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Abstract: Unmanned Aerial Vehicles (UAVs) achieved a lot of momentum through their fast and1

tremendous evolution over the last decade. A multiplication of applications results from the use2

of the UAV imagery in various fields such as military and civilian surveillance, delivery services,3

and wildlife monitoring. Combining UAV imagery with study of dynamic salience further extends4

the number of future applications. Indeed, considerations of visual attention open the door to new5

compression, retargeting, and decision-making tools. To conduct such studies, in this era of big6

data and deep learning, we identified the need for new large-scale eye-tracking datasets for visual7

salience in UAV content. To address this need, we introduce here the dataset EyeTrackUAV2 consisting8

of the collection of binocular gaze information through visualization of UAV videos for both free9

viewing and task-based attention conditions. An analysis of collected gaze positions provides10

recommendations for visual salience ground-truth generation. It also sheds light upon variations of11

saliency biases in UAV videos when opposed to conventional content, especially regarding the center12

bias.13

Keywords: Dataset, Salience, Unmanned Aerial Vehicles (UAV), Videos, Visual attention, eye tracking,14

surveillance.15

1. Introduction16

For a couple of decades now, we have witnessed the fast advances and growing use of UAVs for17

multiple critical applications. UAVs refer here to unmanned aerial vehicles, autonomous or monitored18

from remote sites. This imagery enables a broad range of applications from making vacation movies19

to drone races for mainstream civilian applications, from fire detection [1], wildlife counting [2] to20

journalism [3], precision agriculture and delivery services for professional applications, and from21

military aerial surveillance [4], drone-based warfare [5] to tracking moving targets [6], object, person22

or anomaly detection [7–9] for military applications.23

The UAV imagery proposes a new representation of visual scenes that makes all these new24

applications possible. UAV vision is dominant and hegemonic [10]. The bird point of view modifies the25

perspective, size and features of objects [11]. Also, their high autonomy in conjunction with large-field26

of view camera permit to cover large areas in limited time duration. Besides, UAV sensors can be27

multi-modal and can include RGB, thermal, Infra-Red (IR), or multi-spectral sensors. Multiplying28

imagery modalities allows overcoming possible weaknesses of RGB-only [10]. For instance, occlusions29
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may be compensated by thermal information, and the capture of IR is desired for low-luminance30

environments [12].31

UAV scene depiction is rich, comprehensive, and promising, which explains its success. But32

challenges to come are even more compelling. In [10], Edney-Browne wondered how the capacity of33

UAV capturing the external reality (visuality) is related to perceptual and cognitive vision in humans.34

Variations in UAV characteristics, such as perspective view and object size, may change viewers’35

attitudes towards content. Consequently, new visual attention processes may be triggered for this36

specific imaging. This means that studying UAV imagery in light of human visual attention not only37

opens the door to plenty of applications but also enables to gather further knowledge on perceptual38

vision and cognition.39

Visual attention occurs to filter and sort out visual clues. Indeed, it is impossible to process all40

the information one perceives. Particular consideration should be dedicated to identifying which41

attentional processes are involved as they are diverse and aim at specific behaviors. For instance, one42

must make the distinction between overt and covert attention [13]. The former refers to a direct focus43

onto where points eyes and head. The latter relates more to the peripheral vision, where attention is44

directed without eye movements towards it. In practice, when an object of interest is detected in the45

area covered by the covert attention, one may make a saccade movement to direct the eyes from the46

overt area to this position. The context of visualization is also important. For instance, we make a47

distinction between two content exploration processes [14]: (1) A no constraint examination named48

free viewing. The observer is rather free from cognitive loads and is supposed to mainly use bottom-up49

or exogenous attention processes driven by external factors, e.g. content and environment stimuli.50

(2) A task-based visualization, such as surveillance for instance. Cognitive processes such as prior51

knowledge, willful plans, and current goals guide the viewer’s attention. This is known as top-down52

or endogenous attention. A strict division is slightly inaccurate in that both top-down and bottom-up53

processes are triggered during a visual stimuli in a very intricate interaction [15]. Both processes are54

important and need to be studied through salience.55

Visual salience means to represent attention in multimedia content as a probability distribution per56

pixels [16]. Salience analyses rest on the relation of visual attention to eye movements, and these latter57

are obtained through gaze collection with eye-trackers [17]. Saliency predictions help to understand58

computational cognitive neuroscience as it reveals attention behaviors such as center bias and spatial59

and temporal inhibition of return [15]. Multiple applications derive from saliency predictions such as60

compression [18], content-aware re-targeting, object segmentation [19], and detection [20,21].61

Recently, there has been a growing interest on one particular application, which combines visual62

salience and UAV content. Information overload in the drone program and fatigue in military operators63

may have disastrous consequences for military applications [10]. New methods and approaches are64

required to detect anomaly in UAV footages and to ease the decision-making. Among them, we believe65

that computational models of visual attention could be used to simulate operators’ behaviors [22].66

Eventually, thanks to predictions, operators’ workloads can be reduced by eliminating unnecessary67

footages segments.68

To that end, it is necessary to develop new dynamic saliency models tailored to UAV content.69

The gain brought by deep-learning saliency models this last decade [18–21,23] has been more than70

significant. This improvement comes with the definition and the design of large-scale eye tracking71

datasets, from which a ground truth can be defined. However, in the context of UAV content, there are72

very few eye-tracking datasets. This is the reason why we propose and present in this paper a new73

large-scale eye-tracking dataset, freely downloadable from internet.74

The paper is organized as follows. In section 2, we first justify and elaborate on the need for75

large-scale eye-tracking databases for UAV videos. Then, we introduce the entire process of dataset76

creation in section 3. It describes the content selection, the experiment set up, and the implementation77

of fixations, saccades, and saliency maps. Section 4 presents an in-depth analysis of the dataset. The78

study is two-fold: it explores what ground truth should be used for salience studies, and brings to light79
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the fading of conventional biases in visual salience for UAV stimuli. Finally, conclusions are provided80

in section 5.81

2. Related Work82

While it is now rather easy to find eye tracking data on typical images [24–33] or videos [34–38],83

and that there are many UAV content datasets [7,39–50], it turns out to be extremely difficult to find84

eye-tracking data on UAV content. Indeed, very few works are dealing with eye-tracking data related85

to UAV content. This is even truer when we consider dynamic salience, which refers to salience for86

video content.87

To the best of our knowledge, EyeTrackUAV1 dataset released in 2018 [11] is the only public dataset88

available for studying the visual deployment over UAV video. There exist another dataset AVS1K [51].89

However, AVS1K is, to the present day, not publicly available. We thus focus here on EyeTrackUAV1,90

with the awareness that all points below but the last apply to AVS1K.91

EyeTrackUAV1 consists in 19 sequences (1280x720 and 30 frame per second (fps)) extracted from92

the UAV123 database [43]. The sequence selection relied on content characteristics, which are the93

diversity of environment, distance and angle to the scene, size of the principal object, and the presence94

of sky. Precise binocular gaze data (1000 Hz) of 14 observers were recorded under free viewing95

condition, for every content. Overall, the dataset comprises eye-tracking information on 26599 frames,96

which represents 887 seconds of video. In spite of a number of merits, this dataset presents several97

limitations for saliency prediction applications. These limitations have been listed in [23]. We briefly98

summarize them below:99

• UAV may embed multi-modal sensors during the capture of scenes. Besides conventional RGB100

cameras, to name but a few thermal, multi-spectral, and infrared cameras consist of typical UAV101

sensors. Unfortunately, EyeTrackUAV1 lacks non-natural content, which is of great interest for102

the dynamic field of salience. As already mentioned, combining content from various imagery in103

datasets is advantageous for numerous reasons. It is necessary to continue efforts toward the104

inclusion of more non-natural content in databases.105

• In general, the inclusion of more participants in the collection of human gaze is encouraged.106

Indeed, reducing variable errors by including more participants in the eye tracking experiment107

is beneficial. It is especially true in the case of videos as salience is sparse due to the short108

displaying duration of a single frame. With regards to evaluation analyses, some metrics109

measuring similarity between saliency maps consider fixation locations for saliency comparison110

(e.g. any variant of Area Under the Curve (AUC), Normalized Scanpath Saliency (NSS), and111

Information Gain (IG)). Having more fixation points is more convenient for the use of such112

metrics.113

• EyeTrackUAV1 contains eye-tracking information recorded during free viewing sessions. That114

is, no specific task was assigned to observers. Several applications, for UAV and conventional115

imaging, could benefit from the analysis and reproduction of more top-down attention, related to116

a task at hand. More specifically, for UAV content, there is a need for specialized computational117

models for person detection or anomaly detection.118

• Even though there are about 26599 frames in EyeTrackUAV, they come from "only" 19 videos.119

Consequently, this dataset just represents a snapshot of the reality. We aim to go further by120

introducing more UAV content.121

To extend and complete the previous dataset and to tackle these limitations, we have created the122

EyeTrackUAV2 dataset, introduced below.123

3. EyeTrackUAV2 dataset124

This section introduces the new dataset EyeTrackUAV2 aiming at tackling issues mentioned above.125

EyeTrackUAV2 includes more video content than its predecessor EyeTrackUAV1. It involves more126
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participants, and considers both free and task-based viewing. In the following subsections, we first127

elaborate on the selection of video content, followed by a description of the eye-tracking experiment.128

It includes the presentation of the eye-tracking apparatus, the experiment procedure and setup, and129

the characterization of population samples. Finally, we describe the generation of the human ground130

truth, i.e. algorithms for fixation and saccade detection as well as saliency map computation.131

3.1. Content selection132

Before collecting eye-tracking information, experimental stimuli were selected from multiple133

UAV video datasets. We paid specific attention to select videos suitable for both free and task-based134

viewing as experimental conditions. Also, the set of selected videos has to cover multiple UAV flight135

altitudes, main surrounding environments, main sizes of observed objects and angles between the136

aerial vehicle and the scene, as well as the presence or not of sky. We consider these characteristics137

favor the construction of a representative dataset of typical UAV videos, as suggested in [11].138

After examining a number of UAV datasets (UCF’s dataset 1, VIRAT [39], MRP [40], the139

privacy-based mini-drones dataset [41], the aerial videos dataset described in [42], UAV123 [43],140

DTB70 [45], Okutama-Action [46], VisDrone [52], CARPK [47], SEAGULL [48], DroneFace [49], and the141

aerial video dataset described in [44]), a total of 43 videos (RGB, 30 fps, 1280x720 or 720x480) have been142

selected from 3 different databases, VIRAT, UAV123 and DTB70. These three databases are exhibiting143

different content for various applications, which makes the final selection representative of the UAV144

ecosystem. Table 2 reports the number of sequences selected from each database and details their145

native resolution, duration and frame number. We present below the main characteristics of the three146

selected datasets:147

• UAV123 includes challenging UAV content annotated for object tracking. We restrict the content148

selection to the first set, which includes 103 sequences (1280x720 and 30 fps) captured by an149

off-the-shelf professional-grade UAV (DJI S1000) tracking various objects in a range of altitudes150

comprised between 5-25 meters. Sequences include a large variety of environments (e.g. urban151

landscapes, roads, and marina), objects (e.g. cars, boats, and persons) and activities (e.g. walking,152

biking, and swimming) as well as present many challenges for object tracking (e.g. long- and153

short-term occlusions, illumination variations, viewpoint change, background clutter, and camera154

motion).155

• Aerial videos in the VIRAT dataset were manually selected (for smooth camera motion and156

good weather conditions) from rushes of a total amount of 4 hours in outdoor areas with broad157

coverage of realistic scenarios for real-world surveillance. Content includes "single person",158

"person and vehicle", and "person and facility" events, with changes in viewpoints, illumination,159

and visibility. The dataset comes with annotations of moving object tracks and event examples160

in sequences. These videos (720x480 and 30 fps) exhibit quite low quality and include content161

shot in infra-red.162

• The 70 videos (RGB, 1280x720 and 30 fps) from DTB70 dataset are manually annotated with163

bounding boxes for tracked objects. Sequences were shot with a DJI Phantom 2 Vision+ drone or164

were collected from YouTube to add diversity in environments and target types (mostly humans,165

animals, and rigid objects). There is also a variety of camera movements (both translation and166

rotation), short- and long-term occlusions, and target deformability.167

Table 1 presents the sequences which have been extracted from their original datasets. Video168

characteristics such as duration, spatial and temporal complexity are also given. Native resolutions are169

provided by original dataset in Table 2.170

1 http://crcv.ucf.edu/data/UCF_Aerial_Action.php

http://crcv.ucf.edu/data/UCF_Aerial_Action.php
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ID Video Dataset Number of frames Start frame End frame Duration SI TI Altitude Environment Object size Horizontal line Main angle
(msec) (sea, sky)

1 09152008flight2tape1_3 (crop 1)

VIRAT

120 1 120 4000 0,455 32 High Urban military - IR Small False Oblique
2 09152008flight2tape1_3 (crop 2) 367 137 503 12234 0,474 35 High Urban military - IR Small False Oblique
3 09152008flight2tape1_3 (crop 3) 3178 4735 7912 105934 0,452 43 Intermediate Urban military Medium, Small False Oblique
4 09152008flight2tape1_5 (crop 1) 972 218 1189 32400 0,467 37 Intermediate Urban military Medium, Small False Oblique
5 09152008flight2tape1_5 (crop 2) 1715 4555 6269 57167 0,461 45 Intermediate Urban military Medium, Small False Oblique
6 09152008flight2tape2_1 (crop 1) 1321 1 1321 44034 0,484 40 Intermediate, Low Urban military Medium, Big False Oblique
7 09152008flight2tape2_1 (crop 2) 1754 2587 4340 58467 0,484 41 High Roads rural - IR Small False Oblique
8 09152008flight2tape2_1 (crop 3) 951 4366 5316 31700 0,482 33 Intermediate Urban military Medium, Big False Oblique
9 09152008flight2tape2_1 (crop 4) 1671 6482 8152 55700 0,452 32 High Roads rural Medium False Oblique, Vertical
10 09152008flight2tape3_3 (crop 1) 2492 3067 5558 83067 0,474 42 Intermediate Urban military Small False Oblique
11 09162008flight1tape1_1 (crop 1) 1894 1097 2990 63134 0,448 39 Low Urban military, Roads rural Medium, Small False Oblique
12 09162008flight1tape1_1 (crop 2) 1416 4306 5721 47200 0,477 29 Intermediate, High Urban military Small False Oblique
13 bike2

UAV123

553 1 553 18434 0,468 22 Intermediate Urban, building Small, Very small True Horizontal
14 bike3 433 1 433 14434 0,462 19 Intermediate Urban, building Small True Horizontal
15 building1 469 1 469 15634 0,454 12 Intermediate Urban, building Very Small True Horizontal
16 building2 577 1 577 19234 0,471 37 Intermediate Urban, building Medium, Small True Horizontal
17 building3 829 1 829 27634 0,451 27 High Urban in desert Small True Horizontal
18 building4 787 1 787 26234 0,464 29 High, Intermediate Urban in desert None True, False Horizontal, Oblique
19 car1 2629 1 2629 87634 0,471 59 Low, Intermediate Road rural Big, Medium True Oblique
20 car11 337 1 337 11234 0,467 31 High Suburban Small True, False Horizontal, Oblique
21 car12 499 1 499 16634 0,467 39 Low Road urban, sea Medium, Small True Horizontal
22 car13 415 1 415 13834 0,461 26 High Urban Very very small False Oblique, Vertical
23 car14 1327 1 1327 44234 0,471 25 Low Road suburban Medium False Oblique
24 car15 469 1 469 15634 0,471 18 Intermediate Road towards urban Small, Very small True Oblique
25 car2 1321 1 1321 44034 0,464 24 Intermediate Road rural Medium False Oblique, Vertical
26 car3 1717 1 1717 57234 0,467 27 Intermediate Road rural Medium False Oblique, Vertical
27 car4 1345 1 1345 44834 0,462 23 Intermediate, Low Road rural Big False Oblique, Vertical
28 car7 1033 1 1033 34434 0,464 18 Intermediate Road suburban Medium False Oblique
29 car9 1879 1 1879 62634 0,470 23 Intermediate, Low Road suburban Medium False, True Oblique, Horizontal
30 person22 199 1 199 6634 0,456 31 Low Urban sea Medium, Big True Horizontal
31 truck2 601 1 601 20034 0,453 24 High Urban road Small True Horizontal
32 truck3 535 1 535 17834 0,472 18 Intermediate Road towards urban Small, Very small True Oblique
33 truck4 1261 1 1261 42034 0,466 17 Intermediate Road towards urban Small True Oblique, Horizontal
34 wakeboard8 1543 1 1543 51434 0,472 39 Low Sea urban Medium, Big True, False Oblique, Vertical, Horizontal
35 Basketball

DTB70

427 1 427 14234 0,477 48 Intermediate Field suburban Medium True Oblique
36 Girl1 218 1 218 7267 0,481 31 Low Field suburban Big True Horizontal
37 Girl2 626 1 626 20867 0,482 30 Low Field suburban Big True Horizontal
38 ManRunning1 619 1 619 20634 0,483 23 Low Field suburban Big True Horizontal, Oblique
39 ManRunning2 260 1 260 8667 0,484 27 Low Field suburban Very big False Vertical, Oblique
40 Soccer1 613 1 613 20434 0,476 57 Low, Intermediate Field suburban Very big, Big True Horizontal
41 Soccer2 233 1 233 7767 0,475 24 High Field suburban Small True Oblique
42 StreetBasketball1 241 1 241 8034 0,379 37 Low Field urban Big True, False Oblique, Vertical
43 Walking 395 1 395 13167 0,476 31 Low Field suburban Big, Very big True Oblique

Table 1. Stimuli ID and name, their original dataset, number of frames together with starting and ending frame number, duration and native resolution.
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Dataset Native resolution Proportion of content seen Videos number Frames number Duration
per degree of visual angle (%) (30 fps) (sec)

VIRAT [39] 720 x 480 1,19 12 17851 595,03
UAV123 [43] 1280 x 720 0,44 22 20758 691,93
DTB70 [45] 1280 x 720 0,44 9 3632 121,07
Overall 43 42241 1408,03 (23:28 min)

Table 2. Stimuli original datasets.

Number of frames Duration (MM:SS)
VIRAT UAV123 DTB70 Overall VIRAT UAV123 DTB70 Overall

Total 17851 20758 3632 42241 09:55 11:32 02:01 23:28
Average 1488 944 404 982 00:50 00:31 00:13 00:33
Standard Deviation 847 615 177 727 00:28 00:21 00:06 00:24
Minimum 120 199 218 120 00:04 00:07 00:07 00:04
Maximum 3178 2629 626 3178 01:46 01:28 00:21 01:46

Table 3. Basic statistics on selected videos.

3.2. Content Diversity171

To present the diversity of selected UAV sequences, Figure 1 illustrates the first frame of every172

content. Visual stimuli cover a variety of visual scenes in different environments (e.g. public and173

military environments, roads, buildings, sports, and port areas, etc.) and different moving or fixed174

objects (e.g. people, groups of people, cars, boats, bikes, motorbikes, etc.). Selected videos were175

captured from various flight heights and different angles between the UAV and the ground (allowing176

or not the presence of sky during their observation). This information is reported per sequence in177

Table 1. Additionally, we considered various video duration as the length of the video may possibly178

impact the behavior of observers due to fatigue, resulting in a lack of attention and more blinking179

artifacts [10,53].180

To quantitatively show the diversity of selected videos, we have computed temporal and spatial181

complexity [54], named TI (∈ [0,+∞[) and SI (∈ [0,+∞[), respectively. These features are commonly used182

in image quality domain for characterizing the properties of selected images. They characterize the183

maximum standard deviation of spatial and temporal discrepancies over the entire sequence. The184

higher a measure is, the more complex is the content. TI and SI are reported per sequence in Table 1.185

The range of temporal complexity in sequences is broad, displaying the variety of movements present186

in sequences. Spatial measures are more homogeneous. Indeed, the spatial complexity is due to187

the bird point of view of the sensor. The aircraft high up position offers access to a large amount of188

information.189

Three sequences, extracted from the VIRAT dataset, were captured by IR cameras. As a side note,190

finding non-natural content for UAV of sufficient quality in publicly available datasets was difficult.191

Finally, Table 3 presents basic statistics of the database in terms of number of frames and duration.192

The 43 selected videos are now referred to as test stimuli in the following section, which presents the193

experiment design.194

3.3. Experimental design195

To record the gaze deployment of subjects while viewing UAV video sequences displayed196

onscreen, it is required to define an experimental methodology. All the details are presented below.197

3.3.1. Eye-tracking apparatus198

A specific setup is designed to capture eye-tracking information on video stimuli. It includes a199

rendering monitor, an eye-tracking system, a control operating system, and a controlled laboratory test200

room.201



Version December 3, 2019 submitted to Journal Not Specified 7 of 24

Basketball Girl1 Girl2 ManRunning1 ManRunning2 Soccer1 Soccer2

StreetBasketball1 Walking bike2 bike3 building1 building2 building3

building4 car1 car11 car12 car13 car14 car15

car2 car3 car4 car7 car9 person22 truck2

truck3 truck4 wakeboard8 flight2tape1_3_crop1 flight2tape1_3_crop2 flight2tape1_3_crop3 flight2tape1_5_crop1

flight2tape1_5_crop2 flight2tape2_1_crop1 flight2tape2_1_crop2 flight2tape2_1_crop3 flight2tape2_1_crop4 flight2tape3_3_crop1 flight1tape1_1_crop1 flight1tape1_1_crop2

Figure 1. EyeTrackUAV2 dataset: first frame of each sequence.

To run the experiment and collect gaze information, we used the EyeLink R© 1000 Plus eye-tracking202

system, in the head free-to-move remote mode, taking advantage of its embedded 25mm camera lens.203

The eye tracker principle is to detect and record the IR illuminator reflection rays on the observer’s204

pupil. This system enables the collection of highly precise gaze data at a temporal frequency of205

1000 Hz and a spatial accuracy between the visual angle range of 0.25 and 0.50 degree, according to206

the manufacturer. To prevent errors in the robust algorithm for the detection of observers’ pupils [53],207

participants were asked to remove any excess of mascara if need be. Also, the eye tracker’s camera208

was configured for each subject, without affecting the corresponding distance between them. This209

configuration guarantees to achieve an optimal detection of the observer’s eyes and head sticker.210

The experimental monitor which displayed stimuli was a 23.8 inches (52,70 x 29,65 cm) DELL211

P2417H computer monitor display 2 with full HD resolution (1920x1080) at 60 Hz and with a response212

time of 6 ms. As suggested by both the International Telecommunication Union (ITU)-Broadcasting213

service (Television) (BT).710 [55] and manufacturer, observers sited in distance of about 3H (1m ±214

10cm) from the monitor, where H corresponds to the stimuli display height so that observers have an215

assumed spatial visual angle acuity of one degree. Moreover, the eye tracker camera was placed 43 cm216

away from the experimental display, and thus about 67 cm from participants. Based on this setting,217

2 https://www.dell.com/cd/business/p/dell-p2417h-monitor/pd

https://www.dell.com/cd/business/p/dell-p2417h-monitor/pd
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Figure 2. Experiment setup.

there are 64 pixels per degree of visual angle in each dimension, and the display resolution is about218

30x17 visual degrees.219

Regarding software, the MPC-HC video player 3, considered as one of the most lightweight220

open-source video players, rendered the experimental video stimuli. Also, we took advantage of the221

Eyelink toolbox [56] as it is part of the 3rd version of Psychophysics Toolbox Psychtoolbox-3 (PTB-3) 4
222

and added in-house communication processes 5 for sync between control and display systems. The223

control system consists of an additional computer, used by the experimenter to configure and control224

the eye-tracking system with an Ethernet connection.225

Eventually, eye-tracking tests were performed in a room with controlled constant light conditions.226

The performed calibration set the constant ambient light conditions at approximately 36.5 cd/m2, i.e.227

15% of the maximum stimuli monitor brightness - 249 cm/m2 - as recommended by the ITU-BT.500 [57],228

with the i1 Display Pro X-Rite R© system.229

Figure 2 illustrates the experimental setup used during the collection of gaze information. We can230

observe the arrangement of all the systems described above.231

3.3.2. Stimuli presentation232

The random presentation of stimuli in their native resolution centered on the screen prevents233

ordering, resizing, and locating biases. Knowing that the monitor resolution is higher than that of234

selected sequences, video stimuli were padded with mid-grey. Additionally, to avoid possible biases in235

gaze allocation, a 2-second sequence of mid-gray frames was presented before playing a test sequence.236

Please note that the amount of original information contained in a degree of visual angle is not the237

same for VIRAT sequences than for other database content, as specified in Table 2.238

Before starting the experiment, a training session is organized to get the subject familiar with the239

experiment design. It includes a calibration procedure and its validation followed by the visualization240

of one video. This UAV video, the sequence car4 from the DTB70 dataset, is additional to test stimuli241

to avoid any memory bias. Once subjects completed the training session, they could ask questions to242

experimenters before taking part into test sessions.243

Regarding test sessions, they start with calibration and its validation before the visualization244

of 9 videos, during which subjects do or do not perform a task. To ensure the optimal quality of245

the collected gaze data, each participant took part in five test sessions. Splitting the experiment into246

sessions decreases the tiredness and lack of attention in observers. Also, this design enables frequent247

calibration so that recordings do not suffer from the decrease of accuracy in gaze recordings with248

time [53].249

3 https://mpc-hc.org/
4 http://psychtoolbox.org/
5 LS2N, University of Nantes

https://mpc-hc.org/
http://psychtoolbox.org/
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With regards to calibration, the eye-tracking system is calibrated for each participant, following a250

typical 13 fixed-point detection procedure [53]. Actually, experimenters started tests with a 9-point251

strategy for calibration (subject 1 to 17 in Free Viewing (FV)) but realized that gaze collection is more252

accurate with a 13-point calibration. The calibration reaches validation when the overall deviation253

of both eye positions is approximately below the fovea vision accuracy (e.g. a degree of visual254

angle [53,58]). The calibration procedure is repeated until validation.255

The participation of an observer in the experiment lasts about 50 minutes. It includes test256

explanations, forms signing, and taking part in the training and the five test sessions. This duration is257

acceptable regarding the number of sessions and the fatigue in subjects.258

3.3.3. Visual tasks to perform259

EyeTrackUAV2 aims to investigate two visual tasks. Indeed, we want to be able to witness visual260

attention processes triggered by top-down (or goal-directed) and bottom-up (or stimulus-driven)261

attention. Accordingly, we defined two visual tasks participants have to perform: the first condition is262

a Free Viewing (FV) task while the second relates to a surveillance-viewing Task (Task). The former263

task is rather common in eye-tracking tests [24,31,33,38,59,60]. Observers were simply asked to observe264

visual video stimuli without performing any task. For the surveillance-viewing task, participants265

were required to watch video stimuli and to push a specific button on a keyboard each time they266

observe a new - meaning not presented before - moving object (e.g. people, vehicle, bike, etc.) in267

the video. The purpose of this task is to simulate one of the basic surveillance procedures in which268

targets could be located anywhere when the visual search process was performed [61]. After reviewing269

typical surveillance systems’ abilities [62], we have decided to define our task as object detection. The270

defined object detection task is compelling in that it encompasses target-specific training (repeated271

discrimination of targets and non-targets) and visual search scanning (targets potentially located272

anywhere) [61]. The only task-related behavior not explored within this task is cue training (targets273

likely to be co-located with more salient objects or events). The surveillance-viewing task is especially274

interesting for a military context, in which operators have to detect discrepancies in drone videos.275

3.3.4. Population276

Overall, 30 observers participated in each phase of the test. Tested population samples were277

different for these two viewing conditions. They were carefully selected to be as representative as278

possible of the entire population. For instance, they include people from more than 12 different279

countries, namely Algeria (3%), Brazil, Burundi, China, Colombia (10%), France (67 %), Gabon,280

Guinea, South Arabia, Spain, Tunisia, and Ukraine. Additionally, we achieved gender and almost281

eye-dominance balance in both phases tests. Table 4 presents the detailed population characteristics282

for both tasks.283

Each observer has been tested for visual acuity and color vision with Ishihara and Snellen284

tests [63,64]. Any failure to these tests motivated the dismissal of the person from the experiment.285

Before running the test, the experimenter provided subjects with written consents and information286

forms, together with oral instructions. This process made sure of the consent of participants and their287

understanding of the experiment process. It also ensures an anonymous data collection.288

289
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Sample statistics FV Task Total

Participants 30 30 60
Females 16 16 32
Males 14 14 28
Average age 31,7 27,9 29,8
Std age 11,0 8,5 10,0
Min age 20 19 19
Max age 59 55 59
Left dominant eye 19 9 28
Right dominant eye 11 21 32
Participants with glasses 0 4 4

Table 4. Population characteristics.

Figure 3. Stimulus displayed in its native
resolution, and padded with mid-gray to
be centered. Colored information relates to
Equation 1.

290

3.4. Post-processing of eye-tracking data291

First, the conversion of collected raw signals into the pixel coordinate system of the original292

sequence leads to what we refer to as binocular gaze data. Let us precise that the origin of coordinates293

is the top-left corner. Then, any gaze coordinates out of range are evicted, as they do not represent294

visual attention on stimuli. Once transformed and filtered, we extract fixation and saccade information295

and create saliency maps (also called grayscale heatmaps) from gaze data. The remainder of this296

section describes all post-processing functions.297

3.4.1. Raw data298

At first, coordinates of the collected binocular gaze data were transformed into the pixel coordinate
system of the visual stimulus. Additionally, we addressed the original resolution of sequences.
Coordinates outside the boundaries of the original resolution of the stimulus were filtered out as they
were not located in the video stimuli display area. The following formula presents how the collected
coordinates are transformed for both eyes: xS = bxD −

RX
D−RX

S
2 c

yS = byD −
RY

D−RY
S

2 c
(1)

where, (xS, yS) and (xD, yD) are the spatial coordinates on the stimulus and on the display, respectively.299

The operator b.c allows to keep the coordinates if the coordinates are within the frame of the stimulus.300

Otherwise, the coordinate is discarded. (RX
S , RY

S ) and (RX
D, RY

D) represent the stimulus resolution and301

the display resolution, respectively. For more clarity, Figure 3 displays the terms of the equation. Once302

this remapping has been done for both eyes, the spatial binocular coordinates is simply given by the303

average of the spatial coordinates of left and right eyes.304

For the surveillance-viewing task, each gaze point was assigned with the relative information305

of the button reaction. We denote in raw data a button activation (respectively no button reaction)306

with the Boolean value 1 (respectively 0). Finally, for convenience, we have sorted the positions of the307

observer’s dominant eyes and included them in raw gaze data.308

3.4.2. Fixation and saccade event detection309

To retrieve fixations from eye positions, we used the Dispersion-Threshold Identification (I-DT)310

[65] from the EyeMMV and LandRate toolboxes [66,67]. This algorithm performs “two-step” spatial311

and temporal thresholds. As exposed in [67,68], thanks to the very high precision of our eye-tracking312

equipment, we can combine the two-step spatial thresholds in one operation, as both thresholds have313

the same value. Ultimately, in our context, this algorithm conceptually implements a spatial noise314

removal filter and a temporal threshold indicating the minimum fixation duration. We have selected315
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the minimum threshold values from the state of the art to ensure the performance of the fixation316

detection algorithm. Accordingly, spatial and temporal thresholds were selected to be equal to 0.7317

degree of the visual angle and 80 ms [69], respectively. Finally, saccade events were calculated based318

on the computed fixations considering that a saccade corresponds to eye movements between two319

successive fixation points.320

When considering raw data of the dominant eye, I-DT exhibits a total number of fixations of 1 239321

157 in FV and 1 269 433 in Task.322

3.4.3. Saliency maps323

Saliency maps are a 2D topographic representation indicating the ability of an area to attract324

observers’ attention. It is common to represent the salience of an image thanks to either its saliency map325

or by its colored representation, called heatmap. Saliency maps are usually computed by convolving326

the fixation map, gathering observers’ fixations, with a Gaussian kernel representing the foveal part of327

our retina. More details can be found in [60].328

For video sequence, there is one saliency map for each frame of test sequences. It could be329

debatable to do so for temporal analyses, but it is current practices to deal with videos as a succession330

of frames in visual media processing (e.g. compression, High Dynamic Range (HDR) video tone331

mapping, and dynamic saliency).332

We took benefit from the high frequency of acquisition of the eye-tracker system to compute333

saliency maps directly from raw gaze data (in pixel coordinates). Thus, our saliency maps are free334

from any biases that could be introduced by any fixation extractor algorithms. Hence, the generated335

saliency maps include fixation and saccade information, without distinction.336

To indicate salient regions of each frame, we followed the method described in [66], with337

parameters derived from the experimental setup (e.g., a grid size of a pixel, a standard deviation of 0.5338

degree of angle i.e. σ =32 pixels, and a kernel size of 6σ). For visualization purposes, heat maps were339

normalized between 0 and 255.340

Figure 4 presents saliency maps obtained for both attention conditions in frame 100 of seven341

sequences. We have selected frame 100 to get free from the initial center-bias in video exploration342

occurring during the first seconds. These examples illustrate, for instance, the sparsity of salience in343

videos in free viewing, while task-based attention usually presents more salient points, more dispersed344

in the content than FV, depending on the task and attention-grabbing objects.345

3.5. EyeTrackUAV2 in brief346

We have created a dataset containing binocular gaze information collected during two viewing347

conditions ( free viewing and task) over 43 UAV videos (30 fps, 1280x720 and 720x480 - 42241 frames,348

1408 seconds) observed by 30 participants per condition, leading to 1 239 157 fixations in free viewing349

and 1 269 433 in task-viewing for dominant eyes positions. Notably, selected UAV videos sowing350

diversity in rendered environments, movement and size of objects, aircraft flight heights and angles to351

the ground, duration, size, and quality. This dataset overcomes the limitations of EyeTrackUAV1 in that352

it enables investigations of salience in more test sequences, on larger population samples, and for both353

free-viewing and task-based attention. Additionally, and even though they are still too few, three IR354

videos are part of visual stimuli.355

Fixations, saccades, and saliency maps were computed - for both eyes in additive and averaged356

fashions (see Binocular and BothEyes scenarios described later) and for the dominant eye - and are357

publicly available with original content and raw data on our FTP 6. The code in MATLAB to generate358

all ground truth information is also made available.359

6 ftp.ivc.polytech.univ-nantes.fr

ftp.ivc.polytech.univ-nantes.fr
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Basketball ManRunning1 building1 car4 wakeboard8 flight2tape1_3_crop1 flight2tape1_5_crop1

Figure 4. Frame 100 of seven sequences of EyeTrackUAV2 dataset, together with saliency and fixation
maps generated based on gaze data of dominant eye. Results are presented for both types of attention.
The first row presents sequences hundredth frame, the second fixations for FV, the third saliency maps
for FV, the fourth fixations for task, and the fifth saliency maps for Task.

4. Analyses360

In this section, we characterize the proposed EyeTrackUAV2 database. On one hand, we compare361

eye positions and salience between the different attention conditions. Such information may be of362

great importance to generate the ground truth on a case-by-case basis. On the other hand, UAV videos363

induce new visual experiences. Consequently, observers exhibit different behaviors towards this type364

of stimuli. Therefore, we investigate whether the center bias, one of the main viewing tendencies [70],365

still applies to EyeTrackUAV2 content.366

4.1. Six different ground truths367

The first question we address concerns the method used to determine the ground truth. In a368

number of papers, researchers use the ocular dominance theory in order to generate a ground truth.369

This theory relies on the fact that the human visual system favors the input of one eye over the other370

should binocular images be too disparate on the retinas. However, the cyclopean theory gains more371

and more momentum [71,72]. It alleges that vision processes approximate a central point between372

two eyes, from which an object is perceived. Furthermore, lately, manufacturers achieved major373

improvements in eye-tracking systems. They are now able to record and calibrate the positions of374

both eyes separately. This allows for exploring what are the best practices to create salience ground375

truth [71–73].376

We therefore propose to evaluate the potential errors made when different methods for creating the377

ground truth are used. We tested six methods, namely Left (L), Right (R), Binocular (B), Dominant (D),378

non Dominant (nD), Both Eyes (BE), under the two visual attention conditions, Free Viewing (FV) and379

surveillance-viewing Task (Task). B corresponds to the average position between the left and right380

eyes and can be called version signal. BE includes the positions of both L and R positions, and hence381

comprises twice more information than other scenarios. nD has been added to estimate the gain made382

when using dominant eye information. Estimating the relevance of the aforementioned methods will383

help to decide which ground truth scenario should be used depending on the precision and accuracy384
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FV Task
Average max min Average max min

hor vert hor vert hor vert hor vert hor vert hor vert
x y x y x y x y x y x y

Binocular EyeNonDom 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
Binocular Right 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
Binocular Left 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
Binocular Dominant 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
EyeNonDom Right 0,16 0,17 0,21 0,24 0,12 0,10 0,31 0,28 0,37 0,34 0,25 0,25
EyeNonDom Left 0,31 0,34 0,40 0,44 0,22 0,27 0,15 0,12 0,20 0,15 0,11 0,10
EyeNonDom Dominant 0,46 0,51 0,57 0,63 0,39 0,42 0,46 0,40 0,56 0,45 0,39 0,36
Right Left 0,46 0,51 0,57 0,63 0,39 0,42 0,46 0,40 0,56 0,45 0,39 0,36
Right Dominant 0,31 0,34 0,40 0,44 0,22 0,27 0,15 0,12 0,20 0,15 0,11 0,10
Left Dominant 0,16 0,17 0,21 0,24 0,12 0,10 0,31 0,28 0,37 0,34 0,25 0,25
Binocular BothEyes 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
EyeNonDom BothEyes 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
Right BothEyes 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
Left BothEyes 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18
Dominant BothEyes 0,23 0,26 0,29 0,31 0,19 0,21 0,23 0,20 0,28 0,23 0,20 0,18

Table 5. MAE in eye positions depending on scenarios for Free Viewing and Task viewing, in degree
per pixels. Results are provided in average, minimum and maximum over sequences and observers.
Highest values are emphasised in red, the least in blue.

one requires [73]. We performed two evaluations: the first directly on eye positions and the second on385

human saliency maps.386

4.1.1. Mean of Absolute Error of eye positions387

To characterize the error made when choosing a scenario over another, we compute the Mean of388

Absolute Error (MAE) between eye positions for both viewing conditions:389

MAE(i,j)
x =

1
N ∑

n
|xMi

s,n − x
Mj
s,n |

MAE(i,j)
y =

1
N ∑

n
|yMi

s,n − y
Mj
s,n |

With MAE(i,j)
x and MAE(i,j)

y the Mean Absolute Error for x and y axis, respectively, and for methods390

Mi and Mj. Method refers here to Left (L), Right (R), Binocular (B), Dominant (D), non Dominant (nD),391

Both Eyes (BE). N denotes the number of gaze samples for one sequence, for all observers. Note that392

MAE(i,i)
x = MAE(i,i)

y = 0.393

Table 5 reports the average, maximum and minimum MAE over sequences for all comparisons394

of scenarios. We observe several interesting behaviors, such as the decrease of error when using the395

dominant eye in a single-eyed method, or the fixed error made when using both eyes positions. But396

what really is noteworthy is that the maximum average MAE is about half of a degree of visual angle,397

the maximum error value being 0,63.398

Half a degree of visual angle is usually the least value of Gaussian kernel used to filter eye399

positions (or fixations) when creating saliency maps. We thus extend the analysis with a comparison of400

methods in terms of similarity between saliency maps. We want to know if it makes a difference to401

use different eye positions to generate salience ground truth. Indeed, this would help the scientific402

community to know how to use eye-tracking data for saliency depending on which information is403

available. It is necessary to apprehend, when downloading a dataset, what is the possible error made404

by using only the dominant eye for instance.405
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4.1.2. Similarity of human saliency maps406

Left Dominant Both Eyes

Right NonDominant Binocular

L - R - BE D - nD - BE B - L+R - BE

Figure 5. Qualitative comparison of saliency maps for all scenarios on Basketball, frame 401. Saliency
and fixations are displayed in transparency over the content. The last row compares scenarios:
first scenario is attributed to the red channel, the second to green and the last to blue. When fully
overlapping, the pixel turns white.

Generating saliency maps implies Gaussian filtering with a rather large kernel when compared to407

MAE values.For instance, the Gaussian kernel we used here is 3◦. We thus question whether selecting408

a ground truth scenario over another makes a significant difference for saliency studies.409

Thus, we decided to compare saliency maps generated for the six scenarios defined above.410

Illustrations of scenarios saliency maps and fixations as well as methods comparisons are presented in411

Figure 5. Below is presented the quantitative evaluation.412

We run a cross-comparison on six well-used quality metrics: Correlation Coefficient (CC) (∈ [−1, 1]),413

Similarity (SIM) (∈ [0, 1]) the intersection between histograms of saliency, AUC Judd and Borji (∈ [0, 1]),414

NSS (∈ ]−∞,+∞[), and IG (∈ [0,+∞[), which measures on average the gain in information contained in the415

saliency map compared to a prior baseline (∈ [0,+∞[). We did not report Kullback Leibler divergence (KL)416

(∈ [0,+∞[) as we favored symmetric metrics. Moreover, even though symmetric in absolute value, IG417

provides different scores depending on fixation maps. We thus compared scenarios for fixation maps418

of both methods, which leads to two IG measures. More details on metrics and metrics behaviors are419

given in [60,74,75].420

To verify if scenarios are different, we have conducted ANOVA and multi-comparison analyses421

on the scores obtained by measures. All metrics show statistically different results (p << 0.001) except422

for AUC Borji, AUC Judd, and NSS. Thus, the analysis discards those metrics. However, it shows that423

for those metrics using a scenario over another makes no significant difference.424

Table 6 presents the results of measures that present a significant difference when comparing425

saliency maps of two scenarios. We confirm here the results hinted by MAE scores:426

• There is a high similarity between scenarios saliency maps. As expected, scores are pretty high427

(or low for IG), which indicates the high similarity between scenarios.428
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FV Task
CC ↑ SIM ↑ IG ↓ CC ↑ SIM ↑ IG ↓

SM1 SM2 SM1-Fix1-SM2 SM2-Fix2-SM1 SM1-Fix1-SM2 SM2-Fix2-SM1

Binocular Dominant 0,94 0,83 0,377 0,300 0,952 0,850 0,276 0,148
Binocular EyeNonDom 0,95 0,84 0,370 0,301 0,952 0,849 0,283 0,163
Binocular Left 0,94 0,83 0,371 0,301 0,948 0,843 0,264 0,192
Binocular Right 0,94 0,83 0,390 0,324 0,944 0,838 0,304 0,152
Binocular BothEyes 0,98 0,90 0,246 0,139 0,983 0,916 0,177 0,012
Dominant BothEyes 0,96 0,87 0,158 0,374 0,967 0,873 0,143 0,248
EyeNonDom BothEyes 0,97 0,87 0,167 0,394 0,966 0,872 0,144 0,228
Left BothEyes 0,96 0,86 0,166 0,387 0,960 0,861 0,174 0,232
Right BothEyes 0,96 0,86 0,181 0,416 0,960 0,862 0,147 0,279
Dominant EyeNonDom 0,87 0,74 1,115 1,069 0,873 0,747 0,743 0,781
Dominant Left 0,95 0,88 0,341 0,339 0,903 0,792 0,520 0,582
Dominant Right 0,91 0,79 0,810 0,757 0,957 0,884 0,256 0,233
EyeNonDom Right 0,96 0,88 0,346 0,342 0,902 0,793 0,587 0,519
Left EyeNonDom 0,91 0,79 0,792 0,754 0,957 0,884 0,256 0,231
Left Right 0,85 0,72 1,176 1,121 0,850 0,725 0,877 0,782

Mean 0,937 0,832 0,467 0,488 0,938 0,839 0,343 0,319
Std 0,037 0,052 0,340 0,295 0,038 0,053 0,230 0,234

Table 6. CC, SIM and IG results for scenarios cross-comparison. Red indicates the best scores, blue the
least.

• Two-eyes-based saliency maps reach the best results. All metrics show the best results429

for comparisons including Binocular and BothEyes scenarios, the highest being the430

Binocular-BothEyes comparison.431

• Left-Right and Dominant-NonDominant comparisons achieve worst results.432

• It is possible to know the population main dominant eye through scenarios comparisons (not433

including two eyes information). When describing the population, we have seen that a majority434

of left-dominant-eye subjects participated in the FV test, while the reverse happened for the Task435

experiment. This fact is easy to notice in metric scores.436

ANOVA and multi-comparison analyses characterize the differences between scenarios in Figure437

6. We can see where stands the mean and standard deviation of CC scores for each scenario over the438

entire dataset. Scenarios having non-overlapping confidence intervals are statistically different.439

We can see that for this metric, and this result applies to SIM and IG, it is recommended to440

use both eyes information, BothEyes and Binocular, as significantly higher similarity is reached for441

these two scenarios. The worst scenario, significantly in Task, is to favor the position of one eye over442

the other. Also, scenarios based on the dominant eye are obviously biased towards one eye, thus443

generating more errors than two-eyes but less than one-eye scenarios.444

Overall, over six metrics, three do not find significant differences between the scenarios’ saliency445

maps. The three others do and indicate that using both eye information must be favored. Accordingly,446

the cyclopean theory takes a slight precedence over the ocular dominance theory in salience.447

Moreover, it is recommended to favor datasets that record both eyes, and if not possible these that448

collect the dominant eye positions.449

4.2. Biases in UAV videos450

In conventional imaging, the center position is the best location to have access to most visual451

information of a content [70]. This fact leads to a well-known bias in visual attention named central452

bias. This effect may be associated with various causes. For instance, Tseng et al. [76] showed a453

contribution of photographer bias, viewing strategy, and to a lesser extent, motor, re-centering, and454

screen center biases to the center bias. They are briefly described below:455

• The photographer bias often emphasizes objects in the content center through composition and456

artistic intent [76].457

• Directly related to photographer bias, observers tend to learn the probability of finding salient458

objects at the content center. We refer to this behavior as a viewing strategy.459
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Correlation in FV Correlation in Task

Figure 6. Muti-comparison on scenarios correlation measure.

• With regards to the Human Visual System (HVS), the central orbital position, that is when460

looking straight ahead, is the most comfortable eye position [77], leading to a recentering bias.461

• Additionally, there is a motor bias, in which one prefers making short saccades and horizontal462

displacements [59,78].463

• Lastly, onscreen presentation of visual content pushes observers to stare at the center of the464

screen frame [70]. This experimental bias is named the screen center bias.465

The central bias is so critical in the computational modelling of visual attention that saliency466

models include this bias as prior knowledge or use it as a baseline to which saliency predictions are467

being compared. The center bias is often represented by a centered isotropic Gaussian stretched to the468

video frame aspect ratio [25,75].469

The presence of this bias in UAV videos has already been questioned in [23]. In [23], authors470

showed that saliency models that heavily rely on the center bias were less efficient on UAV videos than471

on conventional video sequences. Therefore, we believe that the central bias could be less significant in472

drone footage as a result of the lack of photographer bias or due to UAV content characteristics. These473

latter comprise, but are not restricted to, the camera bird-point-of-view that changes objects semantic474

and size [11], the loss of pictorial depth cues [79] such as horizontal line [80], and the presence of camera475

movements [11]. To make this point clear, we propose to evaluate qualitatively and quantitatively the476

center bias for UAV videos.477

4.2.1. Qualitative evaluation of biases in UAV videos478

We evaluate the viewing tendency of observer thanks to the average saliency map, computed over479

the entire sequence. It is representative of the average position of gaze throughout the video sequence.480

It is used to observe potential overall biases, as it could be the case with the center bias. Figures 7 and 8481

show the average saliency map for all sequences of EyeTrackUAV2 dataset, generated from D scenario,482

for both free-viewing and task-viewing conditions. Several observations can be made.483

Content-dependent center bias. We verify here the content-dependence of the center bias in484

UAV videos. For both attention conditions, the scene environment and movements exacerbates or not485

UAV biases. For instance, in sequences car 2-9 (fourth row), the aircraft is following cars on a road.486

Associated average human saliency maps display the shape of the road and its direction, i.e. vertical487

route for all and roundabout for car7. Car 14 (third row), a semantically similar content except that it488

displays only one object on the road with a constant reframing (camera movement) which keeps the489

car at the same location, presents an average human saliency map centered on the tracked object.490

Original database-specific center bias. We can observe that a center bias is present in VIRAT491

sequences, while videos from other datasets, namely UAV123 and DTB70, do not present this systematic492

bias. The original resolution of content and the experimental setup are possibly the sources of this493
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car2 car3 car4 car7 car9 person22 truck2

truck3 truck4 wakeboard8 flight2tape1_3_crop1 flight2tape1_3_crop2 flight2tape1_3_crop3 flight2tape1_5_crop1
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Figure 7. Average saliency maps for all sequences of EyeTrackUAV2 dataset, generated from D scenario,
for the free-viewing condition.

result. Indeed, the proportion of content seen at once is not the same for all sequences: 1,19% of494

a VIRAT content is seen per degree of visual angle, whereas it is 0,44% for the two other original495

databases. VIRAT saliency maps are thus smoother, which results in higher chances to present a center496

bias. To verify this assumption based on qualitative assessment, we have computed the overall human497

saliency maps for sequences coming from original dataset, namely DTB70, UAV123 and VIRAT. These498

maps are shown in Figure 9. VIRAT saliency maps are much more concentrated and centered. This499

corroborates that biases can be original-database-specific.500

Task-related human saliency maps are more spread out. Task-based saliency maps cover more501

content when compared to free-viewing condition for most sequences (e.g. in about 58% of videos502

such as Basketball, car11, car2, and wakeboard). This behavior is also illustrated in Figure 9. We correlate503

this response with the object detection task. Visual search scanning implies an extensive exploration of504

the content. However, 21% of the remaining sequences (i.e. soccer1, bike2-3, building 1-2, car1,15, and505

truck3-4) show less discrepancies in the task-viewing condition than in free-viewing condition. We do506

not find correlation between such behavior and sequences characteristics given in Table 1. This leaves507

room for further exploration of differences between task-based and free viewing attention.508

Overall, there is no generalization of center bias for UAV content. As stated earlier, we do not509

observe a systematic center bias, except for VIRAT sequences. This is especially true for task-related510

viewing. However, we observe specific patterns. Indeed, vertical and horizontal potatoe-shaped511

saliency areas are quite present in average human saliency maps of EyeTrackUAV2. Such patterns512

are also visible in UAV2 and DTB70 overall mean maps, especially in task-viewing condition. This513

indicates future axes of developments for UAV saliency-based applications. For instance, instead of514
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truck3 truck4 wakeboard8 flight2tape1_3_crop1 flight2tape1_3_crop2 flight2tape1_3_crop3 flight2tape1_5_crop1

flight2tape1_5_crop2 flight2tape2_1_crop1 flight2tape2_1_crop2 flight2tape2_1_crop3 flight2tape2_1_crop4 flight1tape1_1_crop2 flight2tape3_3_crop1 flight1tape1_1_crop1

Figure 8. Average saliency maps for all sequences of EyeTrackUAV2 dataset, generated from D scenario,
for the task-viewing condition.

using a center bias, one may introduce priors as a set of prevalent saliency area shapes with different515

directions and sizes [81].516

4.2.2. Quantitative evaluation of the central bias in UAV videos517

To go further into content-dependencies, we investigate quantitatively the similarity of518

dominant-eye-generated saliency maps, called ground truth in the remaining, with a pre-defined519

center bias. Figure 10 presents the center bias baseline created in this purpose as suggested in [25,75] .520

We performed the evaluation based on four well-used quality metrics: CC, SIM, KL, and IG.521

Results are presented in Table 7. They support the observations we made in the previous section.522

Overall scores do not reveal a high similarity with the center prior (e.g. maximum CC and SIM of523

about 0.5, high KL and IG). On the other hand, we observe content-specific center prior in UAV123524

and DTB70. For instance, videos more prone to center bias includes sequences extracted from VIRAT525

and building1,3,4, and car13. On the contrary, sequences Girl1-2, ManRunning1-2, Walking, car4, and526

wakeboard8 are not likely to present center bias. This confirms there is no generalization of center bias527

for UAV content. Regarding differences between free-viewing and task-viewing conditions, results are528

inconclusive as no systematic behavior is clearly visible from this analysis.529

5. Conclusion530

UAV imaging modifies the perceptual clues of typical scenes due to its bird point of view, the531

presence of camera movements and the high distance and angle to the scene. For instance, low-level532

visual features and size of objects changes and depth information is flattened or disappears (e.g.533
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FV Task
CC ↑ SIM ↑ KL ↓ IG ↓ CC ↑ SIM ↑ KL ↓ IG ↓

VIRAT_09152008flight2tape1_3_crop1 0,50 0,48 7,17 1,53 0,46 0,48 6,85 1,62
VIRAT_09152008flight2tape1_3_crop2 0,49 0,52 5,59 1,50 0,36 0,48 6,42 1,75
VIRAT_09152008flight2tape1_3_crop3 0,46 0,43 8,46 1,91 0,37 0,43 7,98 1,99
VIRAT_09152008flight2tape1_5_crop1 0,27 0,38 9,77 2,29 0,18 0,36 10,14 2,49
VIRAT_09152008flight2tape1_5_crop2 0,42 0,44 8,05 1,90 0,30 0,45 7,41 1,87
VIRAT_09152008flight2tape2_1_crop1 0,41 0,39 9,34 2,05 0,38 0,42 8,55 1,97
VIRAT_09152008flight2tape2_1_crop2 0,40 0,35 10,90 2,50 0,32 0,42 8,01 2,01
VIRAT_09152008flight2tape2_1_crop3 0,42 0,40 9,46 2,11 0,28 0,39 9,30 2,24
VIRAT_09152008flight2tape2_1_crop4 0,36 0,36 10,35 2,34 0,28 0,38 9,79 2,30
VIRAT_09152008flight2tape3_3_crop1 0,42 0,43 8,16 1,96 0,35 0,43 7,84 2,03
VIRAT_09162008flight1tape1_1_crop1 0,47 0,45 7,76 1,80 0,37 0,42 8,40 2,00
VIRAT_09162008flight1tape1_1_crop2 0,40 0,40 9,14 2,14 0,27 0,40 8,91 2,22
UAV123_bike2 0,39 0,34 11,51 2,43 0,34 0,29 13,21 2,82
UAV123_bike3 0,39 0,34 11,71 2,37 0,29 0,26 14,34 2,96
UAV123_building1 0,40 0,37 10,64 2,18 0,32 0,31 12,74 2,69
UAV123_building2 0,30 0,33 11,89 2,43 0,18 0,27 13,87 3,06
UAV123_building3 0,27 0,34 11,50 2,42 0,17 0,32 11,82 2,56
UAV123_building4 0,39 0,36 10,82 2,20 0,35 0,39 9,72 2,10
UAV123_car11 0,37 0,32 12,37 2,58 0,21 0,30 12,68 2,67
UAV123_car12 0,21 0,28 13,35 2,80 0,26 0,29 13,12 2,69
UAV123_car13 0,30 0,34 11,48 2,39 0,20 0,33 11,50 2,44
UAV123_car14 0,20 0,25 14,47 3,16 0,12 0,31 12,28 2,71
UAV123_car15 0,31 0,34 11,52 2,47 0,10 0,30 12,70 2,81
UAV123_car1 0,21 0,26 14,33 3,10 0,13 0,30 12,61 2,77
UAV123_car2 0,22 0,27 13,91 3,02 0,13 0,30 12,68 2,80
UAV123_car3 0,16 0,24 14,77 3,19 0,14 0,28 13,39 2,93
UAV123_car4 0,22 0,20 16,27 3,55 0,20 0,24 14,76 3,23
UAV123_car7 0,22 0,23 15,11 3,16 0,11 0,28 13,13 2,92
UAV123_car9 0,26 0,23 15,41 3,27 0,21 0,28 13,69 2,86
UAV123_person22 0,35 0,31 12,44 2,60 0,27 0,31 12,45 2,68
UAV123_truck2 0,27 0,32 12,29 2,56 0,09 0,27 13,66 3,01
UAV123_truck3 0,27 0,35 11,14 2,34 0,12 0,31 12,23 2,73
UAV123_truck4 0,29 0,36 10,71 2,34 0,16 0,29 13,18 3,03
UAV123_wakeboard8 0,23 0,21 15,91 3,45 0,11 0,24 14,93 3,29
DTB70_Basketball 0,38 0,27 14,13 2,89 0,30 0,31 12,30 2,59
DTB70_Girl1 0,16 0,28 13,47 2,90 0,15 0,25 14,54 3,18
DTB70_Girl2 0,20 0,20 16,04 3,60 0,19 0,23 15,04 3,34
DTB70_ManRunning1 0,02 0,16 17,45 4,09 0,00 0,20 16,11 3,73
DTB70_ManRunning2 0,12 0,13 18,40 4,31 0,10 0,15 17,99 4,24
DTB70_Soccer1 0,21 0,26 14,23 3,04 0,17 0,26 14,03 3,18
DTB70_Soccer2 0,21 0,22 15,56 3,33 0,22 0,32 11,86 2,69
DTB70_StreetBasketball1 0,33 0,26 14,29 2,94 0,28 0,26 14,29 3,00
DTB70_Walking 0,29 0,20 16,14 3,51 0,27 0,22 15,81 3,51
mean 0,31 0,32 12,27 2,67 0,23 0,32 12,01 2,69

Table 7. Comparison of saliency maps with the center bias presented in Figure 10. Are displayed in red
the numbers over (or under for KL and IG) measures average, indicated in the last row.
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(a) (b) (c)

Figure 9. Overall average saliency maps per original dataset, generated from D scenario, in free-viewing
(top-row) and Task-viewing (bottom row) for original datasets: (a) DTB70; (b) UAV123; (c) VIRAT.

Figure 10. Center prior baseline.

presence of sky). To understand observers’ behaviors toward these new features, especially in terms of534

visual attention and deployment, there is a need for large-scale eye-tracking databases for saliency in535

UAV videos. This dataset is also a key factor in the field of computational models of visual attention,536

in which large scale datasets are required to train the latest generation of deep-based models.537

This need is even stronger with the fast expansion of applications related to UAVs, for leisure and538

professional civilian activities and a wide range of military services. Combining UAV imagery with539

one of the most dynamic research fields in vision, namely salience, is highly promising, especially for540

videos that are gaining more and more attention these last years.541

This work addresses the need for such a dedicated dataset. An experimental process has542

been designed in order to build a new dataset, EyeTrackUAV2. Gaze data were collected during543

the observation of UAV videos under controlled laboratory conditions for both free viewing and544

object-detection surveillance task conditions. Gaze positions have been collected on 30 participants545

for each attention condition, on 43 UAV videos in 30 fps, 1280x720 or 720x480, consisting in 42 241546

frames and 1408 seconds. Overall, 1 239 157 fixations in free-viewing and 1 269 433 in task-viewing547

were extracted from the dominant eye positions. Test stimuli were carefully selected from three548

original datasets, i.e. UAV123, VIRAT, and DTB70, to be representative as much as possible of the UAV549

ecosystem. Accordingly, they present variations in terms of environments, camera movement, size of550

objects, aircraft flight heights and angles to the ground, video duration, resolution, and quality. Also,551

three sequences were recorded in infra-red.552

The collected gaze data were analyzed and transformed into fixation and saccade eye movements553

using an I-DT based identification algorithm. Moreover, the eye-tracking system high frequency of554

acquisition enabled the production of saliency maps for each experimental frame of the examined555

video stimuli directly from raw data. The dataset is publicly available and includes, for instance, raw556

binocular eye positions, fixation, and saliency maps generated from the dominant eye and both eyes557

information.558
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Then, we further characterized the dataset considering two different aspects. On one hand,559

six scenarios, namely binocular, both eyes, dominant eye, non-dominant eye, left, and right can be560

envisioned to generate human saliency maps. We wondered whether a scenario should be favored over561

another or not. Comparisons of scenarios have been conducted, first in terms of the mean of absolute562

errors for eye positions, and secondly on six typical saliency metrics for saliency maps. Results indicate563

that the cyclopean theory prevails over the ocular dominance theory in saliency. That means that564

information of both eyes should be favored to study saliency. If not possible, choosing information565

from the dominant eye allows us to commit fewer errors when compared to other one-eye scenarios.566

On the other hand, we notice that conventional biases in saliency do not necessarily apply to UAV567

content. Indeed, the center bias is not systematic in UAV sequences. This bias is content-dependent as568

well as and task-condition-dependent. We observed new prior patterns that must be examined in the569

future.570

In conclusion, the EyeTrackUAV2 dataset enables in-depth studies of visual attention through the571

exploration of new salience biases and prior patterns. It establishes in addition a solid basis on which572

dynamic salience for UAV imaging can build upon, in particular for the development of deep-learning573

saliency models.574
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