints and spatial variation 

contributed ~9% of the community assembly (Figure 5a). When incidence-based data was used in 

VPA, trends were qualitatively similar (Figure 5b). The results of Mantel and partial Mantel tests 

also revealed that both environmental factors and spatial factors were significantly correlated with 

the fungal community (Table S6).

Theoretical species abundance distribution models

OTU relative abundance distributions in the fungal community were mainly fitted the 

lognormal, Zipf or Zipf-Mandelbrot models (Table S7). At the regional scale (i.e. all fields 

considered together), the proportion of the lowest AIC values for the Zipf-Mandelbrot model 

(53%) exceeded that of the other theoretical models (Table 1). Similarly, when the samples were 

examined based on local scale (i.e. fields clustered by tea plantation site), the Zipf-Mandelbrot 

model gave the closest fit for the soil fungal communities in the majority of cases (Table 1).

Discussion

Fungal assemblage complexity increased along the soil fertility gradient

A recent study by Delgado-Baquerizo et al. (2017) corroborated that soil fungal biodiversity 

was positively and strongly correlated with soil fertility at the continental scale. Similarly, there 

was a significant and positive relationship between fungal Chao 1 index (namely how many 

different species are present) and soil fertility index in the present study (Figure S3a). From 

β-diversity analyses, significant and positive linkages between the soil fungi community and the 

soil fertility index were demonstrated herein. Soil fertility was a structuring factor in fungal 

community composition, and the more dissimilar the soil fertility indexes value between the two 

soils were, the more dissimilarities in the fungal community composition took place (Figure 2-3, 

Figure S3c). It needs to note that the correlation coefficients of the above relationships were 

relatively lower. Unlike natural ecosystems, the strong linkage between soil fertility and fungal 

biodiversity may be weakened in ecosystems where soils (e.g. tea field) are subject to A
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anthropogenic pressure (Delgado-Baquerizo et al., 2017). Therefore, it could still be considered 

acceptable and valid results (P = 0.001) in present study. Similarly, Sterkenburg et al. (2015) 

observed that there would be a trade-off between different species in the assembly of fungal 

communities along fertility gradients. Moreover, given the mutual causality between soil fungi and 

soil fertility, the relationships between fungal community composition and soil fertility also 

reflected the feedback of fungal community composition on soil fertility formation. Fungal 

communities play a central role in regulating soil fertility-related ecosystem services (Kyaschenko 

et al., 2017) due to the ecological functions they perform, including carbohydrate-active enzyme 

production and organic matter breakdown, allowing the recycling and mobilization of mineral 

nutrients. Caution should be taken for the readers with an agronomic or plant science perspective 

that the soil fertility index used here is not intended to encapsulate the potential of the soil to 

sustain all plant growth. Even so, the use of the measured physicochemical properties for fertility 

index calculation allows us to decipher the effects of soil fertility on the fungal community in tea 

plantation soils.

Network analyses often reveal patterns of nonrandom covariation that reflect habitat 

heterogeneity and divergent selection regimes (Shi et al., 2016). The soil fungal assemblages 

formed remarkably larger and more complex networks with increasing soil fertility index values 

(Figure 4), suggesting that more fertile soils have both a higher-order organization of the fungal 

community and greater potential for species interactions. Soil fertility plays a critical role in 

regulating the strength of interactions between fungal functional guilds (Fernandez & Kennedy, 

2016). The increasing soil fertility creates more resource niches to be covered, thus, structuring 

higher community complexity and interactions, and also, community resilience. A more complex 

fungal network in which the soil fertility index is higher can also be interpreted as increased fungal 

complexity among fungal guilds (Nguyen et al., 2016). In this case, higher diversity among fungal 

decomposers (i.e., saprotrophs) is likely paired with higher functional complementarity (i.e., 

higher niche complementarity) and/or redundancy among these decomposers. More widely, high 

soil fertility conditions could push ecosystems further towards even more fertile states by driving 

the interplay between fungal guilds (Kyaschenko et al., 2017).A
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Both dissimilarity and turnover in each soil fungal functional guild community were 

positively correlated with soil fertility index dissimilarity. The same pattern of all the functional 

guilds means that soil fertility mainly regulated the total community rather than individual 

functional components. However, correlations between the soil fertility index and fungal 

communities differ according to the functional guilds (Figure 3). This trend along the soil fertility 

gradient was the strongest for the symbiotrophic fungal guilds (i.e., AM fungi, EcM fungi, and 

ErM fungi) relative to that of both pathotrophic fungi and saprotrophic fungi (Figure 3, Table S4). 

Despite their low abundance (Figure 1B), mycorrhizal fungi are considered as keystone players in 

land ecosystems functioning (van der Heijden et al., 2015; Powell & Rillig, 2018). Elsewhere, 

recent studies have demonstrated that rare taxa could serve as pool of functional specialists, and 

perform disproportionate types of functions (Jia et al., 2018). Virtually, the multiple interactions 

among mycorrhizal fungi and other organisms can lead to multitrophic feedback loops, which 

finally influence the synergy among biological, chemical, and physical processes that define soil 

fertility (Abbott & Johnson, 2017). It has to be underlined that functional classifications from 

FUNGuild are only a coarse description of fungal functional diversity relative to descriptions of 

known fungi. A second identified limit of the study is related to the primer bias which likely 

influences the resolution or coverage with respect to fungal functional guilds. Despite these limits, 

the interpretations and evidences obtained herein clarify and support the idea of the soil mycobiota 

as major component of the soil fertility-related ecosystem service.

Deterministic processes governed the assembly of soil fungal communities

In the present study, taxa turnover (i.e., replacement of some species by others, 99.6%) 

almost entirely explained the fungal β-diversity rather than nestedness-resultant (i.e., biotas at sites 

with smaller numbers of species are strict subsets of the biotas at richer sites, 0.4%) (Table S3), 

which implies that fungal β-diversity mainly arises from variation in OTU composition rather than 

differences in OTU richness. Fungal communities that exhibit a higher degree of taxa turnover 

across the soil fertility gradient may be the result of functional traits that govern physiological 

tolerance and competition for the resource requirements of fungi (Kranabetter et al., 2015). The 

high proportion of OTU turnover suggests a possible dominance of deterministic processes of A
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fungal community assembly (Viana et al., 2016). In fact, both environmental and spatial processes 

were responsible for the assembly of the fungal communities (Figure 5, Table S6) but the 

environmental variations were more influential contributors than the purely spatial components 

(Figure 5). A major fraction of the variation in the fungal community was nonetheless unexplained 

by the spatial and environmental variables (Figure 5). These results were consistent with other 

studies on fungal communities (Sterkenburg et al., 2015; Rasmussen et al., 2018; Yang et al., 

2019), which could be ascribed to possible unmeasured factors, species interactions or 

methodological issues. Elsewhere, to confirm the assembly mechanism of fungal community, a 

model-based approach was used. The analyses point to the fungal community assemblage in the 

soil best fitting with the Zipf-Mandelbrot model (niche model and related deterministic processes) 

rather than the ZSM model (neutral model embedding dispersal and drift, i.e., stochastic 

processes) (Table 1). The result of the best model fit illustrates that the presence of fungal species 

is dependent on many environmental factors acting sequentially and suggests that deterministic 

processes are indeed important in driving fungal community variation in the study region. 

However, some studies have demonstrated an effect of dispersal limitation, such as distance–decay 

relationships (Talbot et al., 2014; Gumiere et al., 2016), which attempted to support the dominant 

role of stochastic processes. Nonetheless, it is important to emphasize that dispersal limitation 

alone cannot be used as the sole evidence for stochastic processes (Hanson et al., 2012; Peay & 

Bruns, 2014; Zhou & Ning, 2017). Our findings are in line with previous works from various 

ecosystems that suggest that fungal community assemblages were predominantly influenced by 

deterministic processes (Table 1), even though stochastic processes also play an important role 

(Hazard et al., 2013; Morrison-Whittle & Goddard, 2015). Tedersoo et al. (Tedersoo et al., 2014) 

reported that soil fungal community composition could be best predicted by climatic, edaphic, and 

floristic factors at the global scale. Similarly, Yang et al. (Yang et al., 2019) proposed that abiotic 

environmental filtering was the dominant driving force on soil fungal biogeography even after 

considering the effects of biotic interaction.

Conclusions

Fungal communities were influenced by both environmental variations and spatial factors, A
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and their assemblage complexity responded in a deterministic manner to changes in soil fertility. 

A soil with a high fertility exhibited a diverse fungal community and supported a high number of 

close interactions between fungal species/modules that promoted the formation of more complex 

fungal community assemblages. Moreover, the fungal functional guilds were all positively 

correlated with the gradient of soil fertility. This supports the idea that soil fertility is closely 

related to the total community of soil fungi and that the soil mycobiota is an indispensable 

component of the soil fertility-related ecosystem service.

Understanding the relationships between soil fertility-related ecosystem services and the 

complexity of the soil fungal community could enhance our capacity to predictably manipulate 

microbial community assemblages and improve ecosystem functions. The linkage between soil 

mycobiota and soil fertility implied that differences in fungal assemblages, for example fungal 

species diversity or co-occurrence patterns, may result in large contrasts in terms of soil fertility, 

even on a regional scale. Our results call for a shift in focus from abiotic factors to living entities 

in soil in deciphering soil fertility-related ecosystem services. This shift would likely also offer 

new opportunities to improve sustainable agriculture by developing soft strategies to shape the soil 

mycobiota in the expected direction (Wall et al., 2019). Meanwhile, a better understanding of the 

underlying relationship between microbial assemblage complexity and ecological processes 

requires further research.
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Supporting Information

Table S1 Scoring function value and weight assigned to selected soil fertility parameters.

Table S2 Site locations and characteristics of tea plantation soil samples.

Table S3 Summary statistics of the fungal beta diversity, as measured with the Sorensen 

dissimilarity and its turnover and nestedness-resultant component.

Table S4 The heterogeneity test between the standard major axis regression slopes of different 

fungal guilds.

Table S5 Topological properties of the empirical networks of soil fungal communities in different 

sample sites and their corresponding random networks.

Table S6 Mantel and partial Mantel tests for the correlation between community dissimilarity and 

environmental and spatial factors using Pearson’s coefficient.

Table S7 Akaike information criterion (AIC) values for six rank abundance distribution models.

Fig. S1 Taxonomic composition of the soil fungal community at different soil sample sites and 

NMDS ordination based on Bray–Curtis distances or Sorensen distances depicts the distribution of 

soil fungal communities at different sites.

Fig. S2 Functional composition of the soil fungal community within different soil sample sites.

Fig. S3 Relationship between soil fertility index dissimilarity and beta diversity (based on 

Bray-Curtis distance) of in soil samples.

Fig. S4 Regressions between the average soil fertility index and proportion of inter-/intra-module 

connections of fungal networks.

Fig. S5 RDA ordinations showing the fungal community composition based on relative abundance 

data or presence/absence data in relation to significant (P < 0.05) environmental and spatial 

variables, respectively.
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Figure legends:

Figure 1 (a) Location of sampling sites in South China. CQ, Chongqing; PJ, Pujiang; QY, Qiyang; 

CZ, Chaozhou; NC, Nanchang; DDG, Dadugang; FA, Fu’an; YH, Yuhang; CS, Changsha; XN, 

Xianning; XY, Xinyang; PE, Pu’e; JR, Jurong; MH, Menghai. (b) Functional composition of the 

soil fungal community at different soil sample sites.

Figure 2 Nonmetric multidimensional scaling (NMDS) ordination plots depict the distribution of 

soil fungal communities across a soil fertility gradient (n = 140). The distance between samples 

(points) represents distinctness in community composition, calculated as dissimilarity based on 

abundance data (Bray-Curtis, a) or presence/absence data (Sorensen, b). Each point corresponds to 

a different sample colored by the soil fertility index. 

Figure 3 Relationship between soil fertility index dissimilarity and soil fungal beta diversity and 

its turnover and nestedness-resultant component (based on Sorensen distance) for total fungi and 

each functional guild. The solid line indicates the fitted linear regression model. Gray shadows 

represent 95% confidence intervals. The results of Mantel tests and the slopes of standardized 

major axis fit are shown in the diagram.

Figure 4 (a) Co-occurrence networks of fungal communities at 14 studied sites with different 

fertility. Networks are randomly colored by modules. CQ, Chongqing; PJ, Pujiang; QY, Qiyang; 

CZ, Chaozhou; NC, Nanchang; DDG, Dadugang; FA, Fu’an; YH, Yuhang; CS, Changsha; XN, 

Xianning; XY, Xinyang; PE, Pu’e; JR, Jurong; MH, Menghai. (b) Regressions between the 

average soil fertility index and the parameter of network complexity (size, connectivity and 

average connectivity) of fungal communities in soil samples. The solid line indicates the fitted 

linear regression model. Gray shadows represent 95% confidence intervals. All regression lines 

are significant at P < 0.05.
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Figure 5 (a, b) Relationship between geographic distance and fungal community dissimilarity 

(based on Bray–Curtis distances or Sorensen distances) in soil samples. The solid line indicates 

the fitted linear regression model. Gray shadows represent 95% confidence intervals. (c, d) The 

relative importance of space and the environment in structuring the soil fungal community based 

on variation partitioning analysis. The community dissimilarity was calculated based on 

abundance data (Bray-Curtis, a) or presence/absence data (Sorensen, b). All values are presented 

using the adjusted coefficient of determination (adjusted R2). The variation is partitioned into four 

fractions: pure environmental variation (ENV | SPA), pure spatial variation (SPA | ENV), shared 

environmental and spatial variation (SPA ∩ ENV) and unexplained variation (residuals). Asterisks 

indicate that a significant amount of variation is explained by the given fraction (***, P < 0.001). 
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Table 1 The proportion of the lowest Akaike information criterion (AIC) value for six species rank 

abundance distribution models of fungal communities on the local scale and regional scale.

　 　
Break 

Stick

Pre-

emption
Lognormal Zipf

Zipf-

Mandelbrot
ZSM

CQ - - 20% 10% 50% 20%

PJ - - 10% 10% 80% -

QY - - - - 90% 10%

CZ - - 40% - 60% -

NC - - 30% - 60% 10%

DDG - - 50% 40% - 10%

FA - - 10% - 90% -

YH - - 30% 10% 60% -

CS - - 70% - 30% -

XN - - 40% 10% 50% -

XY - - 30% 10% 50% 10%

PE - - 10% 30% 30% 30%

JR - - 20% - 70% 10%

Local

MH - - 30% 50% 20% -

Regional - - 28% 12% 53% 7%

CQ, Chongqing; PJ, Pujiang; QY, Qiyang; CZ, Chaozhou; NC, Nanchang; DDG, Dadugang; FA, 

Fu’an; YH, Yuhang; CS, Changsha; XN, Xianning; XY, Xinyang; PE, Pu’e; JR, Jurong; MH, 

Menghai. 

ZSM, zero-sum multinomial. 

Bold values indicated the highest proportion of fitted models in each site or entire region.
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Mantel r = 0.15, P = 0.001

Slope = 2.34
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Slope = 1.98 
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