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Abstract: The fast and tremendous evolution of the Unmanned Aerial Vehicle (UAV) imagery1

gives place to the multiplication of applications in various fields such as military and civilian2

surveillance, delivery services, and wildlife monitoring. Combining UAV imagery with study of3

dynamic salience further extends the number of future applications. Indeed, considerations of4

visual attention open the door to new avenues in a number of scientific fields such as compression,5

retargeting, and decision-making tools. To conduct saliency studies, we identified the need for new6

large-scale eye-tracking datasets for visual salience in UAV content. Therefore, we address this7

need by introducing the dataset EyeTrackUAV2. It consists of the collection of precise binocular gaze8

information (1000 Hz) over 43 videos (RGB, 30 fps, 1280x720 or 720x480). Thirty participants observed9

stimuli under both free viewing and task conditions. Fixations and saccades were then computed10

with the I-DT algorithm, while gaze density maps were calculated by filtering eye positions with11

a Gaussian kernel. An analysis of collected gaze positions provides recommendations for visual12

salience ground-truth generation. It also sheds light upon variations of saliency biases in UAV videos13

when opposed to conventional content, especially regarding the center bias.14

Keywords: Dataset, Salience, Unmanned Aerial Vehicles (UAV), Videos, Visual attention, eye tracking,15

surveillance.16

1. Introduction17

For a couple of decades now, we have witnessed the fast advances and growing use of UAVs for18

multiple critical applications. UAVs refer here to unmanned aerial vehicles, autonomous or monitored19

from remote sites. This imagery enables a broad range of uses, from making vacation movies to20

drone races for mainstream civilian applications. Tremendous professional services are developed,21

among others fire detection [1], wildlife counting [2], journalism [3], precision agriculture, and delivery22

services. But most applications are military, from aerial surveillance [4], drone-based warfare [5] to23

moving targets tracking [6], object, person, and anomaly detection [7–9].24

The UAV imagery proposes a new representation of visual scenes that makes all these new25

applications possible. UAV vision is dominant and hegemonic [10]. The bird point of view modifies26

the perspective, size and features of objects [11]. It introduces a loss of pictorial depth cues [12] such27

as horizontal line [13]. Also, UAV high autonomy in conjunction with large-field of view camera28

permits to cover large areas in limited time duration. Besides, embedded sensors can be multi-modal29
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and can include RGB, thermal, Infra-Red (IR), or multi-spectral sensors. Multiplying imagery30

modalities allows overcoming possible weaknesses of RGB-only cameras [10]. For instance, occlusions31

may be compensated by thermal information, and the capture of IR is desired for low-luminance32

environments [14].33

UAV scene depiction is rich, comprehensive, and promising, which explains its success. But34

challenges to come are even more compelling. Edney-Browne [10] wondered how the capacity of35

UAV capturing the external reality (visuality) is related to perceptual and cognitive vision in humans.36

Variations in UAV characteristics such as perspective view and object size may change viewers’37

behavior towards content. Consequently, new visual attention processes may be triggered for this38

specific imaging. This means that studying UAV imagery in light of human visual attention not39

only opens the door to plenty of applications but could also enable to gather further knowledge on40

perceptual vision and cognition.41

In the context of UAV content, there are very few eye-tracking datasets. This is the reason why42

we propose and present in this paper a new large-scale eye-tracking dataset, freely downloadable43

from internet. This dataset aims to strengthen our knowledge on human perception and could play a44

fundamental role for designing new computational models of visual attention.45

The paper is organized as follows. In Section 2, we first justify and elaborate on the need for46

large-scale eye-tracking databases for UAV videos. Then, we introduce the entire process of dataset47

creation in Section 3. It describes the content selection, the experiment set up, and the implementation48

of fixations, saccades, and gaze density maps. Section 4 presents an in-depth analysis of the dataset.49

The study is two-fold: it explores what ground truth should be used for salience studies, and brings50

to light the fading of conventional visual biases UAV stimuli. Finally, conclusions are provided in51

Section 5.52

2. Related Work53

Visual attention occurs to filter and sort out visual clues. Indeed, it is impossible to process54

simultaneously all the information of our visual field. Particular consideration should be dedicated to55

identifying which attentional processes are involved as they are diverse and aim at specific behaviors.56

For instance, one must make the distinction between overt and covert attention [15]. The former refers57

to a direct focus where eyes and head point. The latter relates to the peripheral vision, where attention58

is directed without eye movements towards it. In practice, when an object of interest is detected in59

the area covered by the covert attention, one may make a saccade movement to direct the eyes from60

the overt area to this position. The context of visualization is also important. For instance, we make a61

distinction between two content exploration processes [16]: (1) A no constraint examination named62

free viewing. The observer is rather free from cognitive loads and is supposed to mainly use bottom-up63

or exogenous attention processes driven by external factors, e.g. content and environment stimuli.64

(2) A task-based visualization, such as surveillance for instance. Cognitive processes such as prior65

knowledge, willful plans, and current goals guide the viewer’s attention. This is known as top-down66

or endogenous attention. A strict division is slightly inaccurate in that both top-down and bottom-up67

processes are triggered during a visual stimuli in a very intricate interaction [17].68

In computer science, it is common to study bottom-up and top-down processes through the visual69

salience. Visual salience is a representation of visual attention in multimedia content as a probability70

distribution per pixels [18]. Salience analyses rest on the relation of visual attention to eye movements,71

and these latter are obtained through gaze collection with eye-trackers [19]. Saliency predictions help72

to understand computational cognitive neuroscience as it reveals attentional behaviors and systematic73

viewing tendencies such as center bias [17]. Multiple applications derive from saliency predictions74

such as compression [20], content-aware re-targeting, object segmentation [21], and detection [22,23].75

Recently, there has been a growing interest on one particular application, which combines visual76

salience and UAV content. Information overload in the drone program and fatigue in military operators77

may have disastrous consequences for military applications [10]. New methods and approaches are78
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required to detect anomaly in UAV footages and to ease the decision-making. Among them, we believe79

that computational models of visual attention could be used to simulate operators’ behaviors [24].80

Eventually, thanks to predictions, operators’ workloads can be reduced by eliminating unnecessary81

footages segments. Other works support the use of salience to enhance the efficiency of target-detection82

task completion. For instance Brunyé et al. [25] studied the combination of salience ( in terms of opacity83

with the environment) and biological motion (presence and speed) in textured backgrounds. They84

concluded that salience is very important for slowly moving objects, such as camouflaged entities.85

Meanwhile, fast biological movements are highly attention-grabbing, which diminishes the impact86

of static salience. Accordingly, it makes sense to develop dynamic saliency models tailored to UAV87

content.88

However, we demonstrate in [26] that current saliency models lack efficiency in terms of prediction89

for UAV content. This applies to all types of prediction models: handcrafted features and architecture90

implementing deep learning to a lesser extent, whether they are static or dynamic schemes. Typical91

handcrafted and low-level features learnt on conventional imaging may not suit UAV content. Besides,92

in conventional imaging the center position is the best location to have access to most visual information93

of a content [27]. This fact leads to a well-known bias in visual attention named central bias. This94

effect may be associated with various causes. For instance, Tseng et al. [28] showed a contribution95

of photographer bias, viewing strategy, and to a lesser extent, motor, re-centering, and screen center96

biases to the center bias. They are briefly described below:97

• The photographer bias often emphasizes objects in the content center through composition and98

artistic intent [28].99

• Directly related to photographer bias, observers tend to learn the probability of finding salient100

objects at the content center. We refer to this behavior as a viewing strategy.101

• With regards to the Human Visual System (HVS), the central orbital position, that is when102

looking straight ahead, is the most comfortable eye position [29], leading to a recentering bias.103

• Additionally, there is a motor bias, in which one prefers making short saccades and horizontal104

displacements [30,31].105

• Lastly, onscreen presentation of visual content pushes observers to stare at the center of the106

screen frame [27,32]. This experimental bias is named the screen center bias.107

The central bias is so critical in the computational modelling of visual attention that saliency models108

include this bias as prior knowledge or use it as a baseline to which saliency predictions are being109

compared [33]. The center bias is often represented by a centered isotropic Gaussian stretched to the110

video frame aspect ratio [34,35]. The presence of this bias in UAV videos has already been questioned111

in our previous work [26]. We showed that saliency models that heavily rely on the center bias were112

less efficient on UAV videos than on conventional video sequences. Therefore, we believe that the113

central bias could be less significant in drone footage as a result of the lack of photographer bias or114

due to UAV content characteristics. It would be beneficial to evaluate qualitatively and quantitatively115

the center bias on a larger dataset of UAV videos to support our assumption.116

While it is now rather easy to find eye tracking data on typical images [34,36–44] or videos [45–49],117

and that there are many UAV content datasets [7,50–61], it turns out to be extremely difficult to find118

eye-tracking data on UAV content. This is even truer when we consider dynamic salience, which refers119

to salience for video content. To the best of our knowledge, EyeTrackUAV1 dataset released in 2018 [11]120

is the only public dataset available for studying the visual deployment over UAV video. There exist121

another dataset AVS1K [62]. However, AVS1K is, to the present day, not publicly available. We thus122

focus here on EyeTrackUAV1, with the awareness that all points below but the last apply to AVS1K.123

EyeTrackUAV1 consists in 19 sequences (1280x720 and 30 frame per second (fps)) extracted from124

the UAV123 database [54]. The sequence selection relied on content characteristics, which are the125

diversity of environment, distance and angle to the scene, size of the principal object, and the presence126

of sky. Precise binocular gaze data (1000 Hz) of 14 observers were recorded under free viewing127

condition, for every content. Overall, the dataset comprises eye-tracking information on 26599 frames,128
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which represents 887 seconds of video. In spite of a number of merits, this dataset presents several129

limitations for saliency prediction applications. These limitations have been listed in [26]. We briefly130

summarize them below:131

• UAV may embed multi-modal sensors during the capture of scenes. Besides conventional RGB132

cameras, to name but a few thermal, multi-spectral, and infrared cameras consist of typical UAV133

sensors. Unfortunately, EyeTrackUAV1 lacks non-natural content, which is of great interest for134

the dynamic field of salience. As already mentioned, combining content from various imagery in135

datasets is advantageous for numerous reasons. It is necessary to continue efforts toward the136

inclusion of more non-natural content in databases.137

• In general, the inclusion of more participants in the collection of human gaze is encouraged.138

Indeed, reducing variable errors by including more participants in the eye tracking experiment139

is beneficial. It is especially true in the case of videos as salience is sparse due to the short140

displaying duration of a single frame. With regards to evaluation analyses, some metrics141

measuring similarity between saliency maps consider fixation locations for saliency comparison142

(e.g. any variant of Area Under the Curve (AUC), Normalized Scanpath Saliency (NSS), and143

Information Gain (IG)). Having more fixation points is more convenient for the use of such144

metrics.145

• EyeTrackUAV1 contains eye-tracking information recorded during free-viewing sessions. That146

is, no specific task was assigned to observers. Several applications for UAV and conventional147

imaging could benefit from the analysis and reproduction of more top-down attention, related to148

a task at hand. More specifically, for UAV content, there is a need for specialized computational149

models for person or anomaly detection.150

• Even though there are about 26599 frames in EyeTrackUAV, they come from "only" 19 videos.151

Consequently, this dataset just represents a snapshot of the reality. We aim to go further by152

introducing more UAV content.153

To extend and complete the previous dataset and to tackle these limitations, we have created the154

EyeTrackUAV2 dataset, introduced below.155

3. EyeTrackUAV2 dataset156

This section introduces the new dataset EyeTrackUAV2 aiming at tackling issues mentioned above.157

EyeTrackUAV2 includes more video content than its predecessor EyeTrackUAV1. It involves more158

participants, and considers both free and task-based viewing. In the following subsections, we first159

elaborate on the selection of video content, followed by a description of the eye-tracking experiment.160

It includes the presentation of the eye-tracking apparatus, the experiment procedure and setup, and161

the characterization of population samples. Finally, we describe the generation of the human ground162

truth, i.e. algorithms for fixation and saccade detection as well as gaze density map computation.163

3.1. Content selection164

Before collecting eye-tracking information, experimental stimuli were selected from multiple165

UAV video datasets. We paid specific attention to select videos suitable for both free and task-based166

viewing as experimental conditions. Also, the set of selected videos has to cover multiple UAV flight167

altitudes, main surrounding environments, main sizes of observed objects and angles between the168

aerial vehicle and the scene, as well as the presence or not of sky. We consider these characteristics169

favor the construction of a representative dataset of typical UAV videos, as suggested in [11].170

We have examined the following UAV datasets: UCF’s dataset1, VIRAT [50], MRP [51], the171

privacy-based mini-drones dataset [52], the aerial videos dataset described in [53], UAV123 [54],172

1 http://crcv.ucf.edu/data/UCF_Aerial_Action.php

http://crcv.ucf.edu/data/UCF_Aerial_Action.php
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Dataset Native resolution Proportion of content seen Videos number Frames number Duration
per degree of visual angle (%) (30 fps) (sec)

VIRAT [50] 720 x 480 1,19 12 17851 595,03
UAV123 [54] 1280 x 720 0,44 22 20758 691,93
DTB70 [56] 1280 x 720 0,44 9 3632 121,07
Overall 43 42241 1408,03 (23:28 min)

Table 1. Stimuli original datasets.

Number of frames Duration (MM:SS)
VIRAT UAV123 DTB70 Overall VIRAT UAV123 DTB70 Overall

Total 17851 20758 3632 42241 09:55 11:32 02:01 23:28
Average 1488 944 404 982 00:50 00:31 00:13 00:33
Standard Deviation 847 615 177 727 00:28 00:21 00:06 00:24
Minimum 120 199 218 120 00:04 00:07 00:07 00:04
Maximum 3178 2629 626 3178 01:46 01:28 00:21 01:46

Table 2. Basic statistics on selected videos.

DTB70 [56], Okutama-Action [57], VisDrone [63], CARPK [58], SEAGULL [59], DroneFace [60], and173

the aerial video dataset described in [55]). A total of 43 videos (RGB, 30 fps, 1280x720 or 720x480)174

have been selected from databases VIRAT, UAV123 and DTB70. These three databases are exhibiting175

different contents for various applications, which makes the final selection representative of the UAV176

ecosystem. We present below the main characteristics of the three selected datasets:177

• UAV123 includes challenging UAV content annotated for object tracking. We restrict the content178

selection to the first set, which includes 103 sequences (1280x720 and 30 fps) captured by an179

off-the-shelf professional-grade UAV (DJI S1000) tracking various objects in a range of altitudes180

comprised between 5-25 meters. Sequences include a large variety of environments (e.g. urban181

landscapes, roads, and marina), objects (e.g. cars, boats, and persons) and activities (e.g. walking,182

biking, and swimming) as well as present many challenges for object tracking (e.g. long- and183

short-term occlusions, illumination variations, viewpoint change, background clutter, and camera184

motion).185

• Aerial videos in the VIRAT dataset were manually selected (for smooth camera motion and186

good weather conditions) from rushes of a total amount of 4 hours in outdoor areas with broad187

coverage of realistic scenarios for real-world surveillance. Content includes "single person",188

"person and vehicle", and "person and facility" events, with changes in viewpoints, illumination,189

and visibility. The dataset comes with annotations of moving object tracks and event examples190

in sequences. The main advantage of VIRAT videos is its perfect fit for military applications. It191

covers fundamental environment contexts (events), conditions (rather poor quality and weather192

condition impairments), and imagery (RGB and IR). We decided to keep the original resolution193

of videos (720x480) to prevent the introduction of unrelated artifacts.194

• The 70 videos (RGB, 1280x720 and 30 fps) from DTB70 dataset are manually annotated with195

bounding boxes for tracked objects. Sequences were shot with a DJI Phantom 2 Vision+ drone or196

were collected from YouTube to add diversity in environments and target types (mostly humans,197

animals, and rigid objects). There is also a variety of camera movements (both translation and198

rotation), short- and long-term occlusions, and target deformability.199

Table 1 reports for each database the number of sequences selected, their native resolution, duration200

and frame number. Table 2 presents basic statistics of the database in terms of number of frames and201

duration.202

3.2. Content Diversity203

Figure 1 presents the diversity of selected UAV sequences by illustrating the first frame of every204

content. Visual stimuli cover a variety of visual scenes in different environments (e.g. public and205
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military environments, roads, buildings, sports, and port areas, etc.) and different moving or fixed206

objects (e.g. people, groups of people, cars, boats, bikes, motorbikes, etc.). Selected videos were207

captured from various flight heights and different angles between the UAV and the ground (allowing208

or not the presence of sky during their observation). Also, three sequences, extracted from the VIRAT209

dataset, were captured by IR cameras. Additionally, we considered various video duration as the210

length of the video may possibly impact the behavior of observers due to fatigue, resulting in a lack of211

attention and more blinking artifacts [10,64].212

To quantitatively show the diversity of selected videos, we have computed temporal and spatial213

complexity [65], named TI (∈ [0,+∞[) and SI (∈ [0,+∞[), respectively. These features are commonly used214

in image quality domain for describing the properties of selected images. They characterize the215

maximum standard deviation of spatial and temporal discrepancies over the entire sequence. The216

higher a measure is, the more complex is the content. TI and SI are reported per sequence in Table 3.217

The range of temporal complexity in sequences is broad, displaying the variety of movements present218

in sequences. Spatial measures are more homogeneous. Indeed, the spatial complexity is due to219

the bird point of view of the sensor. The aircraft high up position offers access to a large amount of220

information. Table 3 reports a number of information for all selected sequences.221

Basketball Girl1 Girl2 ManRunning1 ManRunning2 Soccer1 Soccer2

StreetBasketball1 Walking bike2 bike3 building1 building2 building3

building4 car1 car11 car12 car13 car14 car15

car2 car3 car4 car7 car9 person22 truck2

truck3 truck4 wakeboard8 flight2tape1_3_crop1 flight2tape1_3_crop2 flight2tape1_3_crop3 flight2tape1_5_crop1

flight2tape1_5_crop2 flight2tape2_1_crop1 flight2tape2_1_crop2 flight2tape2_1_crop3 flight2tape2_1_crop4 flight2tape3_3_crop1 flight1tape1_1_crop1 flight1tape1_1_crop2

Figure 1. EyeTrackUAV2 dataset: first frame of each sequence.
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ID Video Dataset Number of frames Start frame End frame Duration SI TI Altitude Environment Object size Horizontal line Main angle
(msec) (sea, sky)

1 09152008flight2tape1_3 (crop 1)

VIRAT

120 1 120 4000 0,455 32 High Urban military - IR Small False Oblique
2 09152008flight2tape1_3 (crop 2) 367 137 503 12234 0,474 35 High Urban military - IR Small False Oblique
3 09152008flight2tape1_3 (crop 3) 3178 4735 7912 105934 0,452 43 Intermediate Urban military Medium, Small False Oblique
4 09152008flight2tape1_5 (crop 1) 972 218 1189 32400 0,467 37 Intermediate Urban military Medium, Small False Oblique
5 09152008flight2tape1_5 (crop 2) 1715 4555 6269 57167 0,461 45 Intermediate Urban military Medium, Small False Oblique
6 09152008flight2tape2_1 (crop 1) 1321 1 1321 44034 0,484 40 Intermediate, Low Urban military Medium, Big False Oblique
7 09152008flight2tape2_1 (crop 2) 1754 2587 4340 58467 0,484 41 High Roads rural - IR Small False Oblique
8 09152008flight2tape2_1 (crop 3) 951 4366 5316 31700 0,482 33 Intermediate Urban military Medium, Big False Oblique
9 09152008flight2tape2_1 (crop 4) 1671 6482 8152 55700 0,452 32 High Roads rural Medium False Oblique, Vertical

10 09152008flight2tape3_3 (crop 1) 2492 3067 5558 83067 0,474 42 Intermediate Urban military Small False Oblique
11 09162008flight1tape1_1 (crop 1) 1894 1097 2990 63134 0,448 39 Low Urban military, Roads rural Medium, Small False Oblique
12 09162008flight1tape1_1 (crop 2) 1416 4306 5721 47200 0,477 29 Intermediate, High Urban military Small False Oblique
13 bike2

UAV123

553 1 553 18434 0,468 22 Intermediate Urban, building Small, Very small True Horizontal
14 bike3 433 1 433 14434 0,462 19 Intermediate Urban, building Small True Horizontal
15 building1 469 1 469 15634 0,454 12 Intermediate Urban, building Very Small True Horizontal
16 building2 577 1 577 19234 0,471 37 Intermediate Urban, building Medium, Small True Horizontal
17 building3 829 1 829 27634 0,451 27 High Urban in desert Small True Horizontal
18 building4 787 1 787 26234 0,464 29 High, Intermediate Urban in desert None True, False Horizontal, Oblique
19 car1 2629 1 2629 87634 0,471 59 Low, Intermediate Road rural Big, Medium True Oblique
20 car11 337 1 337 11234 0,467 31 High Suburban Small True, False Horizontal, Oblique
21 car12 499 1 499 16634 0,467 39 Low Road urban, sea Medium, Small True Horizontal
22 car13 415 1 415 13834 0,461 26 High Urban Very very small False Oblique, Vertical
23 car14 1327 1 1327 44234 0,471 25 Low Road suburban Medium False Oblique
24 car15 469 1 469 15634 0,471 18 Intermediate Road towards urban Small, Very small True Oblique
25 car2 1321 1 1321 44034 0,464 24 Intermediate Road rural Medium False Oblique, Vertical
26 car3 1717 1 1717 57234 0,467 27 Intermediate Road rural Medium False Oblique, Vertical
27 car4 1345 1 1345 44834 0,462 23 Intermediate, Low Road rural Big False Oblique, Vertical
28 car7 1033 1 1033 34434 0,464 18 Intermediate Road suburban Medium False Oblique
29 car9 1879 1 1879 62634 0,470 23 Intermediate, Low Road suburban Medium False, True Oblique, Horizontal
30 person22 199 1 199 6634 0,456 31 Low Urban sea Medium, Big True Horizontal
31 truck2 601 1 601 20034 0,453 24 High Urban road Small True Horizontal
32 truck3 535 1 535 17834 0,472 18 Intermediate Road towards urban Small, Very small True Oblique
33 truck4 1261 1 1261 42034 0,466 17 Intermediate Road towards urban Small True Oblique, Horizontal
34 wakeboard8 1543 1 1543 51434 0,472 39 Low Sea urban Medium, Big True, False Oblique, Vertical, Horizontal
35 Basketball

DTB70

427 1 427 14234 0,477 48 Intermediate Field suburban Medium True Oblique
36 Girl1 218 1 218 7267 0,481 31 Low Field suburban Big True Horizontal
37 Girl2 626 1 626 20867 0,482 30 Low Field suburban Big True Horizontal
38 ManRunning1 619 1 619 20634 0,483 23 Low Field suburban Big True Horizontal, Oblique
39 ManRunning2 260 1 260 8667 0,484 27 Low Field suburban Very big False Vertical, Oblique
40 Soccer1 613 1 613 20434 0,476 57 Low, Intermediate Field suburban Very big, Big True Horizontal
41 Soccer2 233 1 233 7767 0,475 24 High Field suburban Small True Oblique
42 StreetBasketball1 241 1 241 8034 0,379 37 Low Field urban Big True, False Oblique, Vertical
43 Walking 395 1 395 13167 0,476 31 Low Field suburban Big, Very big True Oblique

Average 982 33 sec 0,47 31,27
Standard deviation 727 24 sec 0,02 10,32

Overall 42241 1408 sec

Table 3. Stimuli ID and name, their original dataset, number of frames together with starting and ending frame number, duration and native resolution.
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3.3. Experimental design222

To record the gaze deployment of subjects while viewing UAV video sequences displayed223

onscreen, it is required to define an experimental methodology. All the details are presented below.224

3.3.1. Eye-tracking apparatus225

A specific setup is designed to capture eye-tracking information on video stimuli. It includes a226

rendering monitor, an eye-tracking system, a control operating system, and a controlled laboratory test227

room. Figure 2 illustrates the experimental setup used during the collection of gaze information. We228

can observe the arrangement of all the systems described below.229

Figure 2. Experiment setup.

To run the experiment and collect gaze information, we used the EyeLink R© 1000 Plus eye-tracking230

system 2, in the head free-to-move remote mode, taking advantage of its embedded 25mm camera lens.231

The eye tracker principle is to detect and record the IR illuminator reflection rays on the observer’s232

pupil [64]. This system enables the collection of highly precise gaze data at a temporal frequency of233

1000 Hz and a spatial accuracy between the visual angle range of 0.25 and 0.50 degree, according to234

the manufacturer. The eye tracker’s camera was configured for each subject, without affecting the235

corresponding distance between them. This configuration guarantees to achieve an optimal detection236

of the observer’s eyes and head sticker.237

The experimental monitor which displayed stimuli was a 23.8 inches (52.70 x 29.65 cm) DELL238

P2417H computer monitor display 3 with full HD resolution (1920x1080) at 60 Hz and with a response239

time of 6 ms. As suggested by both the International Telecommunication Union (ITU)-Broadcasting240

service (Television) (BT).710 [66] and manufacturer, observers sited in distance of about 3H (1m ±241

10cm) from the monitor, where H corresponds to the stimuli display height so that observers have an242

assumed spatial visual angle acuity of one degree. Moreover, the eye tracker camera was placed 43 cm243

away from the experimental display, and thus about 67 cm from participants. Based on this setting,244

there are 64 pixels per degree of visual angle in each dimension, and the display resolution is about245

30x17 visual degrees.246

Regarding software, the MPC-HC video player 4, considered as one of the most lightweight247

open-source video players, rendered the experimental video stimuli. Also, we took advantage of the248

Eyelink toolbox [67] as it is part of the third version of Psychophysics Toolbox Psychtoolbox-3 (PTB-3)249

5 and added in-house communication processes 6 for sync between control and display systems. The250

control system consists of an additional computer, used by the experimenter to configure and control251

the eye-tracking system with an Ethernet connection.252

2 https://www.sr-research.com/eyelink-1000-plus/
3 https://www.dell.com/cd/business/p/dell-p2417h-monitor/pd
4 https://mpc-hc.org/
5 http://psychtoolbox.org/
6 LS2N, University of Nantes

https://www.sr-research.com/eyelink-1000-plus/
https://www.dell.com/cd/business/p/dell-p2417h-monitor/pd
https://mpc-hc.org/
http://psychtoolbox.org/


Version December 13, 2019 submitted to Drones 9 of 24

Eventually, eye-tracking tests were performed in a room with controlled constant light conditions.253

The performed calibration set the constant ambient light conditions at approximately 36.5 cd/m2, i.e.254

15% of the maximum stimuli monitor brightness - 249 cm/m2 - as recommended by the ITU-BT.500 [68],255

with the i1 Display Pro X-Rite R© system.256

3.3.2. Stimuli presentation257

The random presentation of stimuli in their native resolution centered on the screen prevents258

ordering, resizing, and locating biases. Knowing that the monitor resolution is higher than that of259

selected sequences, video stimuli were padded with mid-grey. Additionally, to avoid possible biases in260

gaze allocation, a 2-second sequence of mid-gray frames was presented before playing a test sequence.261

Please note that the amount of original information contained in a degree of visual angle is not the262

same for VIRAT sequences than for other database content, as specified in Table 1.263

Before starting the experiment, a training session is organized to get the subject familiar with the264

experiment design. It includes a calibration procedure and its validation followed by the visualization265

of one video. This UAV video is the sequence car4 from the DTB70 dataset. To avoid any memory bias,266

this sequence is not included in test stimuli. Once subjects completed the training session, they could267

ask questions to experimenters before taking part into test sessions.268

Regarding test sessions, they start with calibration and its validation. Follows then the269

visualization of 9 videos during which subjects do or do not perform a task. To ensure the optimal270

quality of the collected gaze data, each participant took part in five test sessions. Splitting the271

experiment into sessions decreases the tiredness and lack of attention in observers. Also, this design272

enables frequent calibration so that recordings do not suffer from the decrease of accuracy in gaze273

recordings with time [64].274

With regards to calibration, the eye-tracking system is calibrated for each participant. The275

calibration reaches validation when the overall deviation of both eye positions is approximately below276

the fovea vision accuracy (e.g. a degree of visual angle [64,69]). The calibration procedure is repeated277

until validation.278

The participation of an observer in the experiment lasts about 50 minutes. It includes test279

explanations, forms signing, and taking part in the training and the five test sessions. This duration is280

acceptable regarding the number of sessions and the fatigue in subjects.281

3.3.3. Visual tasks to perform282

EyeTrackUAV2 aims to investigate two visual tasks. Indeed, we want to be able to witness visual283

attention processes triggered by top-down (or goal-directed) and bottom-up (or stimulus-driven)284

attention. Accordingly, we defined two visual tasks participants have to perform: the first condition is285

a Free Viewing (FV) task while the second relates to a surveillance-viewing Task (Task). The former286

task is rather common in eye-tracking tests [31,36,42,44,49,70]. Observers were simply asked to observe287

visual video stimuli without performing any task. For the surveillance-viewing task, participants288

were required to watch video stimuli and to push a specific button on a keyboard each time they289

observe a new - meaning not presented before - moving object (e.g. people, vehicle, bike, etc.) in290

the video. The purpose of this task is to simulate one of the basic surveillance procedures in which291

targets could be located anywhere when the visual search process was performed [71]. After reviewing292

typical surveillance systems’ abilities [72], we have decided to define our task as object detection. The293

defined object detection task is compelling in that it encompasses target-specific training (repeated294

discrimination of targets and non-targets) and visual search scanning (targets potentially located295

anywhere) [71]. The surveillance-viewing task is especially interesting for a military context, in which296

operators have to detect anomaly in drone videos.297
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3.3.4. Population298

Overall, 30 observers participated in each phase of the test. Tested population samples were299

different for these two viewing conditions. They were carefully selected to be as diverse as possible.300

For instance, they include people from more than 12 different countries, namely Algeria (3%), Brazil,301

Burundi, China, Colombia (10%), France (67 %), Gabon, Guinea, South Arabia, Spain, Tunisia, and302

Ukraine. Additionally, we achieved gender and almost eye-dominance balance in both phases tests.303

Table 4 presents the detailed population characteristics for both tasks.304

Each observer has been tested for visual acuity and color vision with Ishihara and Snellen305

tests [73,74]. Any failure to these tests motivated the dismissal of the person from the experiment.306

Before running the test, the experimenter provided subjects with written consent and information307

forms, together with oral instructions. This process made sure of the consent of participants and their308

understanding of the experiment process. It also ensures an anonymous data collection.309

310

Sample statistics FV Task Total

Participants 30 30 60
Female 16 16 32
Male 14 14 28
Average age 31,7 27,9 29,8
Std age 11,0 8,5 10,0
Min age 20 19 19
Max age 59 55 59
Left dominant eye 19 9 28
Right dominant eye 11 21 32
Participants with glasses 0 4 4

Table 4. Population characteristics.

Figure 3. Stimulus displayed in its native
resolution, and padded with mid-gray to
be centered. Colored information relates to
Equation 1.

311

3.4. Post-processing of eye-tracking data312

First, we transform collected raw signals into the pixel coordinate system of the original sequence.313

This conversion leads to what we refer to as binocular gaze data. Let us precise that the origin of314

coordinates is the top-left corner. Then, any gaze coordinates out of range are evicted, as they do not315

represent visual attention on stimuli. Once transformed and filtered, we extract fixation and saccade316

information and create gaze density maps from gaze data. The remainder of this section describes all317

post-processing functions.318

3.4.1. Raw data319

At first, coordinates of the collected binocular gaze data were transformed into the pixel coordinate
system of the visual stimulus. Additionally, we addressed the original resolution of sequences.
Coordinates outside the boundaries of the original resolution of the stimulus were filtered out as they
were not located in the video stimuli display area. The following formula presents how the collected
coordinates are transformed for both eyes: xS = bxD −

RX
D−RX

S
2 c

yS = byD −
RY

D−RY
S

2 c
(1)

where, (xS, yS) and (xD, yD) are the spatial coordinates on the stimulus and on the display, respectively.320

The operator b.c allows to keep the coordinates if the coordinates are within the frame of the stimulus.321

Otherwise, the coordinate is discarded. (RX
S , RY

S ) and (RX
D, RY

D) represent the stimulus resolution and322

the display resolution, respectively. For more clarity, Figure 3 displays the terms of the equation. Once323
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this remapping has been done for both eyes, the spatial binocular coordinates is simply given by the324

average of the spatial coordinates of left and right eyes.325

During the surveillance-viewing task, subjects pushed a button when detecting an object (never326

seen before) in the content. Triggering this button action must be included in raw data. Consequently,327

we denote in raw data a button activation (respectively no detection reaction) with the Boolean value 1328

(respectively 0). Besides, for convenience, we have extracted the positions of the observer’s dominant329

eyes and included them in raw gaze data.330

3.4.2. Fixation and saccade event detection331

To retrieve fixations from eye positions, we used the Dispersion-Threshold Identification (I-DT)332

[75] from the EyeMMV and LandRate toolboxes [76,77]. This algorithm performs “two-step” spatial333

and temporal thresholds. As exposed in [77,78], thanks to the very high precision of our eye-tracking334

equipment, we can combine the two-step spatial thresholds in one operation, as both thresholds have335

the same value. Ultimately, in our context, this algorithm conceptually implements a spatial noise336

removal filter and a temporal threshold indicating the minimum fixation duration. We have selected337

the minimum threshold values from the state of the art to ensure the performance of the fixation338

detection algorithm. Accordingly, spatial and temporal thresholds were selected to be equal to 0.7339

degree of visual angle and 80 ms [79], respectively. Finally, saccade events were calculated based on the340

computed fixations considering that a saccade corresponds to eye movements between two successive341

fixation points. When considering raw data of the dominant eye, I-DT exhibits a total number of342

fixations of 1 239 157 in FV and 1 269 433 in Task.343

3.4.3. Human saliency maps344

Saliency maps are a 2D topographic representation indicating the ability of an area to attract345

observers’ attention. It is common to represent the salience of an image thanks to either its saliency map346

or by its colored representation, called heatmap. Saliency maps are usually computed by convolving347

the fixation map, gathering observers’ fixations, with a Gaussian kernel representing the foveal part of348

our retina. More details can be found in [70]. In our context, we did not compute convolved fixation349

maps. We took benefit from the high frequency of acquisition of the eye-tracker system to compute350

saliency maps directly from raw gaze data (in pixel coordinates). For the sake of clarity, we from now351

will refer to the generated saliency maps as gaze density maps.352

To represent salient regions of each frame, we followed the method described in [76]. We derived353

parameters from the experimental setup (e.g., a grid size of a pixel, a standard deviation of 0.5 degree354

of angle i.e. σ =32 pixels, and a kernel size of 6σ). For visualization purposes, gaze density maps355

were normalized between 0 and 255. Figure 4 presents gaze density maps obtained for both attention356

conditions in frame 100 of seven sequences. We have selected frame 100 to get free from the initial357

center-bias in video exploration occurring during the first seconds. These examples illustrate the358

sparsity of salience in videos in free viewing, while task-based attention usually presents more salient359

points, more dispersed in the content than FV, depending on the task and attention-grabbing objects.360

3.5. EyeTrackUAV2 in brief361

We have created a dataset containing binocular gaze information collected during two viewing362

conditions ( free viewing and task) over 43 UAV videos (30 fps, 1280x720 and 720x480 - 42241 frames,363

1408 seconds) observed by 30 participants per condition, leading to 1 239 157 fixations in free-viewing364

and 1 269 433 in task-viewing for dominant eyes positions. Notably, selected UAV videos show365

diversity in rendered environments, movement and size of objects, aircraft flight heights and angles to366

the ground, duration, size, and quality. This dataset overcomes the limitations of EyeTrackUAV1 in that367

it enables investigations of salience in more test sequences, on larger population samples, and for both368

free-viewing and task-based attention. Additionally, and even though they are still too few, three IR369

videos are part of visual stimuli.370
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Basketball ManRunning1 building1 car4 wakeboard8 flight2tape1_3_crop1 flight2tape1_5_crop1

Figure 4. Frame 100 of seven sequences of EyeTrackUAV2 dataset, together with gaze density and
fixation maps generated based on gaze data of dominant eye. Results are presented for both types of
attention. The first row presents sequences hundredth frame, the second fixations for FV, the third gaze
density maps for FV, the fourth fixations for task, and the fifth gaze density maps for Task.

Fixations, saccades, and gaze density maps were computed - for both eyes in additive and371

averaged fashions (see Binocular and BothEyes scenarios described later) and for the dominant eye -372

and are publicly available with original content and raw data on our FTP 7. The code in MATLAB to373

generate all ground truth information is also made available.374

4. Analyses375

In this section, we characterize the proposed EyeTrackUAV2 database. On one hand, we compare376

salience between six ground truth generation scenarios. This study can be beneficial to the community377

to know what is the potential error made when selecting a specific ground truth scenario over another.378

On the other hand, UAV videos induce new visual experiences. Consequently, observers exhibit379

different behaviors towards this type of stimuli. Therefore, we investigate whether the center bias, one380

of the main viewing tendencies [27], still applies to EyeTrackUAV2 content.381

4.1. Six different ground truths382

The first question we address concerns the method used to determine the ground truth. In a383

number of papers, researchers use the ocular dominance theory in order to generate the ground truth.384

This theory relies on the fact that the human visual system favors the input of one eye over the other385

should binocular images be too disparate on the retinas. However, the cyclopean theory gains more386

and more momentum [80,81]. It alleges that vision processes approximate a central point between387

two eyes, from which an object is perceived. Furthermore, lately, manufacturers achieved major388

improvements in eye-tracking systems. They are now able to record and calibrate the positions of389

both eyes separately. This allows for exploring what are the best practices to create salience ground390

truth [80–82].391

7 ftp://dissocie@ftp.ivc.polytech.univ-nantes.fr/EyeTrackUAV2/

ftp://dissocie@ftp.ivc.polytech.univ-nantes.fr/EyeTrackUAV2/
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When examining the mean of absolute error between eye positions of all scenarios, we have found392

a maximum value of about 0.6 degrees of visual angle. That value is rather small compared to the393

Gaussian kernel convolved on eye positions. Thus, we question whether selecting a ground truth394

scenario over another makes a significant difference for saliency studies. Consequently, we compare395

gaze density maps generated for the six scenarios defined below.396

We propose to evaluate the potential errors made when different methods for creating the ground397

truth are used. Note that the true position of the user gaze is not available. Accordingly, we need to run398

a cross-comparison between several well-selected and representative ground truths. Scenarios highly399

similar to all others are the ones that will make fewer errors. In such a context, the more scenarios are400

included, the more complete and reliable the study is.401

We tested six methods, namely Left (L), Right (R), Binocular (B), Dominant (D), non Dominant402

(nD), and Both Eyes (BE). B corresponds to the average position between the left and right eyes and403

can be called version signal (see Equation 2). BE includes the positions of both L and R eyes, and404

hence comprises twice more information than other scenarios (see Equation 3). nD has been added to405

estimate the gain made when using dominant eye information. The two visual attention conditions406

Free Viewing (FV) and surveillance-viewing Task (Task) were examined in this study. Illustrations of407

scenarios gaze density maps and fixations as well as methods comparisons are presented in Figure 5.408

Below is presented the quantitative evaluation.409 {
xB = b xL+xR

2 c
yB = b yL+yR

2 c
(2)

{
xBE = xL ∪ xR
yBE = yL ∪ yR

(3)410

Left Dominant Both Eyes

Right NonDominant Binocular

L - R - BE D - nD - BE B - L+R - BE

Figure 5. Qualitative comparison of gaze density maps for all scenarios on Basketball, frame 401. gaze
density and fixations are displayed in transparency over the content. The last row compares scenarios:
first scenario is attributed to the red channel, the second to green and the last to blue. When fully
overlapping, the pixel turns white.

We ran a cross-comparison on six well-used saliency metrics: Correlation Coefficient (CC) (∈ [−1, 1]),411

Similarity (SIM) (∈ [0, 1]) the intersection between histograms of saliency, AUC Judd and Borji (∈ [0, 1]),412

NSS (∈ ]−∞,+∞[), and IG (∈ [0,+∞[), which measures on average the gain in information contained in the413

saliency map compared to a prior baseline (∈ [0,+∞[). We did not report Kullback Leibler divergence (KL)414

(∈ [0,+∞[) as we favored symmetric metrics. Moreover, even though symmetric in absolute value, IG415
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FV Task
CC ↑ SIM ↑ IG ↓ CC ↑ SIM ↑ IG ↓

SM1 SM2 SM1-Fix1-SM2 SM2-Fix2-SM1 SM1-Fix1-SM2 SM2-Fix2-SM1

Binocular Dominant 0,94 0,83 0,377 0,300 0,952 0,850 0,276 0,148
Binocular EyeNonDom 0,95 0,84 0,370 0,301 0,952 0,849 0,283 0,163
Binocular Left 0,94 0,83 0,371 0,301 0,948 0,843 0,264 0,192
Binocular Right 0,94 0,83 0,390 0,324 0,944 0,838 0,304 0,152
Binocular BothEyes 0,98 0,90 0,246 0,139 0,983 0,916 0,177 0,012
Dominant BothEyes 0,96 0,87 0,158 0,374 0,967 0,873 0,143 0,248
EyeNonDom BothEyes 0,97 0,87 0,167 0,394 0,966 0,872 0,144 0,228
Left BothEyes 0,96 0,86 0,166 0,387 0,960 0,861 0,174 0,232
Right BothEyes 0,96 0,86 0,181 0,416 0,960 0,862 0,147 0,279
Dominant EyeNonDom 0,87 0,74 1,115 1,069 0,873 0,747 0,743 0,781
Dominant Left 0,95 0,88 0,341 0,339 0,903 0,792 0,520 0,582
Dominant Right 0,91 0,79 0,810 0,757 0,957 0,884 0,256 0,233
EyeNonDom Right 0,96 0,88 0,346 0,342 0,902 0,793 0,587 0,519
Left EyeNonDom 0,91 0,79 0,792 0,754 0,957 0,884 0,256 0,231
Left Right 0,85 0,72 1,176 1,121 0,850 0,725 0,877 0,782

Mean 0,937 0,832 0,467 0,488 0,938 0,839 0,343 0,319
Std 0,037 0,052 0,340 0,295 0,038 0,053 0,230 0,234

Table 5. CC, SIM and IG results for scenarios cross-comparison. Red indicates the best scores, blue the
least.

FV Task
F-value p-value F-value p-value

p < 0.05
CC F(14,630) = 77.72 5e-127 F(14,630) = 172.55 9e-205
SIM F(14,630) = 200.07 5e-221 F(14,630) = 309.43 2e-271
IG F(14,630) = 158.96 5e-196 F(14,630) = 156.16 4e-194

p > 0.05
AUCJ F(14,630) = 0.36 0.9857 F(14,630) = 0.4 0.9742
AUCB F(14,630) = 0.22 0.9989 F(14,630) = 0.05 1
NSS F(14,630) = 0.95 0.5036 F(14,630) = 0.92 0.5344

Table 6. ANOVA analysis.

provides different scores depending on fixations under consideration. We thus compared scenarios416

for fixations of both methods, which leads to two IG measures. More details on metrics and metrics417

behaviors are given in [35,70,83]. Table 5 presents the results of measures when comparing gaze418

density maps of two scenarios.419

Here are some insights extracted from the results:420

• There is a high similarity between scenario gaze density maps. As expected, scores are pretty421

high (respectively low for IG), which indicates the high similarity between scenarios.422

• All metrics show the best results for comparisons including Binocular and BothEyes scenarios,423

the highest being the Binocular-BothEyes comparison.424

• Left-Right and Dominant-NonDominant comparisons achieve worst results.425

• It is possible to know the population main dominant eye through scenarios comparisons (not426

including two eyes information). When describing the population, we have seen that a majority427

of left-dominant-eye subjects participated in the FV test, while the reverse happened for the Task428

experiment. This fact is noticeable in metric scores.429

To verify whether scenarios present statistically significant differences, we have conducted an430

ANalysis Of VAriance (ANOVA) on the scores obtained by the metrics. ANOVA results are presented431

in Table 6. All metrics show statistically different results (p < 0.05) except for AUC Borji, AUC Judd,432

and NSS. It shows that, with regard to these three metrics, using a scenario over another makes no433

significant difference. This also explains why we did not report AUC and NNS results in Table 5. We434

explore further the other metrics, namely CC, SIM, and IG, through multi-comparison analyses.435

Results are presented in Figure 6. On the charts, we can see where stands mean and standard436

deviation of metric scores for each scenario over the entire dataset. Scenarios having non-overlapping437

confidence intervals are statistically different. This study has been conducted on four metrics, namely438
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CC, SIM and the two variants of IG. Results confirm the previously mentioned insights. Moreover, a439

statistical difference is observed between Left-Right and Dominant-NonDominant comparisons under440

the task condition.441

Overall, over six metrics, three do not find significant differences between the scenarios’ gaze442

density maps. The four others do and indicate that using both eye information can be encouraged.443

Then, if not possible, eye-dominance-based signals may be favored over left and right eye scenarios, in444

particular under task-based attention. We stress out that overall, the difference between scenarios is445

rather small, as three metrics could not differentiate them.446

Correlation FV SIM FV IG SM2-Fix2-SM1 FV

Correlation Task SIM Task IG SM2-Fix2-SM1 Task

IG SM1-Fix1-SM2 FV IG SM1-Fix1-SM2 Task

Figure 6. Muti-comparison on scenarios correlation measure.

4.2. Biases in UAV videos447

4.2.1. Qualitative evaluation of biases in UAV videos448

The importance of the center bias in visual saliency for conventional imaging has been shown449

in Section 2. We wondered whether the center bias is systematically present in UAV content. This450

section aims to shed light on this question. We evaluate the viewing tendencies of observers thanks to451

the average gaze density map, computed over the entire sequence. It is representative of the average452

position of gaze throughout the video. It is used to observe potential overall biases, as it could be the453

case with the center bias. Figures 7 and 8 show the average gaze density map for all sequences of454



Version December 13, 2019 submitted to Drones 16 of 24

Basketball Girl1 Girl2 ManRunning1 ManRunning2 Soccer1 Soccer2

StreetBasketball1 Walking bike2 bike3 building1 building2 building3

building4 car11 car12 car13 car14 car15 car1

car2 car3 car4 car7 car9 person22 truck2

truck3 truck4 wakeboard8 flight2tape1_3_crop1 flight2tape1_3_crop2 flight2tape1_3_crop3 flight2tape1_5_crop1

flight2tape1_5_crop2 flight2tape2_1_crop1 flight2tape2_1_crop2 flight2tape2_1_crop3 flight2tape2_1_crop4 flight1tape1_1_crop2 flight2tape3_3_crop1 flight1tape1_1_crop1

Figure 7. Average gaze density maps for all sequences of EyeTrackUAV2 dataset, generated from D
scenario, for the free-viewing condition.

EyeTrackUAV2 dataset, generated from D scenario, for both free-viewing and task-viewing conditions.455

Several observations can be made.456

Content-dependent center bias. We verify here the content-dependence of the center bias in457

UAV videos. For both attention conditions, the scene environment and movements exacerbates or not458

UAV biases. For instance, in sequences car 2-9 (fourth row), the aircraft is following cars on a road.459

Associated average gaze density maps display the shape of the road and its direction, i.e. vertical460

route for all and roundabout for car7. Car 14 (third row), a semantically similar content except that it461

displays only one object on the road with a constant reframing (camera movement) which keeps the462

car at the same location, presents an average gaze density map centered on the tracked object.463

Original database-specific center bias. We can observe that a center bias is present in VIRAT464

sequences, while videos from other datasets, namely UAV123 and DTB70, do not present this bias465

systematically. The original resolution of content and the experimental setup are possibly the sources466

of this result. Indeed, the proportion of content seen at once is not the same for all sequences: 1,19%467

of a VIRAT content is seen per degree of visual angle, whereas it is 0,44% for the two other original468

databases. VIRAT gaze density maps are thus smoother, which results in higher chances to present a469

center bias. To verify this assumption based on qualitative assessment, we have computed the overall470

gaze density maps for sequences coming from each original dataset, namely DTB70, UAV123 and471

VIRAT. These maps are shown in Figure 9. VIRAT gaze density maps are much more concentrated and472

centered. This corroborates that biases can be original-database-specific.473

Task-related gaze density maps seem more spread out. Task-based gaze density maps cover474

more content when compared to free-viewing condition for most sequences (e.g. in about 58% of475
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Basketball Girl1 Girl2 ManRunning1 ManRunning2 Soccer1 Soccer2

StreetBasketball1 Walking bike2 bike3 building1 building2 building3

building4 car11 car12 car13 car14 car15 car1

car2 car3 car4 car7 car9 person22 truck2

truck3 truck4 wakeboard8 flight2tape1_3_crop1 flight2tape1_3_crop2 flight2tape1_3_crop3 flight2tape1_5_crop1

flight2tape1_5_crop2 flight2tape2_1_crop1 flight2tape2_1_crop2 flight2tape2_1_crop3 flight2tape2_1_crop4 flight1tape1_1_crop2 flight2tape3_3_crop1 flight1tape1_1_crop1

Figure 8. Average gaze density maps for all sequences of EyeTrackUAV2 dataset, generated from D
scenario, for the task-viewing condition.

videos such as Basketball, car11, car2, and wakeboard). This behavior is also illustrated in Figure 9. We476

correlate this response with the object detection task. Visual search scanning implies an extensive477

exploration of the content. However, 21% of the remaining sequences (i.e. soccer1, bike2-3, building478

1-2, car1,15, and truck3-4) show less discrepancies in the task-viewing condition than in free-viewing479

condition. We do not find correlation between such behavior and sequences characteristics given in480

Table 3. This leaves room for further exploration of differences between task-based and free viewing481

attention.482

Overall, there is no generalization of center bias for UAV content. As stated earlier, we do not483

observe a systematic center bias, except for VIRAT sequences. This is especially true for task-related484

viewing. However, we observe specific patterns. Indeed, vertical and horizontal potatoe-shaped485

salient areas are quite present in average gaze density maps of EyeTrackUAV2. Such patterns are also486

visible in UAV2 and DTB70 overall gaze density maps, especially in task-viewing condition. This487

indicates future axes of developments for UAV saliency-based applications. For instance, instead of488

using a center bias, one may introduce priors as a set of prevalent saliency area shapes with different489

directions and sizes [84].490

4.2.2. Quantitative evaluation of the central bias in UAV videos491

To go further into content-dependencies, we investigate quantitatively the similarity of492

dominant-eye-generated gaze density maps with a pre-defined center bias. Figure 10 presents the493

center bias baseline created in this purpose as suggested in [34,35] .494
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(a) (b) (c)

Figure 9. Overall average gaze density maps per original dataset, generated from D scenario, in
free-viewing (top-row) and Task-viewing (bottom row) for original datasets: (a) DTB70; (b) UAV123; (c)
VIRAT.

Figure 10. Center prior baseline.

We performed the evaluation based on four well-used saliency metrics: CC, SIM, KL, and IG.495

Results are presented in Table 7. They support the observations we made in the previous section.496

Overall scores do not reveal a high similarity with the center prior (e.g. maximum CC and SIM of497

about 0.5, high KL and IG). On the other hand, we observe content-specific center prior in UAV123498

and DTB70. For instance, videos more prone to center bias includes sequences extracted from VIRAT499

and building1,3,4, and car13. On the contrary, sequences Girl1-2, ManRunning1-2, Walking, car4, and500

wakeboard8 are not likely to present center bias. This confirms there is no generalization of center bias501

for UAV content. Regarding differences between free-viewing and task-viewing conditions, results are502

inconclusive as no systematic behavior is clearly visible from this analysis.503

5. Conclusion504

UAV imaging modifies the perceptual clues of typical scenes due to its bird point of view, the505

presence of camera movements and the high distance and angle to the scene. For instance, low-level506

visual features, and size of objects change and depth information is flattened or disappears (e.g.507

presence of sky). To understand observers’ behaviors toward these new features, especially in terms of508

visual attention and deployment, there is a need for large-scale eye-tracking databases for saliency in509

UAV videos. This dataset is also a key factor in the field of computational models of visual attention,510

in which large scale datasets are required to train the latest generation of deep-based models.511

This need is even stronger with the fast expansion of applications related to UAVs, for leisure and512

professional civilian activities and a wide range of military services. Combining UAV imagery with513

one of the most dynamic research fields in vision, namely salience, is highly promising, especially for514

videos that are gaining more and more attention these last years.515

This work addresses the need for such a dedicated dataset. An experimental process has516

been designed in order to build a new dataset, EyeTrackUAV2. Gaze data were collected during517

the observation of UAV videos under controlled laboratory conditions for both free viewing and518
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FV Task
CC ↑ SIM ↑ KL ↓ IG ↓ CC ↑ SIM ↑ KL ↓ IG ↓

VIRAT_09152008flight2tape1_3_crop1 0,50 0,48 7,17 1,53 0,46 0,48 6,85 1,62
VIRAT_09152008flight2tape1_3_crop2 0,49 0,52 5,59 1,50 0,36 0,48 6,42 1,75
VIRAT_09152008flight2tape1_3_crop3 0,46 0,43 8,46 1,91 0,37 0,43 7,98 1,99
VIRAT_09152008flight2tape1_5_crop1 0,27 0,38 9,77 2,29 0,18 0,36 10,14 2,49
VIRAT_09152008flight2tape1_5_crop2 0,42 0,44 8,05 1,90 0,30 0,45 7,41 1,87
VIRAT_09152008flight2tape2_1_crop1 0,41 0,39 9,34 2,05 0,38 0,42 8,55 1,97
VIRAT_09152008flight2tape2_1_crop2 0,40 0,35 10,90 2,50 0,32 0,42 8,01 2,01
VIRAT_09152008flight2tape2_1_crop3 0,42 0,40 9,46 2,11 0,28 0,39 9,30 2,24
VIRAT_09152008flight2tape2_1_crop4 0,36 0,36 10,35 2,34 0,28 0,38 9,79 2,30
VIRAT_09152008flight2tape3_3_crop1 0,42 0,43 8,16 1,96 0,35 0,43 7,84 2,03
VIRAT_09162008flight1tape1_1_crop1 0,47 0,45 7,76 1,80 0,37 0,42 8,40 2,00
VIRAT_09162008flight1tape1_1_crop2 0,40 0,40 9,14 2,14 0,27 0,40 8,91 2,22
UAV123_bike2 0,39 0,34 11,51 2,43 0,34 0,29 13,21 2,82
UAV123_bike3 0,39 0,34 11,71 2,37 0,29 0,26 14,34 2,96
UAV123_building1 0,40 0,37 10,64 2,18 0,32 0,31 12,74 2,69
UAV123_building2 0,30 0,33 11,89 2,43 0,18 0,27 13,87 3,06
UAV123_building3 0,27 0,34 11,50 2,42 0,17 0,32 11,82 2,56
UAV123_building4 0,39 0,36 10,82 2,20 0,35 0,39 9,72 2,10
UAV123_car11 0,37 0,32 12,37 2,58 0,21 0,30 12,68 2,67
UAV123_car12 0,21 0,28 13,35 2,80 0,26 0,29 13,12 2,69
UAV123_car13 0,30 0,34 11,48 2,39 0,20 0,33 11,50 2,44
UAV123_car14 0,20 0,25 14,47 3,16 0,12 0,31 12,28 2,71
UAV123_car15 0,31 0,34 11,52 2,47 0,10 0,30 12,70 2,81
UAV123_car1 0,21 0,26 14,33 3,10 0,13 0,30 12,61 2,77
UAV123_car2 0,22 0,27 13,91 3,02 0,13 0,30 12,68 2,80
UAV123_car3 0,16 0,24 14,77 3,19 0,14 0,28 13,39 2,93
UAV123_car4 0,22 0,20 16,27 3,55 0,20 0,24 14,76 3,23
UAV123_car7 0,22 0,23 15,11 3,16 0,11 0,28 13,13 2,92
UAV123_car9 0,26 0,23 15,41 3,27 0,21 0,28 13,69 2,86
UAV123_person22 0,35 0,31 12,44 2,60 0,27 0,31 12,45 2,68
UAV123_truck2 0,27 0,32 12,29 2,56 0,09 0,27 13,66 3,01
UAV123_truck3 0,27 0,35 11,14 2,34 0,12 0,31 12,23 2,73
UAV123_truck4 0,29 0,36 10,71 2,34 0,16 0,29 13,18 3,03
UAV123_wakeboard8 0,23 0,21 15,91 3,45 0,11 0,24 14,93 3,29
DTB70_Basketball 0,38 0,27 14,13 2,89 0,30 0,31 12,30 2,59
DTB70_Girl1 0,16 0,28 13,47 2,90 0,15 0,25 14,54 3,18
DTB70_Girl2 0,20 0,20 16,04 3,60 0,19 0,23 15,04 3,34
DTB70_ManRunning1 0,02 0,16 17,45 4,09 0,00 0,20 16,11 3,73
DTB70_ManRunning2 0,12 0,13 18,40 4,31 0,10 0,15 17,99 4,24
DTB70_Soccer1 0,21 0,26 14,23 3,04 0,17 0,26 14,03 3,18
DTB70_Soccer2 0,21 0,22 15,56 3,33 0,22 0,32 11,86 2,69
DTB70_StreetBasketball1 0,33 0,26 14,29 2,94 0,28 0,26 14,29 3,00
DTB70_Walking 0,29 0,20 16,14 3,51 0,27 0,22 15,81 3,51
mean 0,31 0,32 12,27 2,67 0,23 0,32 12,01 2,69

Table 7. Comparison of gaze density maps with the center bias presented in Figure 10. Are displayed
in red the numbers over (or under for KL and IG) measures average, indicated in the last row.
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object-detection surveillance task conditions. Gaze positions have been collected on 30 participants519

for each attention condition, on 43 UAV videos in 30 fps, 1280x720 or 720x480, consisting in 42 241520

frames and 1408 seconds. Overall, 1 239 157 fixations in free-viewing and 1 269 433 in task-viewing521

were extracted from the dominant eye positions. Test stimuli were carefully selected from three522

original datasets, i.e. UAV123, VIRAT, and DTB70, to be representative as much as possible of the UAV523

ecosystem. Accordingly, they present variations in terms of environments, camera movement, size of524

objects, aircraft flight heights and angles to the ground, video duration, resolution, and quality. Also,525

three sequences were recorded in infra-red.526

The collected gaze data were analyzed and transformed into fixation and saccade eye movements527

using an I-DT based identification algorithm. Moreover, the eye-tracking system high frequency of528

acquisition enabled the production of gaze density maps for each experimental frame of the examined529

video stimuli directly from raw data. The dataset is publicly available and includes, for instance, raw530

binocular eye positions, fixation, and gaze density maps generated from the dominant eye and both531

eyes information.532

We further characterized the dataset considering two different aspects. On one hand, six scenarios,533

namely binocular, both eyes, dominant eye, non-dominant eye, left, and right can be envisioned to534

generate gaze density maps. We wondered whether a scenario should be favored over another or535

not. Comparisons of scenarios have been conducted on six typical saliency metrics for gaze density536

maps. Overall, all scenarios are pretty similar: over the six evaluated metrics, three could not make a537

distinction between scenarios. The three last metrics present mild but statistically significant differences.538

Accordingly, the information of both eyes may be favored to study saliency. If not possible, choosing539

information from the dominant eye is encouraged. This advice is not a strict recommendation. On the540

other hand, we notice that conventional biases in saliency do not necessarily apply to UAV content.541

Indeed, the center bias is not systematic in UAV sequences. This bias is content-dependent as well as542

and task-condition-dependent. We observed new prior patterns that must be examined in the future.543

In conclusion, the EyeTrackUAV2 dataset enables in-depth studies of visual attention through the544

exploration of new salience biases and prior patterns. It establishes in addition a solid basis on which545

dynamic salience for UAV imaging can build upon, in particular for the development of deep-learning546

saliency models.547
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