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ABSTRACT 
Mechanical dynamic tests were performed on fluoride glass fibers and silica optical fibers to 

examine the mechanical strength. These fibers were tested on ambient atmosphere and after 

aging in a vacuum desiccator with silica gel used as the desiccant.  

A higher value of the ratio of Young’s modulus to hardness indicates a greater tendency to 

plastic behavior in the case of fluoride fibers. For tensile tests, the strength of silica fiber is nine 

times greater than that of fluoride fiber and eight times greater in the case of bending tests. 

Aging in a desiccator decreases the residual water content and improves the fluoride fiber 

strength. 

 
Keywords: Optical fibers, mechanical tests, fluoride glasses, failure strength. 

 

1. INTRODUCTION 

 

Fluoride glass fibers were first intensively developed for long distance telecommunication 

applications due to their ultra-low theoretical optical loss (0.001 dB/km). However these glasses 

are very susceptible to crystallization. Past researchers have shown that crystallization of these 

glasses is suppressed in microgravity and enhanced in hyper-gravity, showing a crystallization 

dependency on gravity. The specific material used for this research was a fluorozirconate glass, 

which is a subset of the Heavy Metal Fluoride Glasses family known as ZBLAN (ZrF4, BaF2, 

LaF3, AlF3, NaF). Such fibers can be doped with a number of rare earth ions for application 

in fiber lasers and amplifiers. 

The main interest of fluoride glasses is associated with their potential in developing a new 

generation of optical waveguides which are superior to traditional SiO2 optical fibers in their 

transparency range and their optical characteristics [1]. 

Comparing with silica fiber, the  fluoride optical fiber has many unique characteristics, such as 

wide operating wavelength range (the wide range of infrared lights, visible lights and even 

ultraviolet lights) and high emission efficiency when rare-earth elements are doped into, 

especially excellent emission characteristic with Tm doped ZBLAN fiber [2- 5].  

As a promising host material, ZBLAN glass used in fluoride fibers has been attracting great 

interest for up-conversion luminescence because it is relatively easy to prepare, and more 

importantly has a very low multiphonon relaxation rate [6- 9]. 

http://www.rp-photonics.com/rare_earth_doped_fibers.html
http://www.rp-photonics.com/fiber_lasers.html
http://www.rp-photonics.com/fiber_amplifiers.html


Because of the highly ionic bond character, fluorides tend to have low phonon energies (~500 

cm
-1

) compared to many oxides such as silica based glasses (~1200 cm
-1

). This low phonon 

energy causes the infrared (IR) absorption edge of fluorides to have a higher wavelength than 

silica glasses and allows fluorides to function as effective windows beyond the 4 mm IR cut-off 

observed in fused silica. 

Silica glass, the most common optical fiber material is certainly robust, having high tensile 

strength and resistance to thermal shock [10]. 

However, silica has a spectral window of only 0.3 to 2 m and is virtually opaque to 

wavelengths longer than 2 m. It also suffers from laser-induced damage at quite low power [11, 

12].  

Fluoride optical fiber have a large-band transmission from 0.3 m to 4.3 m [13- 15]. 

 

Fluoride glass fibers are less robust than silica but can nevertheless be made in multi-kilometer 

lengths, sufficiently strong to be spooled and handled. Some are attacked by water but the effect 

is minimized in suitable compositions. Fluoride glasses are generally resistant to radiation 

damage [16- 18], though rare earth doping may lower the damage threshold [19]. 

 

The main problem with the fiber is its poor mechanical strength. Degradation may be due to 

attack by atmospheric moisture or stresses and cracks introduced into the fiber during drawing 

and spooling or to damage which was not removed after drilling. The intrinsic strength of a 

glass, its real strength, depends on minor flaws. Considerable effort was made to remove 

scratches. 

Even one remaining crack is sufficient to precipitate the eventual complete rupture of the fiber. 

Such cracks would probably be opened up and propagated by low level heating and applied 

stress [10]. 

 

Many studies were undertaken concerning optical and chemical properties of fluoride fibers, but 

very few studies have been carried out on  their mechanical behavior when subjected to bending 

or tensile tests due to their poor mechanical strength.  

Two-point bending is the simplest technique for the measurement of failure strains of glass fibers 

under a variety of experimental conditions.  

Tang et al [20] use two point bending technique to evaluate the failure strains, under both inert 

and ambient conditions, for a number of conventional glasses (commercial silica, soda-lime 



silicate, and E-glass). But no experimental mechanical study of very brittle fibers such as 

fluoride fibers was presented until then. 

 

In this work, tensile and two point bending tests were performed on fluoride and silica fibers for 

different displacement velocities. A theoretical study is proposed to understand the mechanical 

behavior of each fiber. Some fibers were aged in a desiccator before undergoing mechanical 

tests.  

 

2. OPTICAL FIBERS USED 

 

2.1 Fluoride optical fiber 

The multimode fluoride fiber has an operating wavelength between 0.3 and 4.3 m. The 

combined coating diameter is 220 m with a diameter clad of 150 m and a core diameter of 100 

m (Fig.1). The operating temperature is from -180°C to 150°C. This fiber has a numerical 

aperture of 0.2 (NA value). Attenuation was ≤ 0.1 dB/m [3.4 - 3.6 m]. Elastic properties of 

cladding and core for the studied optical fiber of compositions (mol%) 53ZrF4-20BaF2-4LaF3-

3AlF3-20NaF are given in Table 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fluoride fiber: a): three components, b): Fiber crossed through light, c) fiber with 

removed coating 

 

 

Table 1.  Elastic constants of cladding and core of used fluoride fiber 

Material Density 

kg/cm
3
 

Young’s 

modulus 

GPa 

Shear 

modulus 

GPa 

Poisson’s  

ratio 

Bulk 

modulus 

(GPa) 

Cladding 4735 54.35 ± 6.10 20.56 ± 0.86 0.322 ± 0.039 50.8 ± 6.04 

Core 4375 53.39 ± 6.36 20.37 ± 0.29 0.311 ± 0.037 46.9± 5.59 

 

The elastic parameters of the glass below were obtained by measurement of sound velocities 

using the longitudinal and transverse velocities: 
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where VL and VT are the longitudinal and transverse velocities respectively. is the density 

obtained by electronic densimeter, E is the Young’s modulus, G is the shear modulus, is the 

Poisson’s ration and  K is the bulk modulus. 

 

 

2.2 Silica optical fiber 

The used multimode silica optical fiber has two acrylate coatings (primary and outer coatings) 

(Fig. 2). This fiber has a numerical aperture of 0.2 (NA value) with an operating wavelength of 

850/1300 nm. A soft, primary coating has a low module of elasticity, adheres closely to the glass 

fiber and forms a stable interface. It protects the fragile glass fiber against micro-bending and 

attenuation. The outer coating protects the primary coating against mechanical damage and acts 

as a barrier to lateral forces. It has a high glass transition temperature and Young modulus. It has 

good chemical resistance and serves as a barrier against moisture [21- 23]. The combined coating 

diameter is 245 m, the silica core has a diameter of 50 m and the clad diameter is 125 m 

(Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Silica optical fiber used 
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3. TEST BENCHES USED 

 

3.1 Bending test bench 

While the bending method does not replace tensile testing as a fiber strength measurement 

technique, it presents attractive features and advantages, providing valuable information about 

flaw size distribution [24]. In our case, the ease and the duration of the testing and the small 

effective length of the fiber sample made the bending test one of the most appropriate choices for 

investigation. 

The ‘‘as-received’’ fibers and those aged in a desiccator were subsequently put through dynamic 

tests using a two-point bending testing device (Fig. 3). The fiber package was cut into two 8 cm 

length parts.  

Special care was required to prevent the fiber slipping during the faceplate displacement and to 

maintain the fiber ends in the same vertical plan. 

The two points bending bench is made up of a displacement plate which is mounted on an 

aluminium plate (Fig. 3a). The first thrust block is movable and mounted on the displacement 

plate, while the second thrust block is fixed on a force sensor. The optical fiber is positioned 

between the two thrust blocks in such a way that it forms a "U". To avoid slipping, the fiber is 

positioned in the grooves of the thrust blocks (Figs. 3b, 3c). 

 

During the test, load and displacement are recorded, allowing the load/displacement curve to be 

obtained. At breaking point, the stress applied to the fiber was deduced using the distance d 

between the two faceplates (Fig. 3c). A non-linear relation defined by Proctor and improved by 

Griffioen [25] can give the evolution of the stress  (GPa) as a function of second polynomial 

order i.e.: 
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where α is a non-linear elastic parameter (typical value of  is 6 for the most optical fibers [26, 

27]). The strain  was defined by: 
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 where E  is the Young modulus, dc is the polymer coating diameter, df  is the fiber diameter, 2dg 

 is the total depth of the 2 grooves and d is the distance between the two faceplates (Fig. 3c).  



Initially, the distance between the two plates (fixed block and movable plate), between which the 

optical fiber is placed, is 10 mm. The movable plate moves to the left and thereby compresses 

the fiber which breaks in its middle. The load gradually increases when the movable plate moves 

closer to the fixed block and the load decreases drastically after the fiber breaks. The distance d 

between the two parts of the fiber at rupture is equal to: 10 mm minus the distance covered by 

the movable plate before fiber breaking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  (a) Bending bench used; (b) and (c) fiber between thrust blocks. 

 

 

 

3.2 Tensile bench used 

The dynamic tensile test consists of subjecting fibers to a deformation under a constant velocity 

until rupture. The fiber is rolled three times around two pulleys (Fig. 4); the lower pulley is fixed 

and the upper pulley is movable with different velocities (0.8, 2.6, 4.4, 6.2 and 8 mm/s). These 

strain rates, expressed as a percentage of the initial sample length (200 mm), correspond to 4 10
-3

 

s
-1

, 13 10
-3

 s
-1

, 22 10
-3

 s
-1

, 31 10
-3

 s
-1

 and 40 10
-3

 s
-1

. This represents the minimum and maximum 

deformation velocity for optical fibers subjected to stretching in telecommunication networks. 

Tensile testing was performed in a controlled environment with 46-52% relative humidity with a 

maximum of 5 % humidity variation for each series of the tensile tests. 

During the test, the tensile load was measured using a dynamometric cell (load sensor) while the 

fiber deformation was deduced from the displacement between the fixed lower pulley and the 

mobile higher pulley (Fig. 4). 

The testing procedure used 20 samples for each velocity. 
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Fig. 4. Tensile test bench used 

 

 

 

4. RESULTS and DISCUSSION 

 

4.1 Bending tests 

Figure 5 shows the change of the failure distance between the plates when the fluoride fiber was 

subjected to the two point bending test for different faceplate velocities. 

It is noted that the failure distance between the two plates decreases according to their velocity. 

Indeed, the fluoride fiber is very brittle and breaks for large curvature radii when placed between 

the two plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Failure distance for fluoride fiber under two point bending test 
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The stiffness k of the fiber is given as following [25]: 

 

  4.2/'.'1... /24 RrErk        (8) 

 

in which R is the fiber's bending radius and r is the  radius of the fiber's cross-sectional area (Fig. 

6 ). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Schematic view of a bent fiber 

 

 

The fiber breaks for large curvature radii R, and Eq. (8) shows that the fiber stiffness k is initially 

high at the beginning of the displacement of the faceplates and thus the rupture occurs quickly. 

When placing the fluoride fibers in the desiccator for one week in order to maintain them in a 

dry atmosphere, some residual water was removed and this leads to partial micro-crack closures. 

This allows the fiber to bend more and a smaller failure distance between the plates was obtained 

(Fig. 5). Thus, the failure fiber force for the desiccated fiber was a little higher than that of an ‘as 

received fiber’ (Fig.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Failure load for fluoride fiber under two point bending test 
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Silica fiber tolerates more bending than the fluoride fiber. The failure distance for the silica fiber 

is on average 5 times smaller than that of fluoride fiber (Fig. 8). Silica fiber can endure smaller 

curvature radii than the fluoride fiber and therefore will break for loads which are 8 times higher 

(Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Faceplates distance at failure for silica and fluoride fibers 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

Fig. 9. Failure load for silica and fluoride fibers for different faceplate velocities 

 

 

The stress of an optical fiber subjected to bending between two plates at each part of the bent 

fiber is equal to [25]: 
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The maximum stress max was obtained for  = r (Fig. 6):  
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For '' equal to 4.75 (using  = 6 in Eq. 6), Eq. (11) leads to:  
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One can note that for silica optical fibers under bending tests, when the plate velocity was small, 

the failure distance was large (Fig. 8), thus the movable plate (Fig.3) had covered a small 

distance. That led to a large curvature radius R and then the maximum stress was small (Eq. 12). 

For that reason, an increase of the failure force according to plate velocity was obtained (Fig. 9). 

It was not the case for fluoride fibers where failure stresses decrease according to plate velocities 

(Fig. 7). As mentioned above, fluoride fibers contain many flaws, impurities and microcracks 

introduced during drawing and spooling [10] even if many efforts were made to remove these 

flaws. The fluoride fibers having defects with sizes a few nanometers cannot be represented by 

Eqs. 9-12. These equations are valid for a continuous medium without defects.  The silica fibers 

have fewer intrinsic micro-defects than the fluoride fibers and the stresses inside silica fibers can 

be modeled by Eq. 11. 

 

 

4.2 Tensile tests 

Figure 10 shows the tensile failure strength for the fluoride fibers subjected to tensile tests at 

different faceplate velocities. The tensile bench determines the velocity to the upper pulley 

(movable pulley) (Fig. 4). It follows that the higher the velocity was, the higher the failure load. 

The experimental results can be smoothed by a quadratic polynomial form. 

Figure 11 shows that the higher the velocity was, the greater the tensile force, and therefore the 

failure distance was small. The fiber elongation had a linear change according to the movable 

pulley velocity. 
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Fig. 10. Failure load for fluoride fiber under tensile test for different faceplate velocities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Elongation for fluoride fiber under tensile test for different faceplate velocities 

 

 

Figure 12 compares the failure forces for silica and fluoride fibers submitted to tensile tests. 

Table 2 gives some physical properties of fluoride and silica fibers. Young's modulus of silica 

fibers was higher than that of the fluoride fibers (Table 2). Therefore, failure strength of silica 

fibers was higher than that of fluoride fibers, even if the cladding diameter of fluoride fiber was 

greater than that of the silica fiber (Fig. 13). The failure load for the silica fiber was, on average, 

9 times higher than that of the fluoride fiber (Fig. 12). 
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Fig. 12. Failure load for fluoride and silica fibers under tensile test for different faceplate 

velocities 

 

 

Table 2. Physical properties of silica and fluoride glasses 

Parameters Silica Fluoride 

Young’s Modulus  E (GPa) 72 55 

Knoop Hardness  H (GPa) 7.7 2.2 

Shear modulus (GPa) 29.5 20.5 

E/H 9.4 24 

Glass Transition Temperature (°C) 1100-1700 257 

Melting Temperature (°C) 1721 450 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Schematic sizes of fluoride and silica fibers 

  

 

 

4.3 Mechanical strength of fluoride fiber 

The main problem with the fluoride fiber is its poor mechanical strength. Degradation may be 

due to attack by atmospheric moisture or stresses and cracks introduced into the fiber during 

drawing and spooling [10]. Whatever the intrinsic strength of a glass, its actual strength depends 

on minor flaws. It operates on the ‘‘weakest link’’ principle. 

Coating 

Core 

Cladding 

Fluoride fiber Silica fiber 



The Hillig and Charles model [28] considers that crack blunting can occur due to plastic or 

viscous deformation as well as corrosion (Fig. 14). When under strain, if the stress at crack tip is 

not enough to cause plastic flow, it is possible for the crack to sharpen due to corrosion until the 

plastic yield stress is reached [29]. On the other hand, for the fluoride fiber, a higher value of the 

ratio of Young’s modulus to hardness (E/H) was obtained (Table 2) and indicates greater 

tendency to plastic behavior. So, a crack blunting (Fig.14) can easily take place for fluoride fiber. 

 

 

 

 

 

 

 

 

 

Fig. 14. Crack blunting for fluoride fiber 

 

 

 

5. CONCLUSION 

 

The difficulty for testing fluoride fibers was due to their fragility and their cost. Indeed, the 

fluoride fibers are more expensive than silica fibers and one must take a lot of care to minimize 

sample losses during testing. Furthermore, their fragility involves frequent breaking before the 

beginning of bending or tensile tests. Although the pulley diameters for the traction bench were 

quite large, the winding of fluoride fiber around the pulley must be done slowly to avoid 

handling or compression of another portion of the fiber already wound around the pulley.   

 

In addition, fluoride fibers have many intrinsic defects that are not uniformly distributed. The 

number of testing experiments was quite high because many fiber failures occur around the 

pulley and not in the middle of the part of fiber between the two pulleys during the tensile test. 

 

The bending test also required high accuracy. The setting of the fiber between two plates hed to 

be done slowly and a few seconds before the start of the dynamic test.  A fiber which was left for 

a long time between the plates broke before the test starts. 

The silica fiber, which is more flexible than the fluoride fiber, was easier to test. 

 

Although the fluoride fiber has very interesting optical properties, it remains very sensitive to 

humidity.  Even if the residual moisture was reduced, the fiber strength increased only very 



moderately. In addition, tests should be performed within a few minutes of the fiber being 

removed from the desiccator. 

 

The tensile tests showed that fluoride fiber elongation decreased with increasing velocity. On the 

other hand, the failure loads remained much lower than that of the silica fiber.  

Finally, fluoride fibers had a higher value of the ratio of Young’s modulus to hardness (E/H) 

which led to crack blunting.  
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