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Abstract: Palladium-catalyzed C–H bond arylation of imidazoles has been applied to pharmaceuticals such 

as Bifonazole, Climbazole and Prochloraz.  In the presence of phosphine-free Pd(OAc)2 catalyst, aryl 

bromides are efficiently coupled at the C5 position of the imidazole units which are widely decorated.  Under 

these conditions, only C–H bond arylation reaction occurred without affecting the integrity of chemical 

structure of the imidazole-based pharmaceuticals.  Moreover, with Bifonazole Pd-catalyzed C–H bond 

diarylation at C2 and C5 positions of imidazole unit has also been performed.   
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Introduction 

Since the pioneering work by Ohta and co-workers at early 90’s on Pd-catalyzed C–H bond arylation of 

heteroaromatics,1 such catalytic methods have become a powerful methodology for the straightforward 

synthesis of heterobiphenyl products.2  Besides the research to improve the regioselectivity of the C–H bond 

arylations,3 the functional group tolerance is an important issue to apply C–H bond arylation toward late-

stage modifications of complex molecules.4  In 2010, Alberico, Lavilla and co-workers reported the post-

modification of peptides via Pd-catalyzed C–H bond arylation of tryptophan residues (Figure 1a).5  In the 

presence of 10 equivalents of aryl iodides, several tryptophan derivatives were arylated at the C2 position 

of the indole ring.  Such late-stage modifications of tryptophans by Pd-catalyzed C–H bond arylation have 

been applied for the preparation of macropeptides.6 Ackermann and co-workers have reported direct 

arylations of tryptophans using metal-free conditions7 or using a ruthenium catalyst.8  Itami, Wünsh and co-

workers applied regiodivergent C–H bond arylation of spirocyclic thiophenes to modulate their affinity with 

σ1 receptor surface (Figure 1b).9  However, only few methods for late-stage modification of pharmaceuticals 

have been reported in the literature.10  Imidazole ring is an important heterocycle present in many 

pharmaceuticals or agrochemicals.  As examples, Bifonazole is an imidazole antifungal drug used in the 

form of an ointment; while Climbazole is prescribed for the treatment of human fungal skin infections such 

as dandruff and eczema.  Ketoconazole is also an antifungal medication used to treat a number of fungal 

infections.  During the past decade, Pd-catalyzed regioselective C–H bond arylation of imidazole ring using 

aryl bromides,11 aryl chlorides,12 or the successive arylations13  has been intensively studied by several 

research groups including ours.14  However, to the best of our knowledge, there is no applications of Pd-

catalyzed C–H bond arylation of imidazole ring to the late-stage modification of imidazole-based 

pharmaceuticals.  The late-stage diversification of structurally complex imidazoles is a very appealing 

method for drug discovery.  Therefore, herein, we decided to survey the reactivity of several imidazole-

based pharmaceuticals such as Bifonazole, Climbazole and Ketoconazole in Pd-catalyzed C–H bond 

arylation (Figure 1c). 
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Figure 1. Palladium-Catalyzed Late-Stage C–H Bond Arylations of Pharmaceuticals Containing an Heteroaromatic 

Unit. 

Results and Discussion 

We started our investigations with the late-stage arylation of commercially available Bifonazole with 4-

bromobenzonitrile as the coupling partner (Scheme 1).  Using our previously optimized reaction conditions 

for C–H bond arylation of imidazole at C5 position [namely, 2 mol% Pd(OAc)2 associated with KOAc as 

the base in DMA],14a the C5-arylated Bifonazole derivative was isolated in 61% yield.  The reaction was 

very regioselective as other C–H bonds were not arylated.  Interestingly, under these reaction conditions, 

the benzhydryl function was not cleaved.  The use of more sophisticated palladium catalysts such as 

PdCl(C3H5)(dppb) or base (PivOK) failed to improve the yield.  A lower catalyst loading of 1 mol% 

Pd(OAc)2 resulted in a lower yield in 1 of 57%.  The reactions was carried out using 1.5 gram of Bifonazole 

with similar yields than on 1 mmol scale was obtained affording 1.13 g the 5-arylated product 1.  To evaluate 

the potential of this method for the one-step diversification of Bifonazole, we turned our attention to the 
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scope of aryl bromides.  The reaction with aryl bromides substituted by electron withdrawing groups –such 

as nitro, propionyl, ethyl ester, formyl or trifluoromethyl– at para-position reacted smoothly to give a wide 

diversity of C5-arylated Bifonazole derivatives 2-6 in 43-70% yields.  The aryl bromides substituted by an 

electron donating group, such as 1-bromo-4-(tert-butyl)benzene or 4-bromoanisole, can also be coupled 

with Bifonazole.  However, the C5-arylated products 7 and 8 were isolated in lower yields due to a partial 

conversation of these less reactive aryl bromides.  Meta-substituted aryl bromides efficiently underwent Pd-

catalyzed C5–H bond arylation of Bifonazole.  As examples, from 3-bromobenzonitrile and 3-

bromobenzotrifluoride, 9 and 10 were obtained in 61% and 71% yield, respectively.  Interestingly, this 

procedure also allowed to introduce a benzo[1,3]dioxolane, which is widely found in natural products, 

multitude of alkaloids as well as pharmaceutical drugs.  The reaction is not very sensitive to the steric 

hindrance.   Indeed, the reaction performed with 2-bromobenzonitrile or 2-bromobenzotrifluoride afforded 

the C5-arylated Bifonazole derivatives 12 and 13 in 58% and 45% yield, respectively.  Naphthalene is an 

important chromophore which can be used as a suitable probe for biological investigations.15  The 

Bifonazole congeners 14 and 15 containing naphthyl units have been prepared in average yields from 2-, or 

1-bromonapthalene through Pd-catalyzed C5 direct arylation of the imidazole ring.  Finally, heteroaryl 

bromides were evaluated.  The reaction between Bifonazole and 4-bromoisoquinoline lead to the formation 

of the desired C5-heteroarylated imidazole 16 in 63% yield.  The structures of 15 and 16 were also assigned 

by X-ray analysis.  Moreover, 5-bromopyrimidine was coupled with Bifonazole to afford the product 17 in 

40% yield.  The reaction is not limited to the use of N-containing heteroaryl bromides as the reaction 

between Bifonazole and 2-acetyl-5-bromothiophene provided the 5-(thiophen-2-yl)-imidazole derivative 18 

in 59% yield.  Interestingly, heteroaryl chloride such as 3-chloropyridine can also be employed as aryl 

source for the C5 direct arylation of Bifonazole to afford the bis-heteroaryl product 19 in 45% yield.   Acc
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Scheme 1. Palladium-Catalyzed Late-Stage Arylations of Bifonazole at the C5-position of the Imidazolyl Unit. 
aUsing 2 mol% PdCl(C3H5)(dppb). bUsing PivOK as base. cUsing 1 mol% of Pd(OAc)2. [c] Reaction 

performed with 3-chloropyridine. d Reaction performed using 1.5 g of Bifonazole 

Based on our previous work on one-pot Pd(OAc)2-catalyzed 2,5-diarylation of N-methyl imidazole,14b we 

next also considered applying this transformation for the late-stage diversification of imidazole-based 

pharmaceuticals (Scheme 2).  Using our previous optimized reaction conditions for the direct diarylation of 

imidazole derivatives, namely 2 mol% of Pd(OAc)2 associated with 4 equivalents of CsOAc as strong base 

in DMA at 150 ºC for 48 h, Bifonazole reacted with 4-bromotoluene to afford the C2,C5-diarylated 

imidazole 20 in 57% yield.  Similar reactivities were observed with 4-bromoanisole and bromobenzene 

leading to the formation of C2,C5-diarylated Bifonazole congeners 21 and 22 in 58% and 55% yield, 

respectively.  In all cases, we also observed the formation of C5-monoarylated product in the crude mixtures 

but in low yields (<10-15%).  When the reaction is performed with 4-bromobenzonitrile, the diarylated 

product 23 is not formed and only monoarylated 1 is obtained in 43% yield.  This reactivity trend –electron-

rich aryl bromide favors the second arylation– has been previously observed with N-benzylimidazole.14b  
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Scheme 2. Palladium-Catalyzed Late-Stage Diarylations of of Bifonazole at the C2 and C5-positions of the Imidazolyl 

Unit. [a] Formation of C5-monoarylated imidazole (10-15%). 

In the second part, we explored the reactivity of Climbazole in Pd-catalyzed late-stage diversification 

through regioselective C–H bond arylation (Scheme 3).  The selective modification of this imidazole-based 

drug without affecting the integrity of the structure is more challenging owing to the presence of a reactive 

C–Cl chemical bond, an ether link (C–O bond) and a ketone function.  In the presence of 2 mol% Pd(OAc)2 

with KOAc/DMA system, Climbazole was regioselectively arylated at the C5 position of the imidazole unit 

with 4-bromobenzonitrile to afford 24 in 69% yield.  No degraded or coupling products resulting from the 

activation of C–Cl or C–O bonds were formed.  A similar reactivity was obtained with ethyl 4-

bromobenzoate to generate the C5-arylated Climbazole 25 in 72% yield.  1-Bromo-3,5-

bis(trifluoromethyl)benzene was also found to be a suitable substrate for Pd-catalyzed C–H bond arylation 

affording the C5-arylated Climbazole 26 in 61% yield.  The coupling with less reactive electron-rich 4-

bromotoluene was more sluggish as the desired arylated imidazole 27 was obtained in only 14% yield.  

However, using the conditions for the diarylation (i.e., 2 mol% of Pd(OAc)2 associated with 4 equivalents 

of CsOAc as strong base in DMA at 150 ºC for 48 h), the monoarylated Climbazole congener 27 was 

obtained in 49% yield without the formation of diarylated product.  This reactivity is in line with our 

previous observations:(10b) a bulky N-substituent prevents the second arylation at C2 position of the 

imidazolyl unit.  Similar results were obtained with 4-bromoanisole and bromobenzene leading to the 

formation of the mono-arylated Climbazoles 28 and 29 in 72% and 61% yield, respectively. 

Acc
ep

ted
 m

an
us

cri
pt



 7 

 

Scheme 3. Palladium-Catalyzed Late-Stage Arylation of Climbazole at the C5-Postion of the Imidazolyl Unit. [a] 

using 3 equivalents of ArBr, Cs2CO3 (4 equiv.). 

To demonstrate the robustness of such late-stage diversification, we then focused to achieve Pd-catalyzed 

C–H bond arylation on larger imidazole-based pharmaceutical containing multiple reactive functions 

(Scheme 4).  Hence, we selected Ketoconazole as substrate.  Besides the C–Cl and ether bonds, this 

imidazole includes a piperazine unit, an acetamide function, and an acetal group.  All these functionalities 

could potentially react with palladium species to inhibit the reaction or could undergo side-reactions.  In the 

presence of 2 mol% Pd(OAc)2 with KOAc/DMA system, the reaction between Ketoconazole and 4-

bromobenzotrifluoride afforded the arylated product 30 in 68% yield, without affecting any other reactive 

functions.  Again, the reaction was very regioselective as only the arylation product resulting from the 

cleavage of the C–H bond at C5 position of the imidazole unit was obtained.  Gram-scale reaction was also 

evaluated using 1.5 g Ketoconazole and the arylated product 30 was obtained in 64% yield leading to 1.22 

g of product.  We then performed other late-stage diversifications of Ketoconazole by incorporating diverse 

aryl groups at C5 position of the imidazole unit.  From ethyl 4-bromobenzoate and 4-bromobenzonitrile, the 

Ketoconazole congeners 31 and 32 were isolated in 67% and 71% yield, respectively.  Again, the reaction 

with 4-bromotoluene was more sluggish, and required to use Cs2CO3 as base to give the arylated 

Ketoconazole 33 in good yield.  The coupling reaction with 2-bromonaphthalene afforded the π-extended 

arylated Ketoconazole 34 in 43% yield.   
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Scheme 4. Palladium-Catalyzed Late-Stage Arylation of Ketoconazole at the C5-Position of the Imidazolyl Unit. [a] 

using 3 equivalents of ArBr, Cs2CO3 (4 equiv.). 

Conclusion 

In summary, we discovered that the system, Pd(OAc)2 as the catalyst associated with KOAc as the base in 

DMA, can achieve the late-stage diversification of imidazole-based pharmaceuticals with a wide variety of 

aryl bromides.  These post-modifications of imidazole-containing drugs are attractive for medical chemistry 

owing to: i) the reaction is very regioselective occurring only at the C5-position of the imidazole unit; ii) 

these conditions display board functional group tolerance on both coupling partners; iii) no phosphine 

ligands are required, therefore no specific treatment to remove phosphine residue is needed before the 

evaluation of the biological activities.  Moreover, in the case of Bifonazole, C–H bond diarylations at C2 

and C5 positions of the imidazole unit can be carried out using 3 equivalents of aryl bromides and CsOAc 

as base.  Overall, this method opens up the possibility of preparing new chemically modified imidazoles in 

one-step that is potentially useful in chemical biology, for instance to incorporate fluorescent probes linked 

by C–C bonds, or to tailor the biological or physical properties. 

Experimental Section 

All reactions were carried out under argon atmosphere with standard Schlenk techniques.  DMA was 

purchased from Acros Organics and was not purified before use..  1H and 13C NMR spectra were recorded 

on Bruker AV III 400 MHz NMR spectrometer equipped with BBFO probehead. Chemical shifts (δ) were 

reported in parts per million relative to residual chloroform (7.26 ppm for 1H; 77.0 ppm for 13C), constants 

were reported in Hertz.  1H NMR assignment abbreviations were the following: singlet (s), doublet (d), 

triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m).  13C NMR spectra 
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were recorded at 100 MHz on the same spectrometer and reported in ppm.  All reagents were weighed and 

handled in air. 

General Procedure for the Pd-catalyzed C5–H Arylation (A): To a 25 mL oven dried Schlenk tube 

imidazole derivatives  (1 mmol), aryl bromides (1.5 mmol, 1.5 equiv.), KOAc (196 mg, 2 mmol, 2 equiv.), 

DMA (4 mL) and Pd(OAc)2 (4.5 mg, 0.02 mmol, 2 mol%) were successively added.  The reaction mixture 

was evacuated by vacuum-argon cycles (5 times) and stirred at 150 °C (oil bath temperature) for 16 hours. 

After cooling the reaction at room temperature and concentration under reduced pressure, the crude mixture 

was purified by flash chromatography to afford the desired arylated products. 

General Procedure for the Pd-catalyzed C2,C5–H Diarylation or C5–H Monoarylation (B): To a 25 

mL oven dried Schlenk tube imidazole derivatives (0.5 mmol), aryl bromides (1.5 mmol, 3 equiv.), CsOAc 

(383 mg, 2 mmol, 2 equiv.), DMA (4 mL) and Pd(OAc)2 (3.25 mg, 0.01 mmol, 2 mol%) were successively 

added.  The reaction mixture was evacuated by vacuum-argon cycles (5 times) and stirred at 150 °C (oil 

bath temperature) for 48 hours. After cooling the reaction at room temperature and concentration under 

reduced pressure, the crude mixture was purified by flash chromatography to afford the desired arylated 

products. 

4-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)benzonitrile (1): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 4-

bromobenzonitrile (273 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 80-20) to afford the desired compound 1 (251 mg, 61%) as a brown solid (Mp = 171-173 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.65 (d, J = 8.4 Hz, 2H), 7.62 – 7.58 (m, 4H), 7.52 – 7.45 (m, 

3H), 7.39 (td, J = 2.0, 5.5, 6.1 Hz, 6H), 7.29 (s, 1H), 37.13 (d, J = 8.2 Hz, 2H), 7.12 – 7.08 (m, 2H), 6.54 (s, 

1H).  13C NMR (100 MHz, CDCl3) δ (ppm). 141.5, 140.0, 139.2, 138.9, 137.8, 132.5, 129.8, 129.4, 129.1, 

128.9, 128.6, 128.5, 128.0, 127.8, 127.7, 127.1, 118.5, 111.8, 63.2.  Elemental analysis: calcd (%) for 

C29H21N3 (411.51): C 84.64, H 5.14, N 10.21; found: C 84.91, H 5.29, N 10.36. 
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1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(4-nitrophenyl)-1H-imidazole (2): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 4-

bromonitrobenzene (303 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 80-20) to afford the desired compound 2 (185 mg, 43%) as a yellow solid (Mp = 151-153 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 8.23 (d, J = 8.8 Hz, 2H), 7.63 – 7.59 (m, 4H), 7.51 – 7.47 (m, 

3H), 7.47 – 7.43 (m, 2H), 7.41 (dd, J = 1.5, 6.0 Hz, 4H), 7.33 (s, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.13 – 7.08 

(m, 2H), 6.57 (s, 1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 147.3, 141.6, 140.0, 139.5, 138.8, 137.7, 136.4, 

131.8, 129.4, 129.2, 128.9, 128.7, 128.5, 128.0, 127.8, 127.7, 127.1, 124.0, 63.3.  Elemental analysis: calcd 

(%) for C28H21N3O2 (431.50): C 77.94, H 4.91, N 9.74; found: C 77.75, H 4.83, N 9.51. 

1-(4-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)phenyl)propan-1-one (3): Following 

the general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 

4-bromopropiophenone (320 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 60-40) to afford the desired compound 3 (340 mg, 77%) as a white solid (Mp = 149-151 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.97 (d, J = 8.4 Hz, 2H), 7.63 – 7.57 (m, 4H), 7.50 – 7.44 (m, 

3H), 7.41 – 7.36 (m, 6H), 7.28 – 7.26 (m, 1H), 7.17 – 7.09 (m, 4H), 6.60 (s, 1H), 3.01 (q, J = 7.2 Hz, 2H), 

1.25 (t, J = 7.2 Hz, 3H).  13C NMR (100 MHz, CDCl3) δ (ppm) 200.1, 141.3, 140.1, 139.2, 138.8, 138.2, 

136.2, 134.3, 132.9, 129.2, 129.0, 129.0, 128.9, 128.5, 128.5, 128.4, 128.1, 127.7, 127.6, 127.1, 63.0, 31.9, 

8.2.  Elemental analysis: calcd (%) for C31H26N2O (442.56): C 84.13, H 5.92, N 65.33; found: C 82.89, H 

5.98, N 6.58. 

Ethyl 4-(1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)benzoate (4): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and ethyl 4-

bromobenzoate (343 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 60-40) to afford the desired compound 4 (412 mg, 90%) as a yellow solid (Mp = 143-145 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 8.05 (d, J = 8.3 Hz, 2H), 7.64 – 7.58 (m, 4H), 7.53 – 7.44 (m, 

3H), 7.42 – 7.34 (m, 6H), 7.29 (s, 1H), 7.16 – 7.08 (m, 4H), 6.59 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, 
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J = 7.1 Hz, 3H).13C NMR (100 MHz, CDCl3) δ (ppm) 166.1, 141.3, 140.1, 139.2, 138.7, 138.1, 134.2, 130.1, 

129.9, 129.0, 128.9, 128.9, 128.5, 128.5, 128.1, 127.7, 127.6, 127.1, 63.0, 61.1, 14.3.  Elemental analysis: 

calcd (%) for C31H26N2O2 (458.56): C 81.20, H 5.72, N 6.11; found: C 81.45, H 5.81, N 6.07. 

4-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)benzaldehyde (5): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 4-

bromobenzaldehyde (277 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 70-30) to afford the desired compound 5 (319 mg, 77%) as yellow solid (Mp = 167-168 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 10.03 (s, 1H), 7.88 (d, J = 8.2 Hz, 2H), 7.63 – 7.57 (m, 4H), 7.51 

– 7.43 (m, 5H), 7.43 – 7.36 (m, 4H), 7.31 (s, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.13 – 7.08 (m, 2H), 6.60 (s, 

1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 191.5, 141.4, 140.1, 139.1, 139.0, 138.0, 135.9, 135.6, 132.7, 

130.0, 129.6, 129.3, 129.1, 128.9, 128.5, 128.5, 128.1, 127.7, 127.6, 127.1, 63.1.  Elemental analysis: calcd 

(%) for C29H22N2O (414.51): C 84.03, H 5.35, N 6.76; found: C 84.32, H 5.61, N 6.98. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(4-(trifluoromethyl)phenyl)-1H-imidazole (6): Following the 

general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 4-

bromobenzotrifluoride (338 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 60-40) to afford the desired compound 6 (300 mg, 66%) as yellow solid (Mp = 146-148 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.66 – 7.56 (m, 6H), 7.51 – 7.44 (m, 3H), 7.42 – 7.36 (m, 6H), 

7.26 (s, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.13 – 7.09 (m, 2H), 6.54 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 

(ppm) 141.4, 140.1, 139.1, 138.7, 138.1, 133.5, 132.5, 132.4, 130.2 (q, J = 32.6 Hz), 129.4, 129.2, 129.1, 

128.9, 128.5, 128.1, 127.7, 127.6, 127.1, 125.7 (q, J = 3.7 Hz), 124.0 (q, J = 272.1 Hz), 63.0. Elemental 

analysis: calcd (%) for C29H21F3N2 (454.49): C 76.64, H 4.66, N 6.16; found: C 76.51, H 4.89, N 5.97. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(4-(tert-butyl)phenyl)-1H-imidazole (7): Following the 

general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 1-

bromo-4-tert-butylbenzene (320 mg, 1.5 mmol), the residue was purified by flash chromatography on silica 

gel (pentane-EtOAc, 70-30) to afford the desired compound 7 (151 mg, 34%) as yellow oil: 1H NMR (400 
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MHz, CDCl3) δ (ppm) 7.64 – 7.57 (m, 4H), 7.50 – 7.44 (m, 3H), 7.42 – 7.37 (m, 6H), 7.21 (d, J = 8.4 Hz, 

2H), 7.19 – 7.15 (m, 2H), 7.14 – 7.10 (m, 3H), 6.59 (s, 1H), 1.35 (s, 9H).  13C NMR (100 MHz, CDCl3) δ 

(ppm) 151.3, 141.1, 140.3, 139.7, 138.7, 137.6, 129.0, 128.9, 128.9, 128.6, 128.2, 128.2, 127.9, 127.6, 

127.5, 127.1, 126.7, 125.6, 62.5, 34.7, 31.3.  Elemental analysis: calcd (%) for C32H30N2 (442.61): C 86.84, 

H 6.83, N 6.33; found: C 86.97, H 6.61, N 6.18. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(4-methoxyphenyl)-1H-imidazole (8): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 4-

bromoanisole (281 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel (pentane-

EtOAc, 70-30) to afford the desired compound 8 (146 mg, 34%) as yellow solid (Mp = 150-152 ºC): 1H 

NMR (400 MHz, CDCl3) δ (ppm) 7.63 – 7.56 (m, 4H), 7.50 – 7.42 (m, 3H), 7.41 – 7.35 (m, 4H), 7.17 (d, J 

= 8.7 Hz, 2H), 7.15 – 7.08 (m, 5H), 6.90 (d, J = 8.7 Hz, 2H), 6.51 (s, 1H), 3.84 (s, 3H).  13C NMR (100 

MHz, CDCl3) δ (ppm) 159.7, 141.0, 140.2, 139.6, 138.6, 137.4, 133.5, 130.9, 128.9, 128.9, 128.6, 128.2, 

128.1, 127.7, 127.6, 127.5, 127.1, 122.0, 114.0, 62.5, 55.3.  Elemental analysis: calcd (%) for C29H24N2O 

(416.52): C 83.63, H 5.81, N 6.73; found: C 83.28, H 5.97, N 6.97. 

3-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)benzonitrile (9): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 3-

bromobenzonitrile (273 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 60-60) to afford the desired compound 9 (251 mg, 61%) as a white solid (Mp = 135-137 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.67 – 7.62 (m, 1H), 7.62 – 7.58 (m, 4H), 7.53 (s, 1H), 7.50 – 

7.44 (m, 5H), 7.44 – 7.35 (m, 4H), 7.24 (s, 1H), 7.13 (d, J = 8.2 Hz, 2H), 7.11 – 7.07 (m, 2H), 6.47 (s, 1H).  

13C NMR (100 MHz, CDCl3) δ (ppm) 141.5, 140.0, 138.8, 137.7, 133.4, 132.6, 131.6, 131.5, 131.3, 129.5, 

129.5, 129.1, 128.9, 128.7, 128.5, 128.0, 127.7, 127.7, 127.1, 118.2, 113.0, 63.2.  Elemental analysis: calcd 

(%) for C29H21N3 (411.51): C 84.64, H 5.14, N 10.21; found: C 84.57, H 5.34, N 10.21. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(3-(trifluoromethyl)phenyl)-1H-imidazole (10): Following 

the general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 
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3-bromobenzotrifluoride (338 mg, 1.5 mmol), the residue was purified by flash chromatography on silica 

gel (pentane-EtOAc, 70-30) to afford the desired compound 10 (323 mg, 71%) as a white solid (Mp = 134-

136 ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.66 – 7.57 (m, 5H), 7.52 – 7.43 (m, 6H), 7.43 – 7.37 (m, 

4H), 7.26 – 7.22 (m, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.13 – 7.10 (m, 2H), 6.48 (s, 1H).  13C NMR (100 MHz, 

CDCl3) δ (ppm) 141.4, 140.2, 139.0, 138.5, 137.9, 132.5, 132.4, 131.1 (q, J = 32.7 Hz), 130.7, 129.2, 129.2, 

129.0, 128.9, 128.5, 128.5, 128.1, 127.7, 127.7, 127.1, 126.1 (q, J = 3.8 Hz), 124.9 (q, J = 4.0 Hz), 123.8 

(q, J = 272.3 Hz), 63.1.  Elemental analysis: calcd (%) for C29H21F3N2 (454.49): C 76.64, H 4.66, N 6.16; 

found: C 76.56, H 4.41, N 6.19. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(benzo[d][1,3]dioxol-5-yl)-1H-imidazole (11): Following the 

general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 5-

bromobenzo[d][1,3]dioxole (302 mg, 1.5 mmol), the residue was purified by flash chromatography on silica 

gel (pentane-EtOAc, 70-30) to afford the desired compound 11 (121 mg, 28%) as yellow oil: 1H NMR (400 

MHz, CDCl3) δ (ppm) 7.64 – 7.55 (m, 4H), 7.51 – 7.44 (m, 2H), 7.43 – 7.37 (m, 5H), 7.16 – 7.08 (m, 5H), 

6.83 – 6.78 (m, 1H), 6.75 – 6.70 (m, 2H), 6.53 (s, 1H), 6.00 (s, 2H).  13C NMR (100 MHz, CDCl3) δ (ppm) 

147.8, 147.8, 141.2, 140.2, 139.4, 138.4, 137.5, 128.9, 128.9, 128.5, 128.3, 128.1, 128.1, 127.6, 127.5, 

127.1, 123.5, 110.0, 108.5, 101.3, 62.6, 29.7.  Elemental analysis: calcd (%) for C29H22N2O2 (430.51): C 

80.91, H 5.15, N 6.51; found: C 81.23, H 4.89, N 6.89. 

2-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)benzonitrile (12): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 2-

bromobenzonitrile (273 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 60-40) to afford the desired compound 12 (239 mg, 58%) as a brown soldid (Mp = 181-

183 ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.74 (dd, J = 1.7, 7.2 Hz, 1H), 7.62 – 7.55 (m, 4H), 7.49 – 

7.44 (m, 4H), 7.43 – 7.38 (m, 2H), 7.37 – 7.33 (m, 3H), 7.31 (s, 1H), 7.17 – 7.13 (m, 2H), 7.10 (s, 1H), 7.10 

– 7.04 (m, 2H), 6.47 (s, 1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 141.3, 140.1, 138.7, 138.3, 137.3, 133.6, 

133.3, 132.4, 131.7, 130.8, 129.4, 128.9, 128.9, 128.9, 128.6, 128.5, 128.1, 127.7, 127.5, 127.1, 117.8, 
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114.0, 63.4.  Elemental analysis: calcd (%) for C29H21N3 (411.51): C 84.64, H 5.14, N 10.21; found: C 84.57, 

H 5.08, N 10.56. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(2-(trifluoromethyl)phenyl)-1H-imidazole (13): Following 

the general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 

2-bromobenzotrifluoride (338 mg, 1.5 mmol), the residue was purified by flash chromatography on silica 

gel (pentane-EtOAc, 60-40) to afford the desired compound 13 (205 mg, 45%) as a brown oil: 1H NMR 

(400 MHz, CDCl3) δ (ppm) 7.92 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.66 – 7.61 (m, 4H), 7.58 (d, 

J = 7.7 Hz, 1H), 7.53 (d, J = 1.3 Hz, 1H), 7.51 – 7.35 (m, 7H), 7.28 – 7.20 (m, 4H), 7.18 (s, 1H), 6.63 (s, 

1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 141.4, 140.2, 138.9, 138.5, 137.9, 137.0, 133.6, 131.6, 131.6, 

129.0, 128.9, 128.5, 128.5, 128.1, 127.6, 127.2, 127.1, 127.0, 126.9, 126.0 (q, J = 5.9 Hz), 124.4, (q, J = 

273.5 Hz), 118.7 (q, J = 6.3 Hz), 65.1. Elemental analysis: calcd (%) for C29H21F3N2 (454.49): C 76.64, H 

4.66, N 6.16; found: C 76.89, H 4.69, N 5.84. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(naphthalen-2-yl)-1H-imidazole (14): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 2-

bromonaphthalene (311 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 70-30) to afford the desired compound 14 (170 mg, 39%) as a white solid (Mp = 216-218 

ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 7.90 – 7.83 (m, 2H), 7.76 – 7.70 (m, 2H), 7.66 – 7.58 (m, 4H), 

7.55 – 7.44 (m, 5H), 7.43 – 7.35 (m, 5H), 7.29 (s, 1H), 7.20 – 7.11 (m, 4H), 6.64 (s, 1H).  13C NMR (100 

MHz, CDCl3) δ (ppm) 141.2, 140.2, 139.6, 138.5, 138.0, 133.8, 133.1, 132.8, 129.0, 128.9, 128.6, 128.5, 

128.5, 128.3, 128.2, 128.1, 127.7, 127.6, 127.6, 127.1, 127.1, 127.0, 126.6, 62.8.  Elemental analysis: calcd 

(%) for C32H24N2 (436.56): C 88.04, H 5.54, N 6.42; found: C 88.27, H 5.61, N 6.51. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-5-(naphthalen-1-yl)-1H-imidazole (15): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (310 mg, 1 mmol) and 1-

bromonaphthalene (311 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 60-40) to afford the desired compound 15 (183 mg, 42%) as a yellow oil: 1H NMR (400 
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MHz, CDCl3) δ (ppm) 7.97 – 7.87 (m, 2H), 7.76 (d, J = 9.2 Hz, 1H), 7.61 – 7.55 (m, 3H), 7.55 – 7.49 (m, 

3H), 7.49 – 7.43 (m, 3H), 7.41 – 7.35 (m, 2H), 7.33 – 7.30 (m, 3H), 7.26 (s, 1H), 7.18 (d, J = 7.0 Hz, 1H), 

7.08 – 6.94 (m, 4H), 6.14 (s, 1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 140.9, 140.3, 137.4, 133.5, 133.3, 

131.2, 129.8, 129.6, 129.4, 129.1, 128.8, 128.7, 128.6, 128.5, 128.3, 128.2, 127.6, 127.3, 127.1, 127.1, 

127.0, 126.7, 126.2, 125.5, 125.1, 62.8.  Elemental analysis: calcd (%) for C32H24N2 (436.56): C 88.04, H 

5.54, N 6.42; found: C 88.01, H 5.83, N 6.55. 

4-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)isoquinoline (16): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (312 mg, 1 mmol) and 4-

bromoisoquinoline (291 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 70-30) to afford the desired compound 16 (276 mg, 63%) as a brown oil: 1H NMR (400 

MHz, CDCl3)  δ (ppm) 9.28 (s, 1H), 8.29 (s, 1H), 8.09 – 8.01 (m, 1H), 7.74 – 7.69 (m, 1H), 7.69 – 7.64 (m, 

2H), 7.60 (s, 1H), 7.55 (d, J = 6.8 Hz, 2H), 7.50 (d, J = 7.0 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.41 – 7.35 (m, 

1H), 7.33 – 7.30 (m, 4H), 7.04 – 6.97 (m, 4H), 6.20 (s, 1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 153.5, 

145.1, 141.2, 140.2, 138.7, 137.6, 135.7, 131.1, 130.9, 129.1, 128.9, 128.8, 128.5, 128.4, 128.2, 128.0, 

127.9, 127.6, 127.6, 127.5, 127.1, 127.1, 124.4, 121.1, 63.2.  Elemental analysis: calcd (%) for C31H23N3 

(437.55): C 85.10, H 5.30, N 9.60; found: C 85.23, H 5.49, N 9.84.  

5-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)pyrimidine (17): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (312 mg, 1 mmol) and 5-

bromopyrimidine (239 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 80-20) to afford the desired compound 17 (159 mg, 41%) as a yellow oil: 1H NMR (400 

MHz, CDCl3) δ (ppm) 9.13 (s, 1H), 8.58 (s, 2H), 7.55 (dd, J = 4.6, 7.8 Hz, 4H), 7.46 – 7.25 (m, 8H), 7.09 

(d, J = 8.0 Hz, 2H), 7.07 – 7.02 (m, 2H), 6.45 (s, 1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 158.0, 156.3, 

141.7, 139.9, 139.6, 138.4, 137.2, 130.6, 129.2, 128.9, 128.8, 128.5, 128.0, 127.8, 127.8, 127.1, 124.7, 63.5.  

Elemental analysis: calcd (%) for C26H20N4 (388.47): C 80.39, H 5.19, N 14.42; found: C 80.58, H 5.25, N 

14.21. 
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1-(5-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)thiophen-2-yl)ethan-1-one (18): 

Following the general procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (312 mg, 1 

mmol) and 2-acetyl-5-bromothiophene (308 mg, 1.5 mmol), the residue was purified by flash 

chromatography on silica gel (pentane-EtOAc, 80-20) to afford the desired compound 18 (256 mg, 59%) as 

a yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.61 – 7.55 (m, 4H), 7.53 (d, J = 3.9 Hz, 1H), 7.47 – 7.32 

(m, 8H), 7.15 – 7.06 (m, 4H), 6.84 (d, J = 3.9 Hz, 1H), 6.76 (s, 1H), 2.51 (s, 3H).  13C NMR (100 MHz, 

CDCl3) δ (ppm) 190.4, 144.3, 141.5, 140.1, 139.6, 138.8, 138.7, 137.7, 133.2, 132.8, 131.1, 129.1, 128.9, 

128.7, 128.2, 127.8, 127.7, 127.2, 127.1, 126.0, 63.3, 26.7.  Elemental analysis: calcd (%) for C28H22N2OS 

(434.56): C 77.39, H 5.10, N 6.45; found: C 77.61, H 5.02, N 6.29. 

3-(1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-1H-imidazol-5-yl)pyridine (19): Following the general 

procedure A using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (312 mg, 1 mmol) and 3-

chloropyridine (170 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel (pentane-

EtOAc, 70-30) to afford the desired compound 19 (174 mg, 45%) as a yellow oil: 1H NMR (400 MHz, 

CDCl3) δ (ppm) 8.60 – 8.52 (m, 2H), 7.61 – 7.53 (m, 4H), 7.51 – 7.40 (m, 4H), 7.35 (p, J = 4.2, 5.1 Hz, 

4H), 7.27 – 7.19 (m, 2H), 7.14 – 7.04 (m, 4H), 6.47 (s, 1H).  13C NMR (100 MHz, CDCl3) δ (ppm) 150.0, 

149.5, 141.5, 140.2, 139.0, 138.8, 137.9, 136.6, 130.4, 129.6, 129.1, 129.0, 128.6, 128.6, 128.1, 127.8, 

127.7, 127.2, 126.1, 123.4, 63.2.  Elemental analysis: calcd (%) for C27H21N3 (387.49): C 83.69, H 5.56, N 

10.84; found: C 83.89, H 5.59, N 11.09. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-2,5-bis(4-methoxyphenyl)-1H-imidazole (20): Following the 

general procedure B using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (155 mg, 0.5 mmol)  and 

4-bromoanisole (280 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel 

(pentane-EtOAc, 80-20) to afford the desired compound 20 (149 mg, 57%) as a yellow oil: 1H NMR (400 

MHz, CDCl3) δ (ppm) 7.61 (d, J = 6.9 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.50 – 7.44 (m, 5H), 7.42 – 7.33 

(m, 4H), 7.13 (s, 1H), 7.12 – 7.08 (m, 5H), 6.91 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.9 Hz, 2H), 6.26 (s, 1H), 

3.87 (s, 3H), 3.78 (s, 3H).  13C NMR (100 MHz, CDCl3) δ (ppm) 159.9, 158.2, 141.0, 140.3, 139.3, 138.4, 
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136.0, 132.5, 128.9, 128.9, 128.8, 128.6, 128.2, 128.2, 127.9, 127.6, 127.4, 127.1, 127.0, 114.4, 113.6, 62.6, 

55.3, 55.2.  Elemental analysis: calcd (%) for C36H30N2O2 (522.65): C 82.73, H 5.79, N 5.36; found: C 88.98, 

H 5.97, N 5.60. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-2,5-di-p-tolyl-1H-imidazole (21): Following the general 

procedure B using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (155 mg, 0.5 mmol)  and 4-

bromotoluene (257 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel (pentane-

EtOAc, 80-20) to afford the desired compound 21 (142 mg, 58%) as a yellow oil: 1H NMR (400 MHz, 

CDCl3) δ (ppm) 7.61 (d, J = 7.3 Hz, 2H), 7.58 (d, J = 8.7 Hz, 2H), 7.50 – 7.45 (m, 3H), 7.44 – 7.40 (m, 2H), 

7.40 – 7.35 (m, 4H), 7.19 (d, J = 7.9 Hz, 2H), 7.14 (s, 1H), 7.12 – 7.07 (m, 5H), 7.04 (d, J = 8.0 Hz, 2H), 

6.27 (s, 1H), 2.42 (s, 3H), 2.30 (s, 3H).  13C NMR (100 MHz, CDCl3) δ (ppm) 141.0, 140.3, 139.4, 138.7, 

138.4, 138.0, 136.1, 135.8, 131.7, 131.0, 129.6, 128.9, 128.8, 128.8, 128.8, 128.6, 128.2, 127.7, 127.6, 

127.4, 127.1, 126.3, 62.5, 21.4, 21.1.  Elemental analysis: calcd (%) for C36H30N2 (490.65): C 88.13, H 6.16, 

N 5.71; found: C 88.29, H 6.01, N 5.88. 

1-([1,1'-Biphenyl]-4-yl(phenyl)methyl)-2,5-diphenyl-1H-imidazole (22): Following the general 

procedure B using 1-([1,1'-biphenyl]-4-yl(phenyl)methyl)-1H-imidazole (155 mg, 0.5 mmol) and 

bromobenzene (235 mg, 1.5 mmol), the residue was purified by flash chromatography on silica gel (pentane-

EtOAc, 80-20) to afford the desired compound 22 (127 mg, 55%) as a yellow oil: 1H NMR (400 MHz, 

CDCl3) δ (ppm) 7.64 – 7.57 (m, 4H), 7.53 (dd, J = 1.3, 7.1 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.44 – 7.35 (m, 

6H), 7.25 – 7.19 (m, 4H), 7.19 – 7.15 (m, 1H), 7.14 (d, J = 1.8 Hz, 1H), 7.13 – 7.08 (m, 3H), 6.29 (s, 1H).  

13C NMR (100 MHz, CDCl3) δ (ppm) 141.1, 140.3, 139.2, 138.2, 138.1, 136.4, 134.4, 131.2, 130.7, 129.2, 

128.9, 128.9, 128.9, 128.6, 128.3, 128.2, 128.1, 127.6, 127.5, 127.1, 126.5, 126.4, 62.7. Elemental analysis: 

calcd (%) for C34H26N2 (462.59): C 88.28, H 5.67, N 6.06; found: C 88.47, H 5.29, N 6.19. 

4-(1-(1-(4-Chlorophenoxy)-3,3-dimethyl-2-oxobutyl)-1H-imidazol-5-yl)benzonitrile (24): Following 

the general procedure A using 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one (293 

mg, 1 mmol) and 4-bromobenzonitrile (273 mg, 1.5 mmol), the residue was purified by flash 
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chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired compound 24 (271 mg, 69%) as 

a yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.86 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.6 

Hz, 2H), 7.25 (d, J = 8.9 Hz, 2H), 7.19 (s, 1H), 6.71 (d, J = 8.9 Hz, 2H), 6.36 (s, 1H), 1.19 (s, 9H). 13C NMR 

(100 MHz, CDCl3) δ (ppm) 203.8, 153.5, 138.8, 133.6, 132.7, 131.0, 130.1, 129.8, 129.7, 129.6, 118.4, 

118.1, 112.6, 81.8, 43.9, 26.5.  Elemental analysis: calcd (%) for C22H20ClN3O2 (393.87): C 67.09, H 5.12, 

N 10.67; found: C 67.23, H 5.29, N 10.54. 

Ethyl 4-(1-(1-(4-chlorophenoxy)-3,3-dimethyl-2-oxobutyl)-1H-imidazol-5-yl)benzoate (25):  

Following the general procedure A using 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-

one (293 mg, 1 mmol) and ethyl 4-bromobenzoate (343 mg, 1.5 mmol), the residue was purified by flash 

chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired compound 25 (317 mg, 72%) as 

a yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 8.11 (d, J = 8.5 Hz, 2H), 7.86 (s, 1H), 7.28 (d, J = 8.5 

Hz, 2H), 7.22 (d, J = 8.9 Hz, 2H), 7.16 (s, 1H), 6.70 (d, J = 9.0 Hz, 2H), 6.41 (s, 1H), 4.43 (q, J = 7.1 Hz, 

2H), 1.43 (t, J = 7.1 Hz, 3H), 1.17 (s, 9H). 13C NMR (100 MHz, CDCl3) δ (ppm) 204.0, 165.9, 153.6, 138.3, 

133.2, 131.8, 130.8, 130.2, 130.0, 129.4, 129.0, 118.3, 81.1, 61.4, 43.8, 26.5, 14.3.  Elemental analysis: 

calcd (%) for C24H25ClN2O4 (440.92): C 65.38, H 5.72, N 6.35; found: C 65.21, H 5.56, N 6.31. 

1-(5-(3,5-Bis(trifluoromethyl)phenyl)-1H-imidazol-1-yl)-1-(4-chlorophenoxy)-3,3-dimethylbutan-2-

one (26): Following the general procedure A using 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-

dimethylbutan-2-one (293 mg, 1 mmol) and 1-bromo-3,5-bis(trifluoromethyl)benzene (439 mg, 1.5 mmol), 

the residue was purified by flash chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired 

compound 26 (308 mg, 61%) as a yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.96 – 7.89 (m, 2H), 

7.65 (s, 2H), 7.26 (d, J = 8.9 Hz, 2H), 7.22 (s, 1H), 6.71 (d, J = 8.9 Hz, 2H), 6.33 (s, 1H), 1.20 (s, 9H). 13C 

NMR (100 MHz, CDCl3) δ (ppm) 203.7, 153.3, 139.0, 132.40 (q, J = 33.8 Hz), 132.2, 131.9, 131.4, 130.2, 

130.0, 129.3 (m), 122.8 (q, J = 272.1 Hz), 122.5 (m), 118.3, 82.2, 44.0, 26.4.  Elemental analysis: calcd (%) 

for C23H19ClF6N2O2 (504.86): C 54.72, H 3.79, N 5.55; found: C 54.41, H 3.78, N 5.49. 
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1-(4-Chlorophenoxy)-3,3-dimethyl-1-(5-(p-tolyl)-1H-imidazol-1-yl)butan-2-one (27): Following the 

general procedure B using 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one (147 mg, 

0.5 mmol) and 4-bromotoluene (256 mg, 1.5 mmol), the residue was purified by flash chromatography on 

silica gel (pentane-EtOAc, 80-20) to afford the desired compound 27 (94 mg, 49%) as a yellow oil: 1H NMR 

(400 MHz, CDCl3) δ (ppm) 7.81 (s, 1H), 7.26 (d, J = 7.8 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H), 7.12 – 7.05 (m, 

3H), 6.70 (d, J = 9.0 Hz, 2H), 6.40 (s, 1H), 2.42 (s, 3H), 1.16 (s, 9H).  . 13C NMR (100 MHz, CDCl3) δ 

(ppm) 204.2, 153.8, 139.1, 137.2, 129.8, 129.7, 129.4, 129.0, 127.8, 125.7, 118.3, 118.3, 80.7, 43.8, 26.5, 

21.3. Elemental analysis: calcd (%) for C22H23ClN2O2 (382.89): C 69.01, H 6.06, N 7.32; found: C 68.74, 

H 6.18, N 7.25. 

1-(4-Chlorophenoxy)-1-(5-(4-methoxyphenyl)-1H-imidazol-1-yl)-3,3-dimethylbutan-2-one (28): 

Following the general procedure B using 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-

one (147 mg, 0.5 mmol) and 4-bromoanisole (281 mg, 1.5 mmol), the residue was purified by flash 

chromatography on silica gel (pentane-EtOAc, 80-20) to afford the desired compound 28 (144 mg, 72%) as 

a yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.80 (s, 1H), 7.22 (d, J = 8.9 Hz, 2H), 7.12 (d, J = 8.7 

Hz, 2H), 7.04 (s, 1H), 6.96 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.9 Hz, 2H), 6.37 (s, 1H), 3.87 (s, 3H), 1.15 (s, 

9H).  13C NMR (100 MHz, CDCl3) δ (ppm) 204.2, 160.2, 153.8, 137.0, 130.9, 129.9, 129.1, 127.7, 120.8, 

118.4, 118.3, 114.4, 80.7, 55.4, 43.8, 26.5.  Elemental analysis: calcd (%) for C22H23ClN2O3 (398.89): C 

66.24, H 5.81, N 7.02; found: C 66.57, H 5.98, N 7.11. 

1-(4-Chlorophenoxy)-3,3-dimethyl-1-(5-phenyl-1H-imidazol-1-yl)butan-2-one (29) Following the 

general procedure B using 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one (147 mg, 

0.5 mmol) and bromobenzene (235 mg, 1.5 mmol),, the residue was purified by flash chromatography on 

silica gel (pentane-EtOAc, 80-20) to afford the desired compound 29 (112 mg, 61%) as yellow oil: 1H NMR 

(400 MHz, CDCl3) δ (ppm) 7.82 (s, 1H), 7.48 – 7.40 (m, 3H), 7.25 – 7.17 (m, 4H), 7.09 (s, 1H), 6.69 (d, J 

= 8.9 Hz, 2H), 6.40 (s, 1H), 1.14 (s, 9H).  13C NMR (100 MHz, CDCl3) 204.1, 153.8, 129.9, 129.5, 129.2, 
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129.0, 129.0, 128.8, 128.1, 118.3, 80.9, 43.8, 26.5.  Elemental analysis: calcd (%) for C21H21ClN2O2 

(368.86): C 68.38, H 5.74 N, 7.59; found: C 68.59, H 5.86, N 7.67. 

 (±)-Cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-((5-(4-(trifluoromethyl)phenyl)-1H-imidazol-1-

yl)methyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine (30): Following the general procedure A using 

(±)-cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-

yl]methoxy]phenyl]piperazine (530 mg, 1 mmol) and 4-bromobenzotrifluoride (338 mg, 1.5 mmol), the 

residue was purified by flash chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired 

compound 30 (459 mg, 58%) as a yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.78 (s, 1H), 7.63 (d, J 

= 8.1 Hz, 2H), 7.52 – 7.43 (m, 2H), 7.33 – 7.25 (m, 1H), 7.22 (dd, J = 2.1, 8.5 Hz, 1H), 7.08 – 6.96 (m, 2H), 

6.90 (d, J = 8.6 Hz, 2H), 6.79 (td, J = 4.1, 9.0 Hz, 2H), 4.59 – 4.44 (m, 2H), 4.41 – 4.28 (m, 1H), 3.86 (q, J 

= 6.7 Hz, 2H), 3.81 – 3.68 (m, 3H), 3.63 (t, J = 5.1 Hz, 2H), 3.52 (dd, J = 6.0, 9.7 Hz, 1H), 3.06 (dt, J = 5.1, 

13.8 Hz, 4H), 2.15 (s, 3H).   13C NMR (100 MHz, CDCl3) δ (ppm) 169.0, 152.8, 145.8, 141.0, 135.9, 134.2, 

134.6, 133.4, 133.1, 132.9, 129.9 (q, J = 32.6 Hz), 129.5, 128.3, 125.4 (d, J = 3.8 Hz), 124.1 (q, J = 270.2 

Hz), 118.8, 115.3, 108.0, 74.8, 67.9, 67.1, 51.0, 50.7, 46.4, 41.5, 21.4.   Elemental analysis: calcd (%) for 

C33H31Cl2F3N4O4 (675.53): C 58.67, H 4.63, N 8.29; found: C 58.78, H 4.51, N 8.39. 

(±)-Cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-((5-(4-(ethoxycarbonyl)phenyl)-1H-imidazol-1-

yl)methyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine (31): Following the general procedure A using 

(±)-cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-

yl]methoxy]phenyl]piperazine (530 mg, 1 mmol) and ethyl 4-bromobenzoate (343 mg, 1.5 mmol), the 

residue was purified by flash chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired 

compound 31 (455 mg, 67%) as an orange solid (Mp = 141-143 ºC): 1H NMR (400 MHz, CDCl3) δ (ppm) 

8.06 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 1.1 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.31 (d, J 

= 2.1 Hz, 1H), 7.22 (dd, J = 2.1, 8.4 Hz, 1H), 7.05 (d, J = 1.1 Hz, 1H), 6.90 (d, J = 9.1 Hz, 2H), 6.78 (d, J 

= 9.1 Hz, 2H), 4.57 (d, J = 14.9 Hz, 1H), 4.51 (d, J = 14.9 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 4.34 (t, J = 5.5 

Hz, 1H), 3.90 – 3.75 (m, 4H), 3.71 (dd, J = 5.2, 9.6 Hz, 1H), 3.63 (t, J = 5.1 Hz, 2H), 3.46 (dd, J = 6.3, 9.6 
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Hz, 1H), 3.06 (dt, J = 5.1, 13.4 Hz, 4H), 2.15 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H).  13C NMR (100 MHz, CDCl3) 

δ (ppm) 171.1, 169.0, 166.3, 152.8, 145.7, 140.9, 135.9, 134.3, 133.1, 131.3, 129.7, 129.7, 129.5, 129.0, 

128.1, 127.1, 118.8, 115.2, 108.1, 74.7, 67.8, 67.2, 61.1, 51.0, 50.7, 46.4, 41.5, 21.4, 14.4.  Elemental 

analysis: calcd (%) for C35H36Cl2N4O6 (679.59): C 61.86, H 5.34, N 8.24; found: C 62.07, H 5.59, N 8.07. 

(±)-Cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-((5-(4-cyanophenyl)-1H-imidazol-1-yl)methyl)-1,3-

dioxolan-4-yl]methoxy]phenyl]piperazine (32): Following the general procedure A using (±)-cis-1-

acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-

yl]methoxy]phenyl]piperazine (530 mg, 1 mmol) and 4-bromobenzonitrile (273 mg, 1.5 mmol), the residue 

was purified by flash chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired compound 

32 (449 mg, 71%) as an yellow oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.80 (s, 1H), 7.66 (d, J = 8.4 Hz, 

2H), 7.54 – 7.48 (m, 3H), 7.33 (d, J = 2.1 Hz, 1H), 7.25 (dd, J = 2.1, 8.4 Hz, 1H), 7.06 (s, 1H), 6.91 (d, J = 

9.4 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 4.53 (t, J = 14.2, 15.4 Hz, 2H), 4.41 – 4.31 (m, 1H), 3.91 – 3.76 (m, 

4H), 3.71 – 3.62 (m, 3H), 3.51 (dd, J = 5.8, 9.7 Hz, 1H), 3.15 – 3.03 (m, 4H), 2.16 (s, 3H).  13C NMR (100 

MHz, CDCl3) δ (ppm) 169.0, 152.8, 145.8, 136.1, 134.5, 134.1, 133.0, 132.2, 131.3, 129.6, 129.5, 128.8, 

127.3, 118.8, 118.6, 115.2, 111.4, 108.0, 74.8, 67.9, 67.1, 51.0, 50.7, 46.4, 41.5, 21.4.  Elemental analysis: 

calcd (%) for C33H31Cl2N5O4 (632.54): C 62.66, H 4.94, N 11.07; found: C 62.89, H 5.07, N 11.19. 

(±)-Cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-((5-(p-tolyl)-1H-imidazol-1-yl)methyl)-1,3-dioxolan-

4-yl]methoxy]phenyl]piperazine (33): Following the general procedure B using (±)-cis-1-acetyl-4-[4-[[2-

(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine (268 mg, 0.5 

mmol) and and 4-bromotoluene (256 mg, 1.5 mmol), the residue was purified by flash chromatography on 

silica gel (pentane-EtOAc, 80-20) to afford the desired compound 33 (180 mg, 58%) as a yellow oil: 1H 

NMR (400 MHz, CDCl3) δ (ppm) 8.15 (s, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 9.2 Hz, 1H), 7.33 (d, 

J = 8.0 Hz, 2H), 7.28 – 7.22 (m, 4H), 6.86 (d, J = 8.9 Hz, 2H), 6.72 (d, J = 8.9 Hz, 2H), 4.73 (q, J = 4.5, 5.0 

Hz, 1H), 4.32 (s, 3H), 4.19 – 3.98 (m, 3H), 3.80 (t, J = 5.2 Hz, 2H), 3.64 (t, J = 5.1 Hz, 2H), 3.06 (dt, J = 

5.1, 11.1 Hz, 4H), 2.45 (s, 3H), 2.16 (s, 3H).   13C NMR (100 MHz, CDCl3) δ (ppm) 169.0, 152.9, 145.9, 
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142.1, 138.0, 136.3, 134.1, 131.3, 129.7, 129.6, 128.6, 128.3, 128.3, 126.3, 125.5, 124.0, 118.7, 115.3, 

105.4, 76.0, 67.6, 66.8, 51.1, 50.7, 46.4, 41.5, 29.7, 21.4.  Elemental analysis: calcd (%) for C33H34Cl2N4O4 

(621.56): C 63.77 H 5.51N 9.01; found: C 63.96, H 5.43, N 9.12. 

 (±)-Cis-1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-((5-(2-naphthyl)-1H-imidazol-1-yl)methyl)-1,3-

dioxolan-4-yl]methoxy]phenyl]piperazine (34):  Following the general procedure A using 1-(4-(4(±)-cis-

1-acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-

yl]methoxy]phenyl]piperazine (530 mg, 1 mmol)  and 2-bromonaphthalene (311 mg, 1.5 mmol), the residue 

was purified by flash chromatography on silica gel (CH2Cl2-MeOH, 95-5) to afford the desired compound 

34 (282 mg, 43%) as an red  oil: 1H NMR (400 MHz, CDCl3) δ (ppm) 7.85 – 7.81 (m, 2H), 7.80 (s, 1H), 

7.57 – 7.52 (m, 2H), 7.50 – 7.43 (m, 2H), 7.21 (dd, J = 2.1, 8.4 Hz, 1H), 7.17 (d, J = 2.1 Hz, 1H), 7.09 (s, 

1H), 6.90 (d, J = 9.1 Hz, 2H), 6.80 (d, J = 9.1 Hz, 2H), 4.61 (s, 2H), 4.52 – 4.29 (m, 1H), 3.88 (d, J = 5.7 

Hz, 2H), 3.83 – 3.74 (m, 3H), 3.68 – 3.59 (m, 2H), 3.53 (dd, J = 6.3, 9.7 Hz, 1H), 3.14 – 3.01 (m, 4H), 2.16 

(s, 3H).  13C NMR (100 MHz, CDCl3) 169.0, 152.9, 145.7, 135.7, 134.4, 133.2, 132.7, 131.2, 129.5, 128.5, 

128.1, 128.1, 127.7, 127.3, 127.2, 127.1, 126.4, 126.4, 118.8, 115.3, 108.2, 74.8, 67.9, 67.3, 51.1, 50.7, 46.4, 

41.5, 21.4.  Elemental analysis: calcd (%) for C36H34Cl2N4O4 (657.59): C 65.75, H 5.21, N 8.52; found: C 

65.82, H 5.07, N 8.82. 
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