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PREAMBLE 

This scientific research work is the fruit of the participation of a multidisciplinary team, 

involving doctors, researchers and engineers, confirmed and in the course of formation, within 

an association between the LTSI * and the Ansys Inc.**. 

From this article follows the realization of a science thesis of a Doctor of Medicine, a 

doctorate of an engineer and a Master of Science of another Doctor of Medicine. 

The role of the engineer consisted in the creation of the simulation model and the 

optimization of this one, whereas the role of the doctors of medicine was to allow a clinical 

coherence of the model during its development, to set up the clinical research allowing the 

acquisition and the collection of the medical data and the parameterization of the final model 

in order to recreate coherent clinical situations in simulation. 

 

* Laboratoire Traitement du Signal et de l’Image, is an INSERM unit (Institut National de la 

Santé et de la Recherche Médicale), working in close collaboration with the University Hospital 

of Rennes on numerous medical research projects involving technologies and engineering 

sciences. 

** American company specializing in Computational Fluid Dynamics (CFD) 
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ABSTRACT 

Introduction: Regular monitoring of uncomplicated type B aortic dissection is essential 

because 25 to 30% will progress to aneurysmal form. The predictive factors of this evolution 

are not clearly defined, but they seem to be correlated with hemodynamic data. 

Hypothesis: Our goal is to create a patient-specific and real-time model of numerical 

simulation of the hemodynamics of uncomplicated type B aortic dissections in order to predict 

the evolution of these pathologies for earlier treatment. 

Method: This model consists in a coupling 0D (hydraulic-electric analogy) - 3D (CT angiography 

segmentation) of the aortic arch with optimization by comparison to the 2D Phase Contrast 

MRI data and using Reduced Order Models to drastically reduce computing times. We tested 

our model on a healthy and a dissected patient. Then we realized different systolic blood 

pressure scenarios for each case, which we compared. 

Results: In the dissected patient, the blood pressure at the false lumen wall was less important 

than the true lumen. Furthermore, the aortic wall shear stress and the velocity fields in aorta 

increase at the entry and re-entry tears between the two lumens. The simulation of different 

blood pressures scenarios shows a decrease in all these three parameters related to the 

decrease of the systolic blood pressure. 

Conclusion: Our model provides reliable patient-specific and real-time 3D rendering. It has 

also allowed us to realize different flow variation scenarios to simulate different clinical 

conditions and to compare them. However, the model still needs improvement in view of a 

daily clinical application. 

 

 

 



 4 

INTRODUCTION 

Aortic dissection is a rare (3.2 / 100,000 inhab. /year) but serious disease (50% of mortality 

at 48 hours and 90% at 3 months), which realizes a cleavage within the aortic wall what 

creating a false lumen that may be responsible for aortic rupture and / or organ perfusion at 

the acute phase. 

We distinguish the forms interesting the ascending aorta (type A dissection), where the 

risk of intra-pericardial rupture is high and for which urgent surgical management by 

replacement of the ascending aorta is the reference, and type B dissections which by 

definition does not interest the ascending aorta. 

Currently, for the initial management of these type B aortic dissections, the decision tree 

is as follows: 

- Uncomplicated dissections (i.e. without signs of rupture or mal-perfusion) should benefit 

from optimal medical treatment by blood pressure (BP) monitoring (systolic BP <120mmHg) 

and active medical supervision. 

- Complicated dissections should be surgically treated, for which Thoracic EndoVascular 

Aortic Replacement (TEVAR) become the gold standard when anatomical conditions are 

favorable (1). 

Two essential evolutionary phases of these initially uncomplicated dissections must be 

distinguished. The first is the acute phase between 0 and 30 days with a risk of mal-perfusion 

and rupture for which surgical intervention is associated in 24%. The second is the chronic 

phase where 25 to 30% will evolve to aneurysmal form or secondary mal-perfusions at 4 years 

and will also have to benefit from a surgical procedure (2). 
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The current clinical problem is: Whose propose an early endovascular procedure in 

uncomplicated situation to prevent chronic complications? 

Existing anatomical elements that have been identified as predictors of poor long-term 

outcome in type B dissections, such as an initial aortic diameter over 40 mm in the acute 

phase, a false lumen over 22 mm of diameter, an elliptical true lumen and a circular false 

lumen and an entry tear located less than 5 centimeters from the origin of the left subclavian 

artery (3). But these are not enough to initiate a surgical management. The definition of this 

sub-population concerned is therefore still debated. 

A better understanding of hemodynamic events such as comprehension of pressure 

regimes between the true and the false lumen, wall shear stress and blood velocities fields 

can help to refine this complex hemodynamics. Some of these data are accessible through 

medical imaging such as aortic geometry by CT or flow data by MRI. However, no examination 

can quantify the pressure and the shear stress that apply to the aortic wall, as well as the 

blood velocity fields. These data are therefore only accessible through computerized 

simulation models (Computational Fluid Dynamics (CFD)) that are currently rarely patient-

specific and require a lot of computation time, which limits their clinical application. 
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HYPOTHESIS / GLOBAL PROBLEM 

The hypothesis of our work is to know if it is possible to predict the evolution of 

uncomplicated type B aortic dissections in time through numerical simulation of 

hemodynamics and this specifically for each patient. 

One of the main challenges is to have shorter simulation times than real life so that the 

simulation tool can have a clinical interest. The ultimate interest is to determine profiles of 

patients at risk for chronic complications of their dissection and for whom earlier surgical 

management would avoid these complications. 

 

INITIAL PROBLEM 

The first step of the work consists in the realization of the patient-specific and real-time 

computer model, allowing the simulation of flow variations in the aortic arch in a healthy 

patient then in uncomplicated type B aortic dissections. 
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HYPOTHESIS ASSESMENT (Figure 1) 

Clinical data management 

For the realization of our work we needed a healthy subject to create the healthy aorta 

model and a subject with uncomplicated type B aortic dissection to test the model. The 

healthy subject was included on the basis of volunteering and dissected subject was included 

prospectively in the acute phase of his pathology after information, written and oral, clear, 

fair and appropriate and not opposed from him to participate at the study. For both, the only 

inclusion criterion was to be major and the exclusion criteria were having a pathological aorta 

for the healthy subject, having aortic dissection of type A or type B complicated for the 

dissected subject, and present a contraindication to performing an MRI for both groups. 

Clinical data such as sex, age, heart rate, blood pressure and treatments were also 

collected. 

To carry out this study, we had the agreement of the patient protection committee 

through the protocol “hors loi Jardé” because it involves the human person but does not 

belong to an interventional study since the MRI is a common follow-up exam of the aortic 

dissections. 

 

Choice of 0D mode 

To reduce computational time and make the model usable in clinical practice, we used 

aortic arch model reduction using a 0D-3D coupled model to provide the boundary conditions 

for the aortic arch 3D simulation. This 0D model is based on the concept of hydraulic-electrical 

analogy: blood flow equivalent to an electrical current, blood pressure between two points to 

a voltage, vessel elasticity to a capacitance (C), vascular resistances to a resistance (R) and 

blood inertia to an inductance (L). This analogy is based on the assumption that the 
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physiological variables of interest (e.g. pressure, flow and volumes) are uniformly distributed 

in space. This model works in a closed-loop to get as close as possible to the full cardiovascular 

system (CVS) with its three compartments, which are the systemic circulation, the pulmonary 

circulation and the heart. After a review of the literature we chose the 0D model of 

Korakianitis et al. (4) because it is a simple model that represents the full CVS in the form of 

closed loop while integrating various vascular segments of interest (coronary sinuses, arteries, 

arterioles, capillary, veins). We then reproduced it on the Twin Builder software (Ansys, 

Canonsburg, Pennsylvania, USA) (Figure 2). 

 

3D geometrical modeling of the aorta 

In our work we included two patients, one with healthy aorta and one with dissected aorta 

(uncomplicated type B dissection starting just after the ostium of the left subclavian artery at 

the outer aortic arch curvature) having already been operated several years ago on a 

mechanical Bentall procedure (replacement of the aortic valve with a mechanical prosthesis 

and of the initial part of the aorta with a synthetic tube) for aortic root aneurysm with aortic 

valve regurgitation. 

In these two patients we performed a chest CT scan, at low X-ray dose and without 

contrast injection for the patient with healthy aorta and normal X-ray dose and contrast 

injection for the dissected patient. These scanners made it possible to perform aortic 

segmentation, using 3DSlicer software (open source software), to obtain the 3D geometric 

models of these aortas (Figure 3). At the same time, we realized a 2D Phase Contrast (PC) MRI, 

to obtain noninvasively the hemodynamic data that will serve as a reference for the 

confrontation of our model. 
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For a sake of simplicity to create our model, we were interested only at the hemodynamic 

study of the aortic arch and the first centimeters of the descending thoracic aorta 

(abandonment of the ascending aorta (AA) because it does not correspond to the definition 

of dissection of type B). This gives us a system with one inlet (initial part of the arch) and four 

outlets (brachiocephalic trunk (BT), left common carotid artery (LCC), left subclavian artery 

(LS) and descending thoracic aorta (DA)) for the healthy patient and five outlets (BT, LCC, LS, 

true and false lumen (TL and FL)) for the dissected patient. Dissected patient to whom we also 

found two entries tears of the dissection just after the ostium of the LS, and two re-entries in 

the DA. 

 

0D Model modification 

The direct coupling between the 0D model of the full CVS and the 3D aortic geometry is 

complicated because the values of the 0D model parameters of the CVS are not available in 

the literature. This step is essential because a wrong calibration of its parameters can lead to 

a problem of correlation of the output of the 3D model of the stick which produces numerical 

instabilities. 

To circumvent this problem, an equivalent 0D model of aortic arch was created, based on 

static simulations (absence of the time effect, open circuit) and electric model (inductance) to 

have an approximation of the 3D transient fluid simulation of the arch and for secondarily be 

coupled to the 0D model of the full CVS. Then this model allowed us to obtain pressure and 

flow curves that served us as boundary conditions for our 3D simulation. 

3D models are based on the resolution of Navier-Stokes equations, applied to the finite 

element discretization of the 3D model. The 3D model of aortic arch was divided into five or 

six segments depending on the patient to represent each inlet and outlets branches. Each 
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segment of the aortic arch was represented using an inductance and a pressure source whose 

values are derived from static simulations. In our models we make the assumption that the 

wall is rigid, so we did not use capacitance. For the representation of the wall of the aortic 

arch the 3D volume consisted of a polyhedral mesh and eight prism layers, for the blood a 

Newtonian incompressible fluid model was used and for the model of turbulence the model 

SST k- ω. 

For the computation of the pressures, the static simulation consists of applying an inlet 

pressure (Pinlet) at the ascending aorta and flow rates at each outlet (Qoutlet) in order to 

determine the outlet pressures (Poutlet). For this we did this simulation many times by varying 

the values of Pinlet and Qoutlet applied. We have recovered at each calculation calculated 

Poutlet (static ROM). From the results, we used a response surface which made it possible to 

reduce the calculation times. This makes it possible to obtain instantaneously the values of 

the pressure sources for each set of boundary conditions. For the calculation of the inductance 

parameter in each branch, we used the geometrical values of each branch (radius and length) 

assuming it was a perfect cylinder and we applied the Poiseuille law (Figure 4). 

Then, the 0D model based on static simulations of the aortic arch was coupled to the full 

CVS model. The three upper outlets were connected to a block consisting of resistance, 

capacitance and inductance to represent the systemic arterioles, capillaries and veins of the 

upper body. The two lower outlets were connected to the same block type to represent the 

systemic part of the lower body. The fact to having capacitances in the full CVS model makes 

it possible to simulate the compliance of the vessels. As a result, in our full CVS model, only 

the aortic arch is modeled by a rigid wall. 
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The integration of the static model of the aortic arch with the 0D model of the full CVS 

allowed us at this stage to have a full CVS 0D model with the representation of the aortic arch 

(Figure 5). 

 

Personalization of the 0D Model using the 2D PC MRI Flow Data 

Once the basic model 0D with integration of the aortic arch was realized, it remained to 

calibrate it to make it patient-specific. The adjusted parameters were the resistance, 

capacitance, and inductance values of the systemic part of the model, as well as the atrial and 

ventricular elastance parameters. The aim was to correlate the flows at the outlet calculated 

from the 0D model (flow / pressure curves - Dynarom) to the flows obtained from the patient's 

2D PC MRI data, which serve as objective references. And this throughout the cardiac cycle, in 

systole and diastole. 

For this we used the Levenberg-Marquardt optimization method to optimize the model 

(5). This method solves non-linear least squares problems and has shown good performance 

in minimizing least-squares curve fitting. 

As a result of the optimization, the flows rates at the outlet of the 3D transient fluid 

simulations and the 0D model of the full CVS were very close, particularly in the systolic phase. 

Note that the reverse flow phenomenon is underestimated with the 0D model for all outputs, 

except for true light. (Figure 6). 

 

0D model simulation results (flow / pressure curves) 

Once the 0D model was set up, we performed the simulations using the Twin Builder 

software to obtain the results of the simulation in the form of flow and pressure curves 

(pulsatile blood flow) (Figure 7). 
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Attribution of the 0D model’s boundary conditions 

However, all the difficulty in this 0D model was the attribution of the boundary conditions 

so that the results from the 3D transient fluid simulation were clinically plausible. We 

performed several calculations with different boundary conditions to obtain multiple results 

in order to create a Reduced-Order Modeling (ROM). As a reminder, a ROM aims to reduce 

the complexity of mathematical calculations by reducing the size of the space or the degrees 

of freedom to obtain an approximation of the original model. The ROM requires an important 

learning set, hence the interest to having a wide range of variation between the different 

boundary conditions obtained. Value ranges are then assigned for the input flow and the 

outputs pressures (e.g. PAs [80; 180 mmHg]). 

We also varied the parameters of the 0D models (resistances, capacitances, inductance 

and elastance) to obtain different ranges of values for the input flow and the pressure. For 

each set of boundary conditions, we performed a 3D transient fluid simulation for which the 

computation time is approximately 24 hours for 3 cardiac cycles. 

 

Integration of data from the 0D model and 3D representation 

To obtain the images of the simulation, at each calculation, we saved the values that 

interested us at each time step chosen. In our study we are interested only in the peak systole 

to study the part of the cardiac cycle where the blood pressure is the most important. On the 

other hand, for ROM and 3D calculations we took into account the whole cardiac cycle. 

From these results we could create ROMs. Our ROM model consists of nonlinear 

differential equations that connect the solver inputs to the solver outputs using neural 

network methods. It provides a real-time approximation of the results of the physical solver 

(versus 24h for 3 cardiac cycles for 3D transient fluid simulation). 
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At this stage of our work we use two different types of ROMs: one calculates the transient 

results of aortic flow and pressure to replace the static model (dynamic ROM) and the other 

calculates the 3D physical variables (dynamic ROMs) which provides 3D values of the aortic 

arch for each of the hemodynamic data of interest (x3): wall shear stress, wall pressure and 

blood velocity field. 

The results obtained from the 3D dynamic ROM simulation were then transmitted to the 

CFD-Post software (Ansys) to obtain the 3D representations and make comparisons between 

the different scenarios (Figure 8). 

 

Model optimization 

Once the aortic arch dynamic ROM was functional, it replaced the initial static 0D model 

of the aortic arch (static simulations of pressures and inertances) to obtain a 0D dynamic ROM 

model of the aortic arch. 

Parameters of the 0D model (dynamic this time) were optimized by a new confrontation 

with the 2D PC MRI data to match to the clinical data of the patient at rest. 

The comparison between our final 0D dynamic ROM model and the 3D transient fluid 

simulation shows a relative difference on average 1.55% and an absolute maximum difference 

of 4.26mmHg for all cumulative Poutlets for the healthy patient. For the dissected patient, 

these values are 0.61% and 3.66mmHg respectively. Knowing that the computation time of 

the 3D transient fluid simulations is on average 17 hours for the healthy patient and 23 hours 

for the dissected patient, while the 0D dynamic ROM model only takes a few seconds for both 

cases. 
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Use in a clinical situation 

Now we have a final 0D model with integration of the aortic arch for a healthy patient and 

for a dissected patient (model 0D dynamic ROM of the arc and model 0D full CVS) (Figure 9). 

This allows us to perform different flow simulations by modifying certain parameters, such as 

heart rate, to simulate certain real-life situations (stress, stress) or the effects of a medication 

(antihypertensive, bradycardic) and obtain hemodynamic data from the aortic arch in real 

time. 

 
 

EMPIRICAL DATA 

In our research, we had two patients, one with a healthy aorta and the other with a 

dissected aorta, with whom we wanted to simulate different scenarios of BP variations in 

order to test our model and then be able to consider different scenarios of prediction of 

evolution of type B aortic dissection as a function of adherence to medical treatment. 

For the healthy patient with controlled systolic BP (sBP) (i.e. sBP <120 mmHg) measured 

at 115 mmHg and diastolic BP (dBP) at 75 mmHg on 2D PC MRI, we simulated high blood 

pressure (HBP) (i.e. sBP > 140 mmHg). 

For the dissected patient with moderately controlled sBP (i.e. sBP between 120 and 140 

mmHg) measured at 135 mmHg and dBP at 73 mmHg on 2D PC MRI, we used two scenarios 

of sBP. A reduction to obtain a controlled sBP (i.e. <120 mmHg) and an increase to obtain an 

uncontrolled sBP (i.e. > 140 mmHg). 

As a reminder, in the case of aortic dissections, the blood pressure objective is less than 

120 mmHg. 
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Healthy patient case 

"High pressure" scenario 

To simulate the "high pressure" scenario, we chose to simulate vasoconstriction by 

increasing vascular resistance (venous) without changing the cardiac frequency (CF). 

Before simulation and according to the MRI data the healthy patient had a systolic ejection 

volume (SEV) at 93 ml and a CF at 66 bpm, which by the relation Q = SEV x CF gave a cardiac 

flow (Q) at 6.1 L / min and a Q peak at 0.45 L / sec. 

After simulation through our 0D model we achieved HBP with a sBP at 145 mmHg with an 

increase of dBP at 115 mmHg but a decrease of Q peak at 0.38L / sec. 

 

Healthy patient simulations 

A comparison of the aortic wall pressure shows a greater wall pressure in the "high 

pressure" scenario. It is also noted that the blood flow is laminar in both cases since there is 

very little pressure wall variation (Figure 10). 

The comparison of the aortic wall shear stress shows more stress zones at the level of the 

Supra-Aortic Trunks (SAT) but not at the level of the aorta. The analysis of the differences 

between the two models shows a very small difference in the order of less than 20 Pa / 0,15 

mmHg in favor of greater stress for the healthy patient with "controlled pressure" scenario 

(Figure 11). 

The comparison of the aortic blood velocities fields shows accelerations at the level of the 

SAT and at the outer curvature of the initial part of the aortic arch. The analysis of the 

differences between the two models shows a very small difference of the order of less than 

0.5 m / sec, which is also greater for the "controlled pressure" scenario (Figure 12). 
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Dissected patient case 

"Controlled pressure" scenario 

To simulate the "controlled pressure" scenario, we chose to simulate beta-blocker 

antihypertensive drug use as it is the main antihypertensive drug used in aortic dissection. The 

action of beta-blockers is primarily at the cardiac level by reducing heart rate, cardiac 

excitability and myocardial contractibility. So, we focused on acting on these parameters 

through our model, to reduce cardiac output. Based on the patient's MRI data, the patient 

had a SEV at 69 ml, a CF at 76 bpm, a Q at 5.3 L / min and a Q peak at 0.38L / sec. We therefore 

first directly decreased the heart rate at 60 bpm in the parameters of our model and secondly 

divided by 8.33 the initially defined parameters of elastance of the left atrium and the left 

ventricle to have a SEV equivalent to 69ml. With these two modifications we obtained through 

the 0D simulation a Q at 4.1 L / min (69 x60 / 1000) with a Q peak at 0.31 L / sec, a sBP peak 

at 112 mmHg and a dBP peak at 55 mmHg. 

 

"High pressure" scenario 

To simulate the "high pressure" scenario we had several physiological possibilities of BP 

increase. We chose to vary the responsible factors of chronic HBP, either arterial resistance 

simulating vasoconstriction or venous capacitance simulating hypervolemia (7). 

First, note that the sum of systemic vascular resistance in our 0D model for the dissected 

reference patient is 82 MPa.s / m3 for normal values from the literature (6) between 70 and 

160 MPa.s / m3 reinforcing the accuracy of our model. Moreover, in our 0D model, for the 

reference dissected patient the arterial resistances of the FL are less important than those of 

the TL. 
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In both "vasoconstriction" and "hypervolemia" scenarios we were able to obtain the same 

sBP values of 165 mmHg, either by increasing the arterial resistances 6.5 times, or by 

increasing the venous capacitance 2.5 times. On the other hand, the values of dBP and Q 

differed. In the "vasoconstriction" scenario, the dBP was 92 mmHg and the Q peak was stable 

at 0.37 L / sec for a stable Q as well. In the "hypervolemia" scenario, the dBP was 88 mmHg, 

whereas the Q peak was increased to 0.47 L / sec, indicating an increase in Q. 

 

Dissected patient simulations 

The comparison of the aortic wall pressures of the 4 scenarios applied shows for each of 

the scenarios a lesser pressure at the FL wall (approximately 30mmHg) (Figure 13). As for the 

TL, the wall pressure of the FL also increases with the increase of sBP. For the last two 

scenarios (Figure 13 C and D) the pressure in the arch and the TL is broadly similar, however 

the Q peak causes a slight increase of the pressure wall of the FL for the scenario "high 

pressure by hypervolemia" (Figure 13 D). 

The comparison of the aortic wall shear stress of the 4 scenarios applied shows for each 

of the scenarios, zones of greater wall shear stress at the level of the suture zone of the 

ascending aorta, at the two entries tears of the dissection after the ostium of the left 

subclavian artery, at the two re-entries tears in the descending thoracic aorta and at the aortic 

wall of the FL in front these four communications (Figure 14). It is also noted that these wall 

shear stress increase at these locations with increasing sBP. As for wall pressures, the wall 

shear stress at the aortic wall are increased in the "high pressure by hypervolemia" scenario 

(Figure 14 D) where the Q peak is higher. 

The comparison of aortic blood velocities fields of the 4 scenarios shows for each of the 

scenarios, the accelerations of blood velocities at the level of the suture zone of the ascending 
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aorta, at the two entries tears of dissection after leaving the ostium of the left subclavian 

artery and the two re-entries in the descending thoracic aorta (Figure 15). We also note that 

these speeds increase at these locations with the increase in sBP. As with wall pressures and 

wall shear stress, blood velocities in the aorta are increased in the "high pressure by 

hypervolemia" scenario (Figure 15 D) where the Q peak is higher. 

 

DISCUSSION 

Results interpretation 

The analysis between the two scenarios in the healthy patient, shows a very small 

difference in values, of the order of less than 20 Pa / 0,15 mmHg for wall shear stress and less 

than 0.5 m / sec for blood velocities, favor of the "controlled pressure" scenario. This is 

explained by the fact that the Q peak of the patient "controlled pressure" is greater (0.45 vs 

0.38 L / sec). This notion shows the interest of decreasing sBP but also Q in the management 

of patients in the context of cardiovascular prevention (role of betablockers). 

In the dissected patient, analysis of the results showed a decrease of wall pressure in the 

FL and a decrease of wall shear stress and blood velocities at the level of communications 

between the two lumens related to the decrease in sBP. This confirms the interest of a 

reduction of sBP in the management of aortic dissections to limit the extension of the FL and 

its rupture in the acute phase and allow its healing and to limit the risk of aneurysmal evolution 

(main complication of aortic type B dissections in long-term) (8,9). 

We also note that vascular sutures disrupt vessel architecture and hemodynamics, making 

them areas of weakness, even at a distance from surgery. 
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State of art 

The first step in our work through this article is a feasibility study of our patient-specific 

and real-time fluid model of numerical simulation. The findings found are similar to other 

studies simulating aortic flow by fluid mechanics in uncomplicated type B aortic dissections 

(10-15). They also find an increase of wall shear stress at the entries and re-entries associated 

with an increase in velocity fields at the same level. This confirms the good functioning of our 

model. On the other hand, these models only transcribe numerically the clinical data of these 

patients and do not allow the modification of characteristics such as BP or Q to simulate other 

hemodynamic conditions. 

Alimohammadi et al. (14) and Dillon-Murphy et al. (15) also integrate a 0D model but use 

a Windkessel 0D model which is an open model unlike our closed loop of the full CVS model 

which allows us a more precise description of the blood circulation, and therefore to make 

different scenarios by varying the parameters, which is much more restricted with a 

Windkessel model because of the absence of compartmentalization of the systemic 

circulation. 

Moreover, thanks to the use of the ROMs we can obtain the results in real time contrary 

to the 3D transient fluid simulations (24h for 3 cardiac cycles). 

At this stage of our work the originality of our model resides in the way whose is obtained 

our model of simulation through a full CVS 0D model and ROM, offering multiple technical and 

clinical advantages. 
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Advantage of 0D models (full CVS, static arch + inductance) 

As previously stated, our 0D model is closed (full body) which allows to have a correlation 

between the inlet and outlet and thus a better numerical stability, allowing the realization of 

different scenarios. 

Moreover, the model integrates many compartments (heart, aortic arch, capillary 

arterioles, veins, ...), this allows to simulate different clinical scenarios by varying the 

parameters of the model and at different levels. 

As for him, the model 0D static + inductance of the arch, makes it possible to avoid directly 

coupling of the full CVS 0D model with the 3D model and to obtain pressure and velocity 

curves for the 3D computation which is more stable numerically for the calculation. 

 

ROM innovations 

The ROM allows to have an instant and realistic representation of the aortic arch in the 0D 

dynamic ROM model. This makes the optimization process possible since the number of 

calculations is important. 

The ROM also allows to have 3D results for any setting of the 0D system and this very 

quickly (few seconds). 

 

Advantage of our models  

The advantages of any numerical flow simulation reside in obtaining hemodynamic data 

in a non-invasive way for patients and at lower cost. 

The advantage of the ROM compared to the 3D transient fluid simulation is that the 

computation time is drastically reduced from one day to a few seconds for a result difference 
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less than 2% (1.55% and 0.61%). This temporal advantage (real-time) makes it possible to 

envisage a daily clinical application which was until now impossible. 

Due to the use of CT images for the 3D geometrical representation of aortas coupled with 

hemodynamic data by the realization of a 2D PC MRI, we were able to create a patient specific 

simulation model, which allows have applicable results to each patient in the daily clinic. 

The advantage of the 0D model is that it makes it possible to interact with the various 

characteristics of the model in order to vary different values such as CF, Q and / or BP and 

thus perform 3D flow simulations that are not derived from the measurements of the MRI 

data of the patient but derived from hypothetical scenarios while remaining patient specific. 

 

Limitations 

There are several limits to our work. Firstly, we have been limited to the study of the aortic 

arch and not to the entire aorta for reasons of simplicity of the model. We have imposed to 

the ROM of the aortic arch a rigid and not compliant wall (unlike the rest of the 0D model of 

the full CVS) in order to make fewer complex calculations. We have only confronted our model 

to one healthy patient and one dissected patient. To obtain the ROMs that allow 

instantaneous results, it is necessary first to have made several 3D fluid calculations, which 

takes time (about 24 hours). The use of a 4D PC MRI would allow a better confrontation of the 

results obtained. There is also a bias that emerges from the fact that the dissected patient has 

already undergone cardiac surgery of the aortic valve and the initial segment of the ascending 

aorta, which can disturb the hemodynamics at the exit of the heart. 

As this work is still in the research phase, several steps are not yet optimized for an instant 

clinical application. It requires four different computing platforms and manual controls (0D 

model setting, encoding of commands, modification of extensions). 
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Expected improvements 

This work presented being that the first part of a research work more consequent, the 

model is destined to evolve. The first step will be to create a model of full aorta, from the 

aortic sinus to the iliac arteries with integration of a compliant wall of this aorta. 

The second step will be the integration of a fatigue model of the aortic wall to simulate 

several days or months of cardiac cycles to obtain a predictive model of evolution of the aortic 

dissections specific to each patient. The difficulty is to obtain less computation time than the 

real time. This would determine the patients most at risk of developing aneurysms and 

progression of dissections. The goal is to provide earlier treatment of uncomplicated type B 

aortic dissections. 

 

CONCLUSION 

 The use of the 0D model and ROMs enables a reliable patient-specific and real-time 

numerical simulation of the hemodynamics of uncomplicated type B aortic dissections, 

opening the doors to clinical use. They also allow simulations in different flow conditions, 

which allowed us to confirm the interest of blood pressure reduction in the treatment of aortic 

dissections. Being at the beginning of our research, the model is destined to evolve, the goal 

is to predict the long-term evolution of aortic dissections and to offer earlier treatment to 

patients. 
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FIGURES 

Figure 1: Global diagram of the realization of the simulation model 

 

Figure 2: 0D representation of the cardiovascular system 
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Figure 3: Surface rendering of aortic arch of healthy (A) and dissected (B) patient after 

segmentation 

 

Figure 4: Steps to obtain the 0D model of static simulation of the aortic arch for each patient 
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Figure 5: Full cardiovascular system 0D model with integration of the static model of the aortic 

arch of the healthy patient 
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Figure 6: Comparison of the flow curves at each outlet between the results of the 3D transient 

fluid and 0D simulations, and the values of the 2D PC MRI 

A: Flow in the Brachiocephalic Trunk (BT); B: Flow in the Left Common Carotid (LCC); C: Flow 

in the Left Subclavian (LS); D: Flow in the True Lumen (TL); E: Flow in the False Lumen (FL) 
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Figure 7: Comparison of flow curves from 2D PC MRI data (blue curve) and 0D model 

simulations (burgundy curve) 

 

 

Figure 8: 3D representation of the aortic pressure wall according to simulation 
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Figure 9: Final 0D model 
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Figure 10: 3D modelling of aortic pressure wall of the healthy patient 

A: from 2D PC MRI data, "controlled pressure" scenario 

B: from 0D model simulation, "high pressure" scenario 
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Figure 11: Comparison of 3D model of aortic wall shear stress of the healthy patient 

A: 3D modeling of aortic wall shear stress of the healthy patient from 2D PC MRI data, 

"controlled pressure" scenario 

B: 3D modeling of aortic wall shear stress of the healthy patient from 0D model simulation, 

"high pressure" scenario 

C: Comparison of differences of aortic wall shear stress between the two scenarios 
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Figure 12: Comparison of 3D model of aortic blood velocities fields of the healthy patient 

A: 3D modeling of velocities fields in the aorta of the healthy patient from 2D CP MRI data, 

"controlled pressure" scenario 

B: 3D modeling of velocities fields in the aorta of the healthy patient from 0D model 

simulation, "high pressure" scenario 

C: Comparison of differences of velocities fields in the aorta between the two scenarios 
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Figure 13: 3D modelling of aortic pressure wall of the dissected patient  

A: from 0D model simulation, "controlled pressure" scenario 

B: from 2D CP MRI data, "moderately controlled pressure" scenario 

C: from 0D model simulation, "high pressure by vasoconstriction" scenario 

D: from 0D model simulation, "high pressure by hypervolemia " scenario 
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Figure 14: 3D Modeling of aortic wall shear stress of the dissected patient 

A: from 0D model simulation, "controlled pressure" scenario 

B: from 2D CP MRI data, "moderately controlled pressure" scenario 

C: from 0D model simulation, "high pressure by vasoconstriction" scenario 

D: from 0D model simulation, "high pressure by hypervolemia " scenario 
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Figure 15: 3D modelling of aortic blood velocities field of the dissected patient 

A: from 0D model simulation, "controlled pressure" scenario 

B: from 2D CP MRI data, "moderately controlled pressure" scenario 

C: from 0D model simulation, "high pressure by vasoconstriction" scenario 

D: from 0D model simulation, "high pressure by hypervolemia " scenario 


