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Abstract 

Purpose Acute ischemic stroke is one of the most causes of death all over the world. Onset to treatment 

time is critical in stroke diagnosis and treatment. Considering the time consumption and high price of 

MR imaging, CT perfusion (CTP) imaging is strongly recommended for acute stroke. However, too much 

CT radiation during CTP imaging may increase the risk of health problems. How to reduce CT radiation 

dose in CT perfusion imaging has drawn our great attention. 

Method In this study, the original 30-pass CTP images are downsampled to 15 passes in time sequence, 

which equals to 50% radiation dose reduction. Then, a residual deep convolutional neural network (CNN) 

model is proposed to restore the downsampled 15-pass CTP images to 30 passes to calculate the 

parameters such as CBF (Cerebral Blood Flow), CBV (Cerebral Blood Volume), MTT (Mean Transit 

Time), TTP (Time To Peak) for stroke diagnosis and treatment. The deep restoration CNN network is 

implemented simply and effectively with 16 successive convolutional layers which form a wide enough 

receptive field for input image data. 18 patients’ CTP images are employed as training set and the other 

6 patients’ CTP images are treated as test dataset in this study.   

Results Experiments demonstrate that our CNN network can restore high-quality CTP images in terms 

of structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). The average SSIM and 

PSNR for test images are 0.981 and 56.25, and the SSIM and PSNR of regions of interest (ROI) are 

0.915 and 42.44 respectively, showing promising quantitative level. In addition, we compare the 

perfusion maps calculated from the restored images and from the original images, and the average 

perfusion results of them are extremely close. Areas of hypoperfusion of 6 test cases could be detected 

with comparable accuracy by radiologists. 

Conclusion The trained model can restore the temporally downsampled 15-pass CTP to 30 passes 

very well. According to the contrast test, sufficient information cannot be restored with e.g., simple 

interpolation method and Deep Convolutional Generative Adversarial Network (DCGAN), but can be 

restored with the proposed CNN model. This method can be an optional way to reduce radiation dose 

during CTP imaging.  

mailto:chenyang.list@seu.edu.cn
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Introduction 

As one of leading causes of death, stroke may bring serious long-term disability. According to the 

statistics, there are about 2.5 million new stroke cases in China every year, and about 1.7 million patients 

die from stroke [1]. In acute stroke treatment, time is life. It is strongly recommended to conduct a rapid 

diagnosis of suspected stroke patients on the basis of the diagnostic procedure, complete the basic 

assessment of brain CT and start treatment within 60 minutes after reaching the emergency room as much 

as possible, and perform intravenous thrombolysis within 6 hours by Chinese Medical Association 

Cerebrovascular Disease Group [2]. Considering the drawbacks of imaging speed and expense of MRI, 

CT perfusion (CTP) imaging is widely used in acute stroke diagnosis in China. However, CT radiation 

dose has always been concerned. How to reduce radiation exposure while maintaining image quality is 

a key point in CT imaging, which is known as the principle of “as low as reasonably achievable (ALARA)” 

[3]. To reduce radiation dose and related risk of cancers, low dose CT (LDCT) has been of great research 

interest in CT imaging. Generally speaking, there are three typical approaches to reduce CT radiation: 

reducing tube current [4], sparse-view sampling [5], and region-of-interest (ROI) scanning [6]. Current 

brain CTP consists of about 30-pass CT images, which means scanning brain for 30 times within about 

50 seconds after injecting iodinated contrast agents. Inspired by the sparse-view low-dose CT imaging, 

we cut down the original 30 passes to 15 passes in time sequence since it is the easiest way to reduce 

scan radiation for our study. Then some brain perfusion parameters such as CBF (Cerebral Blood Flow), 

CBV (Cerebral Blood Volume), MTT (Mean Transit Time) and TTP (Time To Peak) were calculated for 

clinical diagnosis. However, the missing data would lead to miscalculating brain perfusion parameters. 

Hence, we intended to recover 30-pass high-quality CTP images from the downsampled CTP images. 

Streak artifacts usually occur in sparsely sampled low-dose CT reconstruction when using analytical 

methods. Interpolating the missing view can be an optional way to reduce artifacts of reconstructed 

sparse-view CT images [7, 8]. Recently, deep learning methods have been available for extensive 

computer vision tasks, such as image classification [9], semantic segmentation [10, 11], super-resolution 

generation [12] and medical image reconstruction [13]. As for low-dose CT imaging, H. Lee[14] and D. 

Lee[15] proposed some effective convolutional neural networks (CNN) to interpolate sparsely sampled 

CT data and reduce the streak artifacts in sinogram and image domain. More recently, a generative 

adversarial network (GAN) containing convolutional layer was trained to estimate routine-dose CT 

images from low-dose CT images [16]. Though the results showed improved performance, the 

application of comprehensive networks are greatly limited by the high computation cost related to the 

massive back-projections in network training. Besides, these networks were not developed for CTP 

image reconstruction task. 

In this study, we proposed a simple three-dimensional convolutional neural network to interpolate 

the missing data to restore temporally downsampled CTP images in time sequence. Then the restored 

30-pass CTP images were input to the perfusion tool PMA (ASIST-Japan) [17] to calculate CBF, CBV, 

MTT and TTP for stroke diagnosis. Section II briefly introduce the residual deep learning model. Section 

III presents the experiment results. In Section IV, we discuss some related issues, and in Section V, we 

make a conclusion for this work. 

II. Methods and Materials
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II.A Deep CNN model
Deep convolutional neural networks (DCNN) using back propagation algorithm, sometimes also 

containing deconvolutional layers, is an outstanding tool for image analysis and image reconstruction 

[18, 19, 20]. Considering our CTP data has three dimensions: height, weight and time sequence, we 

constructed a simple CNN model with 3-D convolutional layers and activation layers. Different from 

LSTM which is applied in time series analysis [21], the 3-D convolutional operation can extract 

information of the images along the direction of width and height as well as that of time series. Thus 

CNN can probably reconstruct CTP data from temporal information as well as voxel-wise information 

in image plain. Because rectified linear unit (ReLU) has excellent performance in computer vision tasks 

and fast convergence speed in training [20], it is the only activation function for our model. Meanwhile, 

pooling layers are not adopted to keep the output image size identical to input image size. 

The proposed CNN model with 8 successive convolutional blocks were implemented by 

TensorFlow (Version 1.10). Each convolutional block consists of two 3-D convolutional layer followed 

by ReLU activation layers. The first 7 blocks in blue have 64-channel feature maps while the last block 

in red has 1-channel output, as shown in Fig. 1. A convolution based plain network has connections only 

between adjacent layers, as shown in Fig. 2(a). It will increase the training difficulty when the network 

becomes deeper due to gradient diffusion. In ResNet, a simple identity mapping directly connecting the 

input and output layers and bypass connection are added into the network [9, 22]. In the end, the 7 blue 

blocks were implemented with network structure of Fig. 2(b) and the last red block were implemented 

as Fig. 2(c). For each convolutional layer, kernel size was set to 5*5*5, stride was set to 1 and padding 

zeros at the edges of each feature map to keep image size consistent. Original CTP images of 30 passes 

were treated as ground truth. The downsampled 15-pass CTP was input to CNN model to extract feature 

maps and finally feature maps were resized to 30 passes as restored CTP output. Here the resize operation 

is easily realized with a deconvolutional layer with stride (1,1,2).  

Fig. 1 The structure of residual CNN model. 

Learning the differences between input data and ground truth, which is commonly called residual, 

has faster convergence speed when training CNN [15, 23]. This is because it is difficult to map the 

downsampled image data to ground truth with conventional CNN structure (eg. AlexNet and VGG) 

directly, since CNNs are usually initialized with small weights which will result in a large loss between 

the CNN output and ground truth to optimize. However, the residuals, which can be considered as the 

noise in input data, are much closer to 0 and easier to learn since CNN is initiated with an initializer of 
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Fig. 2 Plain network and residual network: (a) plain network, and (b) residual network, (c) revised 

residual network. 

truncated normal distribution, where mean and standard deviation are 0.0 and 1.0 respectively. The 

proposed residual CNN model can be expressed by eq. 1, 

( )O(x) resize f(x)+ x                               (eq.1) 

where x is the input, f(x)  is convolutional operations and O(x)  is output.  

In our task, the input data was divided into smaller patches of size 32*32*15. According to our 

computation, the receptive field of the 15 successive 5*5*5 convolutional layers is 61, which is large 

enough to cover the input image. When computing pixel-wise loss, the loss of each pixel was taken into 

account, which contributed to increasing training data volume significantly. Pixel-wise mean absolute 

error (L1 loss) was adopted in our proposed model 

II.B Data preparation and network training

In this study, the CTP images were collected from eight eligible slice locations of 24 acute stroke 

patients, as demonstrated in Fig. 3. The scan protocol is detailed as follows: tube voltage, 80 kV; tube 

current, 250mA; slice thickness, 5mm. Each slice location has 30 CTP images with 512*512 pixels 

corresponding to 30 pass in time sequence. 18 of 24 patients were randomly selected as training set and 

the other 6 patients were used as test set. The original 512*512*30 data volume for each slice location 

was first downsampled to the dataset of size 512*512*15 to simulate reducing 15 scans. We subdivided 

the data volume to 32*32*N (N is 15 for training and 30 for test) 3-D patches along width and height 

directions as the input of CNN network, since batch size needs to be set higher when training the network 

with small patches [24]. Cropping stride was set to 16 and 32 for training and test dataset respectively. 

Fig. 3 Eight slice locations of selected CTP scans. 
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The proposed CNN model was trained by adaptive moment estimation (Adam) optimization [25]. 

The initiated learning rate was set to 1e-4 and then decayed in each epoch. The batch size was set to 32. 

It took about 35 hours to train 10 epochs to acquire stable convergence on our PC (Core i5 CPU, 1080Ti 

GPU, 16G RAM), of which the loss would not decline. 

III. Result Analysis

III.A Restoration results
After training, the test dataset was input into the trained CNN model. Original 30-pass CTP images 

were used as ground truth for verifying the validity of our interpolation CNN model. We also used cubic 

interpolation and deep convolutional GAN (DCGAN) to restore 15-pass CTP images for comparison. 

Cubic interpolation is a conventional interpolation method and easy to realize. DCGAN is a proven 

effective generative model for feature representation, image generation and image analysis [26]. Besides, 

30-pass CTP images were also downsampled to 10 passes and then processed using the retrained CNN 

of proposed structure.  

Fig.4 shows the 12th-pass and 18th-pass ground truth CTP images and restored downsampled images 

of one selected patient using different algorithms from test dataset. The concentration of contrast agents, 

which is near the peak at 12th pass, decreases a lot at 18th pass in a brain blood circulation period. The 

enlarged images of red box are shown in the top-left corner. From Fig.4, it can be seen that 15-pass CNN 

method can obtain high-quality CTP images with finer image details and clearer image edges, especially 

vascular details which is critical to calculate perfusion parameters. However, results of 10-pass CNN (c) 

are a bit fuzzy and lose some highlighted vessel pixels. Results of DCGAN (e) still exist some noise 

since that training of GAN is not stable [27]. Fig.5 gives the 30-pass time density curve (TDC) of anterior 

cerebral artery from the selected patient. From Fig.5, we can notice that curves generated by our 15-pass 

CNN is the closest to the ground truth, especially when the contrast density is high-level from the 10th 

pass to 15th pass. Curve of 10-pass CNN (yellow) loses a lot of information during 10th and 15th pass. 

Curve of cubic (purple) and DCGAN (green) show lower peak values and delay of reaching peak in time 

sequence. That will lead to higher TTP value when calculating perfusion parameters. 

Fig. 4 The first row and second row are the 12th pass and 18th pass images of selected patient at slice 

location 64. (a) is the original image, (b) is result of our 15-pass CNN, (c) is result of 10-pass CNN, (d) 

is result of 15-pass cubic interpolation, (e) is result of 15-pass DCGAN. 

(1a) (1b) (1c) (1d) (1e)

(2a) (2b) (2c) (2d) (2e)
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Fig. 5 The time density curves of anterior cerebral artery from selected patient. 

III.B Quantitative analysis
We evaluated the restored image quality quantitatively with structural similarity index (SSIM) and 

peak signal-to-noise ratio (PSNR). Definition of SSIM is demonstrated in eq. 2,  

2

2 2 2 2

2

(2 )(2 )
( , )

( )( )

x y 1 xy

x y 1 x y

c c
SSIM x y

c c

  

   

 


   
(eq.2) 

where x and y are two images of same size,  and   are average and covariance, 
1 *1c k L and

2 2 *c k L are two variables to stabilize the division with weak denominator, 
1 20.01, 0.03k k   by 

default, and L  is the dynamic range of the pixel-values. SSIM ranges from 0 to 1, and 1 means the

highest similarity. PSNR is defined as eq.3,  

10 10( ) 20*log (MAX ) 10*log (MSE)IPSNR x,y                        (eq.3) 

where MSE is mean square error between ground truth and the restored, MAXI
is maximum pixel value 

of image. 

Table 1 gives the average SSIM and PSNR of six test patients, each patient has eight slice location 

data. The global image means we calculated SSIM and PSNR with the whole restoration images of size 

512x512. Although these four methods can restore the downsampled CTP effectively, with SSIM all over 

0.97and PSNR over 50, the 15-pass CNN model acquire the highest SSIM and PSNR, which explains 

the best performance on restoring downsampled CTP images. Besides, our radiologists also selected 

regions of interest (ROI) of size 80x80 from the hypoperfusion areas to calculate mean ROI SSIM and 

PSNR. Results are given in Table 1 too. Among these four methods, the 10-pass CNN shows the lowest 

SSIM and PSNR, illustrating that it is hard to restore CTP images if omitting too many passes. 

Table 1 The SSIM and PSNR of global images and ROI using different methods (Mean ± SD) 

Global Image ROI 

Methods SSIM PSNR SSIM PSNR 

15-pass CNN 0.981 ± 0.0008 56.25 ± 1.77 0.915 ± 0.109 42.44 ± 8.51 

10-pass CNN 0.973 ± 0.0011 54.84 ± 1.81 0.881 ± 0.155 40.94 ± 8.52 

Cubic 0.976 ± 0.0010 55.29 ± 1.89 0.896 ± 0.134 41.39 ± 8.48 

DCGAN 0.974 ± 0.0008 56.01 ± 1.73 0.910 ± 0.114 42.11 ± 8.52 

III.C Perfusion parameters results
For acute stroke diagnosis and treatment, we care much about perfusion parameter maps. After 

restoring downsampled CTP images with CNN, we input the restored CTP to calculate perfusion maps 

with PMA software. Fig. 6 gives the CBF, CBV, MTT, TTP maps of the selected patient at slice location 
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Fig. 6 Perfusion maps of the selected patient. Three rows are maps calculated from ground truth CTP, 

15-pass CNN restored results, and unprocessed 15-pass CTP respectively. (a) is CBF, (b) is CBV, (c) is 

MTT, (d) is TTP. 

64.Then two radiologists of our group reviewed the perfusion maps of different methods together and

gave conclusions by consensus. According to Fig. 6, the restored CTP calculated perfusion maps share 

high similarity with ground truth CTP calculated maps. Both the first two rows indicate CBF descending, 

CBV ascending, MTT ascending, TTP ascending in right temporal lobe. In the third row, we gave the 

perfusion maps of unprocessed 15-pass images. In fact, the maps show imaging quality of unprocessed 

15-pass images is worse than restored CTP images, which contain more scattered points. As indicated 

by the white arrows, perfusion maps of unprocessed images cannot reveal CBF severely degraded areas. 

Besides, the perfusion value ranges of unprocessed images greatly differs from that of ground truth. The 

maps of the third row are misleading for radiologists’ diagnosis. Hence, restoration is essential to improve 

the quality of perfusion parameter imaging.  

We tested 6 patients’ restored CTP images of test dataset, and radiologists can get the same 

diagnostic conclusions and assessment as original ground truth CTP maps. Although the other three 

methods (10-pass CNN, cubic interpolation, DCGAN) could show the similar hypoperfusion areas to 

ground truth, they would lead to the considerable errors because of larger TTP and smaller CBF, CBV, 

MTT values. This would mislead radiologists’ diagnosis such as changed hypoperfusion area and 

inaccurate hypoperfusion level of test patients. Take the MTT map for example, Fig. 7 gives five maps 

of ground truth and the results of different algorithms. It is clear to see that the result of our 15-pass CNN 

is the closest to ground truth and has the consistent MTT range ([0, 7.6]), while maps of the other three 

methods have a lot of scattered points and larger MTT range (10-pass CNN: [0, 7.8], cubic: [0, 8.0], 

DCGAN: [0, 8.2]). It suggests that the 15-pass CNN can attain finer CTP image details and less artifacts 

which was stated in Section III.A. Table 2 presents the average perfusion values of four methods. Table 

(1a) (1b) (1c) (1d)

(2a) (2b) (2c) (2d)

(3a) (3b) (3c) (3d)
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3 gives the root mean square error (RMSE) and mean absolute percentage error (MAPE) between 

different method results and ground truth of six test patients’ data. From Table 2 and Table 3, we can see 

that the parameter values of our 15-pass CNN are closest to the parameters values calculated from ground 

truth although they have small errors. In comparison, results of the other three methods have larger errors. 

Considering both RMSE and MAPE, our 15-pass CNN outperforms other three methods. Meanwhile, 

DCGAN has the least CBF error, displaying the restoration potential of generative model. 

Table 2 The perfusion parameters using different algorithms of selected patient (Mean ± SD) 

Ground Truth 15-pass CNN 10-pass CNN Cubic DCGAN 

CBF 35.08±6.95 34.50±5.16 33.59±6.73 33.98±6.64 33.59±6.76 

CBV 2.41±0.46 2.39±0.42 2.21±0.33 2.28±0.46 2.27±0.49 

MTT 4.32±0.55 4.33±0.34 4.22±0.38 4.22±0.51 4.27±0.57 

TTP 8.71±0.37 8.76±0.11 9.26±0.46 9.24±0.11 9.25±0.12 

Table 3 The RMSE and MAPE of perfusion parameters using different algorithms 

RMSE MAPE 

15-pass 

CNN 

10-pass 

CNN 

Cubic DCGAN 15-pass 

CNN 

10-pass 

CNN 

Cubic DCGAN 

CBF 3.245 3.208 2.674 2.531 6.73% 7.66% 6.12% 5.70% 

CBV 0.121 0.280 0.185 0.188 4.44% 8.76% 5.73% 6.53% 

MTT 1.653 3.321 1.801 1.759 4.58% 8.25% 3.39% 3.09% 

TTP 2.399 5.806 2.897 2.908 3.49% 8.61% 5.40% 5.45% 

III.D Model efficiency analysis

Table 4 The parameter amount and mean processing time of different models 

Model Parameter amount (million) Processing time (second) 

15-pass CNN 7.1849 36.6 

10-pass CNN 7.1848 32.0 

Cubic - 6 

DCGAN 64.92 77.2 

In this section, we mainly discuss the model running speed and memory use. For deep neural 

networks, the model parameter amount is most concerned. In this study, the parameter amount of 15-

pass CNN is about 7.1849 million, while 10-pass CNN is 7.1848 million and DCGAN is 64.92 million. 

The massive parameters contained in DCGAN make it hard to train. Due to the same topological 

structures of 15-pass CNN and 10-pass CNN, their parameter amounts are almost same. The parameter 

amounts of classical VGG-16 [28] and ResNet-50 [9] are 138 million and 25 million, so our 15-pass 

CNN is much simpler by contrast. After training the CNN model, it took about 220 seconds to generate 

all six patients’ restoration CTP images. The mean time for each patient is 36.6s, which is fast enough 

Fig. 7 MTT maps of the selected patient calculated from different results. (a) is ground truth, (b) 

is results from 15-pass CNN, (c) is 10-pass CNN, (d) is cubic interpolation, (e) is DCGAN

(a) (b) (c) (d) (e)
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for imaging since that running on a PC with Core i5 CPU. However, running time for each patient with 

DCGAN is over 77s because of too many parameters. Cubic interpolation has the fastest speed, with 

processing time of 6s each, as shown in Table4, but has low imaging quality. 

IV. Discussion

Perfusion imaging is a common method for acute stroke examination. It usually takes about 50s for

blood to circulate the whole body. Most imaging workstations, like GE and Philips, scan brain 30 times 

within 50s after injecting contrast agents consequently. The 30-pass CTP scan will significantly increase 

the radiation dose. Hence, it inspires us to reduce the scan frequency. We first downsampled the original 

CTP to 15 passes to reduce a half radiation dose. However if we calculated with the scan-reduced CTP 

images directly, the perfusion parameter value would be inaccurate as illustrated in Fig.6. Then we used 

a trained CNN model to restore 15-pass CTP images to 30-pass images for calculating perfusion maps. 

Residual learning is necessary in this task. In our experiments, if we did not add the residual skip 

connection in CNN structure, the L1-loss value would be very large during the first several training 

iterations. However, in residual structure, the CNN just needs to learn the difference between 

downsampled CTP and ground truth. It will accelerate the convergence speed of deep neural networks. 

According to our experiments, the loss can decline quickly with residual skip connection. It only needs 

less than 200 iterations to bring down loss below 1 with initial learning rate of 1e-4. In comparison, the 

loss would descend slowly and fluctuate if without residual skip connection. At last, we just trained our 

CNN model 10 epochs efficiently. Residual learning has shown its excellent performance in the 

restoration CNN. 

After restoring 30-pass CTP images from downsampled 15-pass CTP, perfusion parameters can be 

computed. However, different perfusion tools will acquire different results, even from identical source 

data [29, 30]. Some softwares may overestimate or underestimate ischemic core. This is probably 

because of differences in tracer delay sensitivity and postprocessing algorithms. The common perfusion 

postprocessing algorithms can be classified into three categories: Gamma Fitting, Maximum Slope and 

Deconvolution. Kudo et al. [31] assessed the accuracy and reliability using a digital phantom with 13 

perfusion postprocessing algorithms. Experiment results illustrate that the single value decomposition 

(SVD) of PMA can achieve the closest CBF, CBV and MTT values to ground truth. Hence, PMA was 

employed to calculate CBF and other perfusion maps in this study. We calculated the mean perfusion 

values from 15-pass CNN, 10-pass CNN, cubic interpolation and DCGAN output using PMA. And the 

errors prove that 15-pass CNN has the best results.  

V. Conclusion

In this work, we proposed an optional way to reduce CTP imaging radiation dose, that is 

downsampling 30-pass images to 15 passes in temporal domain and then restoring them to 30 passes 

with the deep residual CNN model. Finally, with the help of the radiologists of the First Hospital of Jilin 

University in China, we can find out the coincident hypoperfusion areas according to perfusion 

parameters calculated from restored CTP and original CTP. Experiment results have presented its 

effectiveness. Moreover, the post-processing time is also within acceptable limits. In the future, we will 

focus on reducing radiation dose not only in time sequence, but also in spatial domain [32]. How to cut 

down the CTP scan frequency and reduce the imaging tube current at the same time and then process 

with a CNN model to recover high-quality CTP images is our next research program. 
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