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Abstract: Mesothelin is a membrane-associated protein overexpressed in pancreatic ductal
adenocarcinoma (PDAC). Some mesothelin-targeted therapies are in clinical development but the
identification of patients eligible for such therapies is still challenging. The objective of this study was to
perform the imaging of mesothelin in mice models of PDAC with a technetium-labeled anti-mesothelin
single-domain antibody (99mTc-A1). Methods: The Cancer Genomic Atlas (TCGA) database was used
to determine the prognostic role of mesothelin in PDAC. 99mTc-A1 was evaluated both in vitro in
PDAC cells (SW1990 and AsPC-1) and in vivo in an experimental model of mesothelin-expressing
PDAC (AsPC-1) in mice. Results: TCGA analysis showed that PDAC patients with high mesothelin
expression had a shorter overall survival (P = 0.00066). The binding of 99mTc-A1 was 2.1-fold greater
in high-mesothelin-expressing AsPC-1 cells when compared to moderate-mesothelin-expressing
SW1990 cells (p < 0.05). In vivo, the 99mTc-A1 uptake was 3.5-fold higher in AsPC-1-derived tumors
as compared to a technetium-labeled irrelevant antibody (99mTc-Ctl) (p < 0.01). Conclusions: 99mTc-A1
accurately allows imaging of mesothelin-expressing experimental PDAC tumors. Our experiments
paved the way for the development of a companion test for mesothelin-targeted therapies.

Keywords: PDAC; Mesothelin; noninvasive imaging

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors, representing
the fourth leading cause of cancer-related deaths worldwide in 2018 [1]. By the year 2030, PDAC is
projected to surpass breast, colorectal, and prostate cancer and to become the second most deadly
malignancy [2]. Despite intense clinical research, the five-year survival rate remains just around 5–7%
and one-year survival is achieved in less than 20% of cases [3]. Moreover, resistance to chemotherapy
and lack of effective therapies contribute to the pejorative prognosis [4]. Finally, the majority of PDAC
is diagnosed at advanced stages, thereby limiting therapeutic windows to manage patients [5].

The mesothelin gene encodes a 71 kDa precursor protein. It is processed in a shed form known
as Megakaryocyte Potentiating Factor, and a 40 kDa GPI-anchored membrane form, which is the
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mesothelin protein itself [6]. Mesothelin expression is limited to mesothelial cells of the pleura,
peritoneum, and pericardium. In normal tissues, the expression of mesothelin is very weak. However,
its overexpression has been evidenced in several types of cancers including ovarian cancers and
mesothelioma. Hence, mesothelin has been identified as a diagnostic marker and a relevant therapeutic
target. As much as 80–85% of PDAC displayed greater levels of mesothelin [6,7]. No significant
elevation of the shed form was detected in the serum of PDAC patients. The major form in cancers is
membrane-associated mesothelin [8]. Mesothelin-targeted therapies are currently on clinical evaluation
for the management of PDAC patients. However, the identification of patients eligible for such
therapies still remains a challenging issue [6].

We recently validated 99mTc-A1 as a single-domain-based imaging agent used for the phenotypic
imaging of membrane mesothelin-expressing breast cancer [9]. In this study, we tested the ability of
99mTc-A1 in imaging mesothelin-expressing PDAC tumors.

2. Results

2.1. Overexpression of Mesothelin in PDAC Patients Is Associated with Poor Clinical Outcomes

Tumoral PDAC-derived specimens demonstrated significant increased levels of mesothelin
(MSLN) when compared to peritumoral (nontumoral) pancreatic tissues (Figure 1A) (n = 179 and 171,
respectively; p < 0.05). PDAC patients with high MSLN tumoral gene expression had a significant
decreased overall survival when compared to patients with low expression (Figure 1B) (n = 177;
P = 0.00066; HR: 2.05). Moreover, an elevated expression pattern was only observed in advanced stages
(comparison of stages I and II to stages III and IV, Pr(>F) = 0.00881) (Figure 1C). To further validate
our PDAC in silico dataset study model, greater expression of proliferative markers MKI67, CCNB1,
and PCNA were only depicted in tumoral PDAC-derived specimens (Figure S1A, p < 0.05) and their
overexpressions were associated with a shorter overall survival (Figure S1B, p < 0.01).

Figure 1. Prognostic value of mesothelin expression by pancreatic ductal adenocarcinoma (PDAC)
patients for survival. (A) Expression of mesothelin in tumoral (T) and nontumoral (NT) pancreatic
tissues from The Cancer Genomic Atlas (TCGA) and Genomic Tissue-Expression (GTEx) datasets.
The red and gray boxes represent PDAC and nontumoral-derived tissues, respectively (T: n = 179
and NT: n = 171). (B) Kaplan–Meier plots of overall survival probability (plotted on Y-axis) of PDAC
cancer patients is shown (TCGA data, n = 177). Patients have been stratified into high (red lines, n = 59)
or low (black lines, n = 118) expression-based “risk-groups” by their gene expression of mesothelin.
The patient follow-up is indicated in months on the X-axis. Respective log-rank test p-value, HR,
and computed median survivals of low and high expression cohorts in months are shown and were
calculated at the best auto-selected cut-off. (C) Violin plot showing the average gene expression levels
of mesothelin at early (I and II) and advanced (III and IV) cancer stages of PDAC patients (TCGA
database, n = 179). * p < 0.05.
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2.2. 99mTc-A1 Binding on Mesothelin-Expressing PDAC Cell Lines

Through an unbiased in silico approach, mesothelin expression was assessed in 20 PDAC cell
lines. An increased, moderated, and reduced mRNA expression of mesothelin was evidenced in
AsPC-1, SW1990, and MIAPaCa-2, respectively (Figure 2A). Based on this observation, high-, medium-,
and low-MSLN-expressing PDAC cell lines were selected for in vitro characterization. Mesothelin
protein was expressed by AsPC-1 and SW1990 but not by MIAPaCa-2 cells (Figure 2B, Figure S2).
99mTc-A1 binding was then assessed on these cell lines (Figure 2C). 99mTc-A1 binding was 2.1-fold
higher in AsPC-1 as compared to SW1990 cells (p < 0.05).

Figure 2. 99mTc-A1 binds to mesothelin-expressing cells in vitro. (A) Heatmap displaying MSLN gene
expression levels across 20 PDAC cell lines. (B) Mesothelin expression of MIAPaCa-2, SW1990, AsPC-1
cells was assessed by Western blot. (C) Binding of 99mTc-A1 to SW1990 and AsPC-1 cells (n = 6 per
condition). Results were expressed in counts per minute (CPM). * p < 0.05 vs. SW1990.

2.3. SPECT-CT Imaging of Mesothelin in Subcutaneous Tumor Model

Coronal and transversal views of fused Single Photon Emission Computed Tomography
(SPECT-CT) images are shown in Figure 3A. 99mTc-A1 uptake in mesothelin-positive AsPC-1 cells was
readily identifiable, whereas a weak signal was detected using the irrelevant control sdAb (Figure 3A).
This observation was further confirmed by image quantification showing that 99mTc-A1 uptake was
3.5-fold higher than 99mTc-Ctl uptake in AsPC-1 tumor-bearing mice (2.4 ± 0.6 vs. 0.7 ± 0.2% ID/cm3,
P < 0.01) (Figure 3B). This result was then confirmed by ex vivo gamma-well counting showing that
the 99mTc-A1 condition displayed a significant greater uptake (P < 0.01) (Figure 3C). Linear regression
analysis confirmed the observations from both in vivo and ex vivo quantifications (Y = 1.25 × X + 0.04,
r2 = 0.98, P < 0.001) (Figure 3D). Thus, these results validate the use of 99mTc-A1 in assessing in vivo
MSLN expression in PDAC.
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Figure 3. 99mTc-A1 binds to AsPC-1 tumor in vivo. (A) Representative coronal and transversal views
of fused SPECT-CT images of AsPC-1 tumor-bearing mice one hour after IV injection of 99mTc-Ctl
(n = 5) or 99mTc-A1 (n = 6). B: bladder and L: liver. Tumor is indicated by the white arrow. (B) In vivo
quantification of 99mTc-A1 and 99mTc-A1 tumor uptake from SPECT images. (C) Ex vivo quantification
of 99mTc-A1 tumor uptake from postmortem analysis. (D) Correlation between tumor uptake assessed
by SPECT and biodistribution. ** p < 0.01 vs. 99mTc-Ctl.

3. Discussion

Despite intense clinical efforts, PDAC remains one of the most aggressive malignancies with a
five-year survival rate around 5–7% [3]. The advanced stages of PDAC at the diagnosis and the intrinsic
resistance to standard therapies give rise to this dismal prognosis [7]. Until today, most clinical trials
have failed to demonstrate significant improvement in patient survival [10]. Identification of targetable
molecules for PDAC early diagnosis and treatment thus represents an urgent need. Among the
potential targets, current evidence includes mesothelin as a PDAC biomarker. Mesothelin expression
is restricted to mesothelial cells (pleura, peritoneum, and pericardium) and its physiological function
still remains unknown. Indeed, mesothelin seems to be nonessential in normal tissues [11]. However,
mesothelin is present in a wide range of tumors including ovarian and lung cancers (60–65%), and also
PDAC-derived tumors (80–85%) [12]. Several studies demonstrated a crucial role of mesothelin in cell
survival, proliferation, and resistance to chemotherapy [7,13].

Using TCGA datasets, we observed an overexpression of mesothelin only in PDAC-derived
specimens in comparison to nontumoral samples. In agreement with other previous studies,
high expression of mesothelin predicted shorter overall survival of PDAC patients [7,14]. The increase
of mesothelin expression in the advanced disease stages of PDAC suggests its relevance as a disease
progression biomarker. Accumulating evidences suggest its role as a diagnostic marker and a therapeutic
target [7]. Several strategies including monoclonal antibodies (mAbs), vaccines, or immunotoxins are
currently under clinical evaluation [7]. Importantly, soluble mesothelin assays failed in validating their
diagnostic potential for PDAC detection despite overexpression of the membrane-bound form [15,16].
No significant variation of serum mesothelin levels could be evidenced regardless of the different stages
of PDAC progression [17]. Nevertheless, identification of patients eligible for such anti-mesothelin
therapies still remains a perplexing issue.
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Nuclear imaging represents a highly sensitive and noninvasive imaging modality that could
address this challenge. Indeed, we previously validated 99mTc-A1, which is a single-domain
antibody-derived imaging agent, as an efficient probe in accurately targeting mesothelin-expressing
triple-negative breast cancer [9]. Herein, we evaluated the potential of 99mTc-A1 as an imaging
probe of mesothelin-expressing PDAC. Our in vivo experiments showed that 99mTc-A1 enabled
the noninvasive visualization of AsPC-1-derived tumors by SPECT imaging at early time points.
These results reinforce our study on triple-negative breast cancer, despite the lower 99mTc-A1 uptake
of PDAC mesothelin-positive tumors [9]. In addition to triple-negative breast cancer and PDAC,
99mTc-A1 imaging represents a relevant option to visualize other aggressive cancers overexpressing
mesothelin such as ovarian and lung cancers, for which the imaging modalities are mainly based
on the use of conventional antibodies. However, further in vivo competition experiments using
unlabeled A1 would confirm the specificity of 99mTc-A1 uptake by PDAC-derived tumors as previously
established in breast cancer [9]. To our knowledge, all mesothelin-targeted radiotracers indeed
rely on the production of mAbs or single-chain variable fragments (scFv) [18–20]. Their hepatic
elimination and their slow blood clearance are the main limitations for their use as imaging probes.
The smaller size of sdAb-based imaging agents allows: (1) a fast blood clearance and (2) image
acquisitions with high target-to-background ratios as early as one hour following administration.
Future perspectives of this work include evaluation of the sensitivity of 99mTc-A1 and its ability to
phenotype mesothelin-expressing tumors in an orthotopic model of PDAC. These results support
further preclinical development of 99mTc-A1 and translation to human applications for cancers that
overexpress mesothelin.

Future directions of this work would therefore include clinical translation of 99mTc-A1 for the
identification of mesothelin-expressing PDAC that would allow selection of patients who might benefit
from mesothelin-targeted therapies that are currently undergoing clinical trials [6].

4. Materials and Methods

4.1. Patients Online Datasets

Gene expression levels of mesothelin (MSLN), MKI67, CCNB1, and PCNA were analyzed and
compared in tumor (T) and normal tissue (NT) from PDAC-derived specimens using PAAD (Pancreatic
adenocarcinoma), TCGA (The Cancer Genome Atlas), and GTEx datasets (T: n = 179 and NT: n = 171)
through the available interface Gene Expression Profiling Interactive Analysis (GEPIA) [13]. The results
published here are based upon data generated by the TCGA Research Network [21]. Survival analysis
was performed using the Kaplan–Meier (KM) Plotter Database as already described [22–24]. The gene
expression was extracted from the TCGA database, with at least five-year follow-up data from PDAC
patients (n = 177). The data were not adjusted for clinical status and to analyze the prognostic value
of MSLN, MKI67, CCNB1, and PCNA genes, the KM method was used to estimate survival curves.
Hazard ratio (HR) and overall survival were calculated at the best auto-selected cut-off. p-values were
calculated using the log-rank test to compare survival curves of high and low gene expression groups
and a p-value below 0.05 was considered to be statistically significant.

4.2. Cell Lines Gene Expression Data and Visualization

Preprocessed microarray gene expression data deposited in ArrayExpress (E-MTAB-3610,
EMBL-EBI, Cambridgeshire, UK) were downloaded from the Genomics of Drug Sensitivity in Cancer
(GDSC) web page [25]. The gene symbols were mapped to Ensembl gene IDs by using the R package
biomaRt v.2.40.3 with the human genome version GRCh37.p13. The R package pheatmap v.1.0.12 was
used to visualize the gene expression data using hierarchical clustering with Euclidean distance and
“complete” agglomeration method.
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4.3. Cell Lines and Culture Conditions

AsPC-1, SW1990, and MIAPaCa-2 cell lines were maintained at 37 ◦C and 5% CO2 and cultured
in DMEM medium (4.5 g/L glucose, 2 mM L-glutamine, 1 mM Sodium Pyruvate) supplemented with
10% fetal bovine serum and 1% penicillin–streptomycin.

4.4. Immunoblotting

Total proteins from AsPC-1, SW1990, and MIAPaCa-2 cells were extracted using RIPA buffer
(Thermo Fisher Scientific, Illkirch, France). After migration in 12% SDS-polyacrylamide gel, proteins
were transferred to nitrocellulose membranes (90 min, 100 V). They were saturated in PBS-Tween 0.1%
containing 2% milk at room temperature for 1 h and then probed overnight with the antimesothelin
antibody (1/2000, Boster Immunoleader, Pleasanton, CA, USA). Membranes were then stripped during
10 min (0.1% SDS, 1.5% glycin, 1% Tween, pH 2.2) for β-actin detection (1/10 000, Beckton Dickinson,
Le Pont de Claix, France).

4.5. In Vitro Binding Studies

A1 and irrelevant control single-domain antibody (sdAb) were radiolabeled with technetium-99m
(99mTc) using the tricarbonyl method as previously described [9]. For in vitro studies, 200,000 AsPC-1,
SW1990, and MIAPaCa-2 cells were incubated with 40 nM of 99mTc-A1 for 1 h at 4 ◦C. After five washes
in cold PBS, the radioactivity was determined using a γ-counter (Wizard2, Perkin Elmer, Courtaboeuf,
France). Unspecific binding of 99mTc-A1 was determined on MIAPaCa-2 cells and was subtracted from
99mTc-A1 binding on SW1990 and AsPC-1 cells. Results were expressed in counts per minute (CPM).

4.6. Tumor Model, SPECT-CT Imaging, and Postmortem Analysis

All animal procedures conformed to French government guidelines (Articles R214-87 to R214-126;
European directive 2010/63/UE). They were performed in an approved facility (C385161 0005) under
permit APAFIS#3690-2016011916045217 v4 from the French Ministry of Research. Four million
AsPC-1 cells were subcutaneously injected into the left flank of five-week-old female Swiss Nude
immunodeficient mice (n = 11), in a 2/1 (v/v) PBS/Matrigel (Corning) mix. Tumors were allowed to
grow until they reached 200 mm3. AsPC-1-tumor-bearing mice were either injected with irrelevant
control 99mTc-Ctl (n = 5) or 99mTc-A1 (n = 6). SPECT-CT acquisitions were performed one hour after
injection of 42.1 ± 9.0 MBq of 99mTc-sdAbs. 99mTc-Ctl and 99mTc-A1 tumor uptake was expressed
in % ID/cm3. Two hours after injection and immediately following SPECT-CT image acquisitions,
anesthetized mice were euthanized using CO2 and tumors were harvested and weighed, and tracer
activity was determined with a γ-counter (Wizard2, Perkin). Results were corrected for decay, injected
dose, and tumor weight, and expressed as % ID/g.

4.7. Statistics

Results are expressed as means ± standard deviation and analyzed with GraphPad Prism software
(Version 6, software, San Diego, CA, USA). Differences between groups were analyzed using an
unpaired Mann–Whitney test for intergroup analysis. Significance of linear correlations was assessed
using a Pearson’s test. A p value below 0.05 was considered significant (* P < 0.05, ** P < 0.01,
*** P < 0.001).

5. Conclusions

99mTc-A1 allows imaging of mesothelin-expressing PDAC. Our study represents the first step to
using this technology as a companion test to select patients eligible for mesothelin-targeted therapies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1531/s1,
Figure S1: Markers of proliferation are associated with decreased overall survival in patients with PDAC. Figure S2:
Mesothelin expression of MIAPaCa-2, SW1990 and AsPC-1 was assessed by Western Blot.
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