
HAL Id: hal-02355636
https://univ-rennes.hal.science/hal-02355636v1

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Representation of Directed Acyclic Graphs
for Efficient Dataflow Embedded Resource Allocation

Florian Arrestier, Karol Desnos, Eduardo Juarez, Daniel Menard

To cite this version:
Florian Arrestier, Karol Desnos, Eduardo Juarez, Daniel Menard. Numerical Representation of Di-
rected Acyclic Graphs for Efficient Dataflow Embedded Resource Allocation. ACM Transactions on
Embedded Computing Systems (TECS), 2019, 18 (5), pp.101. �10.1145/3358225�. �hal-02355636�

https://univ-rennes.hal.science/hal-02355636v1
https://hal.archives-ouvertes.fr


Numerical Representation of Directed Acyclic Graphs for
Efficient Dataflow Embedded Resource Allocation

Florian Arrestier
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

Rennes, France
florian.arrestier@insa-rennes.fr

Karol Desnos
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

Rennes, France
karol.desnos@insa-rennes.fr

Eduardo Juarez
Universidad Politécnica de Madrid, CITSEM

Madrid, Spain
eduardo.juarez@upm.es

Daniel Menard
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

Rennes, France
daniel.menard@insa-rennes.fr

ABSTRACT
Stream processing applications running on Heterogeneous Multi-
Processor Systems on Chips (sHMPSoCs) require efficient resource
allocation and management, both at compile-time and at runtime.
To cope with modern adaptive applications whose behavior can
not be exhaustively predicted at compile-time, runtime managers
must be able to take resource allocation decisions on-the-fly, with
a minimum overhead on application performance.

Resource allocation algorithms often rely on an internal model-
ing of an application. Directed Acyclic Graphs (sDAGs) are the most
commonly used models for capturing control and data dependen-
cies between tasks. DAGs are notably often used as an intermediate
representation for deploying applications modeled with a dataflow
Model of Computation (MoC) on HMPSoCs. Building such interme-
diate representation at runtime for massively parallel applications
is costly both in terms of computation and memory overhead.

In this paper, an intermediate representation of DAGs for re-
source allocation is presented. This new representation shows im-
proved performance for run-time analysis of dataflow graphs with
less overhead in both computation time and memory footprint. The
performances of the proposed representation are evaluated on a
set of computer vision and machine learning applications.

1 INTRODUCTION
Dataflow Models of Computation (sMoCs) are commonly used to
model stream processing applications in many domains such as
video and audio processing, telecommunications, and computer vi-
sion. DataflowMoCs and related languages are increasingly popular
due to their advanced analyzability and their natural expressiveness
of parallelism. The recent specialized dataflow-based programming
language TensorFlow [1] is an evidence of this popularity in the
context of neural networks implementation on massively parallel
hardware architectures. In the computer vision applications field,
the OpenVX [12] standard aims at providing high performances on
heterogeneous architectures, also leveraging on a dataflow MoC.

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
EMSOFT 2019, October 13–18, 2019, New-York, United-States
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

An application described with a dataflow MoC is a graph composed
of processing entities, called actors, connected through First-In
First-Out Queues (sFifos). In a dataflow graph, Fifos are used to
convey data tokens between actors and the execution of an actor,
also called firing of an actor, depends on the number of data tokens
available on the input Fifos of the actor.

In an embedded context, taking fast and efficient decisions also
require an efficient intermediate representation of the application.
Using compact and expressive dataflow MoCs, such as the Cyclo-
Static Dataflow (CSDF) [6], the Schedulable Parametric Dataflow
(SPDF) [10] or the Interfaced Based Synchronous Dataflow (IB-
SDF) [19] allows for a high-level description of an application.
However, the more compact and expressive the representation, the
more costly it can be to extract information. For instance, extracting
fine-grain dependencies information from a Directed Acyclic Graph
(DAG) is straightforward whereas it is first necessary to compute
model transformations on a CSDF-based application to do so. The
more expensive stages of expressive model analysis have led to the
more frequent use of DAG-based models in programming frame-
works. Frameworks such as StarPU [3], XKaapi [11], OpenVX [12]
or TensorFlow [1] rely on DAGs dataflow MoCs. DAGs efficiently
model directed workflows with task-level parallelism. However,
complex structures such as loops are cumbersome to model with
DAGs due to the fact that the entire loops have to be unrolled.

There is a paradox between developing more expressive and
more compact dataflow MoCs, and the fact that analysis methods
often depend on the need of expanding expressive graphs into DAGs.
Some works, however, try to take advantage of the expressiveness
of the original MoC [8] or to limit the expansion of graphs and
accelerate analysis [23].

Construction of the intermediate DAG representation at runtime
is a costly step that needs to be repeated multiple times in the con-
text of dynamic applications. In this paper, we propose a numerical
modeling of the expanded DAG representation of the Synchro-
nous DataFlow (SDF)-based MoC and some of its extensions which
avoids having to build the intermediate DAG completely, thus im-
proving significantly the performance of embedded runtimes. Our
representation allows using DAG oriented analysis methods while
maintaining the compactness and the expressiveness of the targeted
dataflow MoC. We implemented our numerical modeling of DAGs
in the Spider tool [13] on three different platforms ranging from

https://doi.org/10.1145/nnnnnnn.nnnnnnn


EMSOFT 2019, October 13–18, 2019, New-York, United-States F. Arrestier et al.

a medium laptop to a low power embedded platform. Our experi-
ments show a significant reduction of the overhead of the Spider
embedded runtime both in terms of execution time and memory
footprint of the runtime.

Dataflow MoCs are presented in Section 2, followed by a pre-
sentation of existing runtimes that use DAG representation and
methods that aim at avoiding the full expansion of DAG in Sec-
tion 3. Then, our numerical representation of the DAG is presented
in Section 4. Section 5 presents experimental results of the imple-
mentation of our contribution into the Spider tool [13] on signal
processing applications. Finally, Section 6 concludes this paper.

2 CONTEXT: MODELS OF COMPUTATION
In this section, we first present the SDF MoC [16], one of the
most popular static specialization of the Dataflow Process Network
(DPN) MoC [17]. Then we present the Parameterized and Interfaced
Synchronous DataFlow (πSDF) MoC [9] which is the MoC used by
the Spider tool used in our experiments. Finally, we present the
Single-Rate Directed Acyclic Graph (SR-DAG) specialization of SDF
and the related transformation between an SDF Graph (SDFG) and
an SR-DAG.

2.1 SDF Model of Computation

B
11

1

A C18 42A actor

1 Data ports
and associated 
rate

FIFO

FIFO with D
delay tokensD2

Figure 1: SDF graphical semantics and a graph example.

An application described with the SDF MoC is defined with
a directed graph, whose nodes are called actors and edges Fifos.
Firing rules of the SDF MoC define data token production and
consumption rates of actors as fixed scalars, meaning that rates
are set at design time and are fixed for the entire execution of
the application. The graphical semantics of the SDF MoC and an
example of SDF graph are presented in Figure 1.

Formally, an SDF graph G = (A, F) contains a set of actors A
that are interconnected through a set of Fifos F. An actor a ∈ A
reads data tokens from its input ports and produces data tokens
on its output ports. The execution of an actor is called a firing and
for an actor to fire, enough data tokens need to be available on all
of its input ports. In the graph of Figure 1, actor B can only fire
when 2 data tokens are present on the Fifo ( ®AB) and 1 data token
is present on its self-loop. The initial data tokens of a Fifo f ∈ F
are called delays. The value n of the delay is the number of initial
data tokens of f .

The popularity of the SDF MoC comes from its great analyz-
ability. Indeed, using static analyses, the consistency and liveness
properties of an SDF graph can be verified. When an SDF graph
is schedulable, i.e it is consistent and live, a minimal sequence of
firings of the actors exists for achieving an infinite execution with
bounded memory. Such minimal sequence is called a graph iteration
and the number of firings of each actor is given by the coefficients
of the Repetition Vector (RV) of the graph. Figure 1 presents an SDF
graph that is consistent and live. For each graph iteration, actor A
is executed 1 time, actor B 4 times, and actor C 16 times.

The consistency property of an SDFG means that no data token
will indefinitely accumulate in any Fifo of the graph. Consistency
is checked through the analysis of the topology matrix Γ associated
with an SDF graph [16]. Formally, Γ(i, j) is the number of data tokens
produced or consumed by actor i on Fifo j. Γ(i, j) is a positive
number if the actor i produces data tokens on the Fifo j and a
negative number if the actor consumes data tokens. The graph is
consistent if rank(Γ) = |A| − 1, with |A| the number of connected
actors in the graph. The RV, noted q, is defined as the smallest
non-zero integer vector verifying Γ ∗ q = 0. An efficient algorithm
for computing the repetition vector of an SDFG is given in [5].

Static extensions to the SDF MoC have been proposed to enforce
its expressiveness and conciseness while maintaining the same level
of analyzability and predictability. The CSDF MoC [6] has the same
expressiveness as the SDF MoC but is more concise. In CSDF, data
rates change according to static cycles defined at the creation of
the graph. The IBSDF MoC [19] enforces the compositionality and
expressiveness of the SDF MoC by adding explicit and well-defined
levels of hierarchy. In an IBSDF graph, actors can be defined by
another IBSDF graph. However, changes made inside the subgraph
definition do not influence the analysis of the parent graph that
contains it, hence the compositionality of the IBSDF MoC. The
Parameterized DataFlow (PDF) [4], SPDF [10], and πSDF [9] are
reconfigurable extensions of the SDF that enforce dynamic reconfig-
urations of dataflow graphs. The next sub-section details semantics
of the πSDF MoC as it is the reference MoC used in this work.

2.2 πSDF Model of Computation

D1H 11A 1

B 11
11

1

N C 1 11

N

data input
interface
 
data output
interface
 

N
locally static
parameter
 

configuration 
input interface
 

parameter 
dependency
 

configuration 
input port
 xN x1 

x1 x1 x1 

Figure 2: πSDF graphical semantic and a graph example.

The πSDF MoC [9] is a hierarchical and dynamically reconfig-
urable extension of the SDF MoC. In a πSDF graph, a hierarchical
actor is an actor whose internal behavior is defined by a πSDF
graph. Figure 2 presents an example of a πSDF graph with the asso-
ciated graphical semantics. Actor H is a hierarchical actor defined
by the subgraph formed by actors B and C .

Formally, a πSDF graphG = (A, F, I ,Π,∆) contains in addition to
a set of actors A and a set of Fifos F, a set of hierarchical interfaces
I , a set of parameters Π, and a set of parameter dependencies ∆. The
hierarchical interfaces of the πSDF MoC [9] are directly inherited
from the IBSDF MoC [19] and the reader is invited to read both
reference papers for more details on it. This direct inheritance of
the interfaces make the πSDF MoC a compositional MoC which
means that the internal specification of the actors composing a



Numerical Representation of Directed Acyclic Graphs EMSOFT 2019, October 13–18, 2019, New-York, United-States

graph do not influence its analyzability. In Figure 2, the definition
of the subgraph formed by actors B and C does not impact the
analysis performed on the top-level graph. Using the compositional
property of a dataflow MoC, it is possible to perform hierarchical
analysis of dataflow graphs [8]. Deroui et al. show that using the
hierarchy and the compositional property of the IBSDF MoC, it is
possible to perform faster throughput analysis compared to state-
of-the-art approaches using equivalent SR-DAG transformation of
the original IBSDF graph.

Parameters π ∈ Π are associated with parameter values v ∈ N.
Parameter values can either be statically defined or dynamically
set by actors at runtime. Reconfigurability of the πSDF MoC comes
directly from parameters whose values are used to influence dif-
ferent properties, namely the computation of an actor, the rates
of the data ports of an actor, the value of another parameter and
the number of delays in a Fifo. In Figure 2, parameter N controls
the number of firings of actor B inside the hierarchical actor H but
does not affect the analysis of the top-level graph.

2.3 Single-Rate Directed Acyclic Graph

B 21A C2

D 21 E 11 21

x2 

x2 x1 

x2 x1 
2

C0

C1

B0 11

1

E0

E11

11

1

E2

E31

A 2

D11 2

F 1
1

2

F 1
1

2

D01 2 F 1
1

2

B1

2J1 2
1

J1 2
1

2

Figure 3: A πSDF to SR-DAG transformation example.

A Single-Rate Directed Acyclic Graph (SR-DAG), also called
Acyclic Precedence Expansion Graph (APEG) in the literature [16],
is a specialization of an SDFG. An SR-DAG does not contain any
cycle and all the data rates on the edges composing the graph
are unitary which means that for every edge, the production and
consumption rates are equal. Figure 3 shows the transformation
of a πSDF graph, in the upper part of the figure, to the equivalent
SR-DAG, in the lower part of the figure. Under each πSDF actor
of Figure 3 are noted their repetition vector value relative to their
containing graph. Actors D and E have repetition vector values
of 1 and 2, respectively, within 1 iteration of actor B but a global
repetition value of 2 and 4, respectively. In the SR-DAG, all actors
have a repetition value strictly of 1.

In our work, SR-DAG is considered to respect SDF dataflow
semantics. Particularly, one data port can only be connected to a
unique edge. Thus, in order to respect this constraint, special actors
are introduced. Fork actors split a given edge into multiple edges
such as

∑n−1
j=0 (pj) = PF , where pj is the production rate of the split

edge j of the Fork actor and PF is the production rate of the original
edge. In Figure 3, three Fork actors are added for the edges ( ®AB)
and ( ®DE) during the SR-DAG transformation. Symmetrically, Join
actors merge multiple edges into one edge, with

∑n−1
j=0 (cj) = C J ,

where cj is the rate of merged edge j and C J is the consumption
rate of the obtained merged edge. In Figure 3, two Join actors are
added for the edge ( ®BC) of the original πSDF graph, which becomes
an edge ( ®JC) after the SR-DAG transformation.

211 M M 31 M N1

Figure 4: An SDF graph resulting in O(MN ) SR-DAG actors.

Building the SR-DAG of an SDFG is a way of explicitly expos-
ing dependencies across all actor firings of the original SDFG. The
SR-DAG "exposes" all information a scheduler needs to take deci-
sions. However, once that the SR-DAG is built, the scheduler no
longer benefits from the compact and expressive representation
of the original MoC used to describe the application. For instance,
using the πSDF representation of the graph in Figure 3, a scheduler
could easily perform hierarchical scheduling of actor B, whereas
using the SR-DAG representation this information is lost. Having a
tunable intermediate representation where information is already
pre-processed helps to make simpler and faster scheduling algo-
rithms. Finally, the complexity of building the SR-DAG on graphs
with a high degree of parallelism grows exponentially with the
repetition values of the actors and so does the complexity of the
scheduling algorithm. An example of a graph with such exponential
growth is given in Figure 4 where each actor is executedM times
relative to its predecessor. Building the SR-DAG representation of
an SDFG is therefore not well-suited for embedded runtimes where
scheduling needs to be done on-the-fly.

3 CHALLENGES AND RELATEDWORK
In this section, we first present the different challenges the proposed
contribution addresses. Then, we present existing techniques and
frameworks where these challenges are partially addressed.

3.1 Run-Time Challenges
In the context of this work, we consider a reconfigurable dataflow
MoC such as the πSDF [9] or the SPDF [10]. Here, reconfigurable
means that application graphs may evolve at runtime with changes
in data rates or in the graph topology itself. Reconfigurable dataflow
MoC imply that full static analysis of an application is not always
possible at compile-time and needs to be handled at runtime. SPDF
and πSDF MoCs allow for a quasi-static schedule to be derived at
compile-time, removing a part of the runtime overhead. However,
we will only consider the case where quasi-static schedules are not
derived at compile-time as it is the worst case scenario for these
models.

When dealing with dynamic behavior such as graph reconfigura-
tion, the first challenge is to perform graph analysis and scheduling
of the application with as low overhead as possible relative to the
application execution time. Ideally, the time allowed for those anal-
yses should always be negligible compared to computation time.



EMSOFT 2019, October 13–18, 2019, New-York, United-States F. Arrestier et al.

A second concern of matter should be the memory footprint
of the runtime manager. Some analysis techniques require storing
additional information that is only used for analysis purpose. For
instance, in the KalrayMassively Parallel Processor Array (MPPA) ®,
memory is a great concern. The MPPA ® architecture features 16
clusters composed of 16 VLIW processing core each. Each of the
cluster has a local memory of 2MB and, although it has access to
a bigger shared-memory, reading and writing to this memory is
expensive and should be avoided as much as possible. In such a
context, storing additional information for analysis purpose only
can result in more frequent access to the shared-memory and thus
in a downgrade of overall performances.

3.2 Existing Solutions
3.2.1 Existing runtimes. HMBE Integrated HTGS (HI-HTGS) [22]
is a design tool that aims at automating analysis and optimiza-
tions of Windowed Synchronous DataFlow (WSDF) [14] graphs.
HI-HTGS provides a lock-free and race-condition-free scheduler
that dynamically adapts to changes in actor execution times and
cope with non-deterministic characteristics of thread-based execu-
tion. HI-HTGS works in two distinct phases: a compile-time phase
and a run-time phase. During the compile-time phase, HI-HTGS
builds the SR-DAG representation of the WSDF user graph and
performs various analyses that will be used during the run-time
phase. At run-time, HI-HTGS uses the built SR-DAG and additional
information of the compile-time phase to perform dynamic schedul-
ing on multi-core processors. Due to the compile-time construction
of the SR-DAG, HI-HTGS only handle static applications.

Spider [13] is a runtimemanager designed for the execution of re-
configurable πSDF [9] applications on HMPSoCs platforms. Spider
takes a high-level πSDF graph description of an application as input.
Due to the reconfigurable nature of the πSDF MoC, Spider derives
an SR-DAG and performs graph optimizations, mapping and sched-
uling of the application at runtime, as opposed to HI-HTGS [22].
The transformation to SR-DAG may take non-negligible time on
reconfigurable applications with high-degree of task and data par-
allelism and with low complexity computation kernel, hence the
need for a more compact representation of the SR-DAG.

The OpenVX [12] standard is a graph-based Application Pro-
gramming Interface (API) proposed by the Khronos group for de-
veloping and deploying computer vision applications on embedded
platforms. The MoC used by OpenVX is an SR-DAG specialization
of the SDF MoC [16]. As seen in Section 2.3, SR-DAGs are less-
expressive and more restrictive than SDFGs but allow for global
high-level optimization. However, they limit the data-parallelism
opportunities due to the fact that in OpenVX each node is supposed
to be an atomic computer vision, or deep-learning, computation
kernel. In SDFGs, non-unitary data rates between actors favor data
parallelism allowing for each computation kernel to be further paral-
lelized. Hence, OpenVX standard relies mostly on task-parallelism.

Other runtimes such as StarPU [3] or XKaapi [11] are task-graph
based runtimes. Similarly to OpenVX, StarPU and XKaapi use a
DAG dataflow model to schedule the different tasks. However,
StarPU and XKaapi mainly focus on High Performance Comput-
ing (HPC) on heterogeneous architectures composed of multi-core
CPUs and GPUs whereas OpenVX main focus are computer vision
applications on embedded platforms. It is important to note that

contrary to OpenVX, StarPU schedules the application graph at the
same time it is constructed, thus limiting its vision of the full appli-
cation for resource allocation decisions but allowing for dynamic
reconfiguration of the application.

3.2.2 Avoiding graph expansion. Building the SR-DAG of an SDF
application might not always guarantee the best performance. The
resulting graph often contains more parallelism than what can
actually be exploited by the targeted architecture. Moreover, this
exponential growth of the SR-DAG with respect to the original
SDFG increases the complexity of scheduling algorithms for HMP-
SoCs platforms. To limit the explosion of nodes in the SR-DAG
transformation, the clustering of the original SDFG is proposed
in [20], where four clustering criteria are identified. These clus-
tering criteria provide sufficient condition for checking the intro-
duction of deadlocks in resulting clustered graph. Pino et al. then
propose a hierarchical scheduling algorithm and show that clus-
tered SDFGs result in faster scheduling with very low impact on
the obtained makespan compared to scheduling the full SR-DAGs.
Using a MoC that is hierarchical and compositional by nature, as
in the IBSDF [19] or the πSDF [9], removes the need of the clus-
tering step and the hierarchical scheduling algorithm may be used
directly.

Another approach to avoid the full-expansion of an SR-DAG
is called the vectorization of SDFGs [21]. In [21], the optimal vec-
torization of an SDFG is achieved by multiplying the rates of the
original graph by integers resulting in less invocation of the actors
of the SDFG. Partial Expansion Graphs (sPEGs) [24] formulation
provides a framework in which the vectorization of actors is inte-
grated efficiently for multiprocessor scheduling context. Zaki et
al. use Particle Swarm Optimization (PSO) to find and adjust the
amount of expansion, or vectorization, of the actors of the graph.

Schedule-Extended SDFGs [7] are another class of SDFGs that
aims at providing a more compact representation for throughput
analysis and buffer sizing than SR-DAGs. Damavandpeyma et al.
show that encompassing scheduling information directly into the
original SDFG significantly reduce time for iterative throughput
and buffer sizing analysis. Additionally, authors show that SR-DAG
representation may lead to overestimated required buffer sizes
compared to applying the same buffer sizing technique on schedule-
extended SDFGs. The authors also mention that the construction
time of the SR-DAG is very low compared to the analysis time.
Although this is true in the context of static analysis at compile-
time, the same assumption can not be made when the construction
of SR-DAG is performed at runtime. Experiments in Section 5 show
that in the Spider tool [13] and for all applications and platforms,
the overhead induced by the construction time of the SR-DAG alone
is significantly higher than the scheduling time of the SR-DAG.

Most of the existing work presented in this section show that
using an SR-DAG transformation for scheduling and analysis of
dataflow graphs is the most classical approach. SR-DAG offers a
complete exposure of task and data parallelism available in the ap-
plication. However, most of the presented work use static dataflow
MoCs and SR-DAG computation time is neglected, as it can be com-
puted at compile-time. In the context of a reconfigurable MoC such



Numerical Representation of Directed Acyclic Graphs EMSOFT 2019, October 13–18, 2019, New-York, United-States

as the πSDF MoC [9], embedded runtimes need to compute SR-
DAG on-the-fly and it may have a significant impact on application
performance, especially in the context of embedded platforms.

In this paper, we show that it is possible to use SR-DAG informa-
tion without having to pay the actual cost of building and storing
it. In Section 5, the results of the implementation of our contribu-
tion in the Spider [13] tool show significant gain both in term of
memory footprint and computation time overhead.

4 NUMERICAL MODELING OF SR-DAG
In this section, we show how it is possible to numerically model an
SR-DAG by the equations of dependencies that define it. Then, we
show that it is possible to further tune those equations in order to
encompass the hierarchy semantics of the πSDF MoC.

4.1 Dependency Representation for SDFGs
In this section, a numerical representation of the dependencies of
an SDFG is presented. First, the use of an SR-DAG is illustrated with
an example, then the numerical model of dependencies is developed.
In Sections 4.2 and 4.3, this model is extended to take into account
the specificity of the πSDF MoC.

In the following, we refer to the firing ai of actor a as being the
ith invocation of actor a during 1 iteration of the graph containing it.
The last firing of actor a is aqa−1, with qa being the repetition vector
value of actor a. In the original work of Lee et al. [16], SR-DAG is
depicted as a step needed for scheduling an SDFG.

A B 24
4

3 C1

D3

x4 

x6 
x3

x4 

Figure 5: SDF graph with overlapping dependencies.

The SR-DAG removes all the cycles and exposes the precedence
relationship between the different firings of all the actors within 1
iteration of a given SDFG. Figure 5 shows an example of a simple
SDFG in which there is some overlapping in dependencies for the
execution. We refer to overlapping dependencies as the fact that
multiple firings of a same actor depend on the same firings of an-
other actor. For example, in the graph of Figure 6, firings D0 and D1
both depend on firing B0. The SR-DAG of Figure 6 unravel all the
dependencies of the graph of Figure 5 both for scheduling the exe-
cution of the graph and for the memory allocation of the different
Fifos. For instance, D0 depends only on B0 but D1 depends on both
B0 and B1. On the other hand, every two firings of actorC depends
on only one firing of actor B meaning that a scheduler minimizing
memory allocation could schedule two successive firings of C be-
tween two firings of B so that the allocated buffer of the Fifo ( ®BC)
is reused. Importantly, the added Fork and Join actors are necessary
in the SR-DAG transformation to explicit the shared dependencies
but they are not necessary to model those dependencies and thus
will not appear in the proposed numerical representation.

However, building the SR-DAG is not necessary to have the
information of the dependencies. All dependencies between firings
of actors can be derived numerically by analyzing the production

A0 3

A3 3

D03

D13

D23

D33

C01

C11

C21

C31

C41

C51

F 1
1

2

F 1
1

2

F 1
1

2

B0 2
4

4

B1 2
4

4

B2 2
4

4 F 3
1

4

F 2
2

4

F
3
14

J 3
1
2

J 31
2

A1 3

A2 3

F 13
2

F
1

3 2

J
1
3 4

J1
3

4

J2 4
2

Figure 6: SR-DAG of πSDF graph of Figure 5.

and consumption of the different edges of the graph. We define the
dependency matrix ∆a of an actor a in Equation (1a). Dimensions
of ∆a are Nin × qa, with Nin the number of input edges of actor a
and qa the repetition vector value of a. There is one row for each
input edge ej of actor a and one column per firing k of a. Each value
of ∆a , noted δj ,k (Equation (1b)), is a sub-matrix of size 1 × 2 that
corresponds to an interval of dependency for edge ej and instance
k of actor a.

The first value of δj ,k , noted δ0j ,k , correspond to the first firing
of src(ej ) needed for the firing of ak , with src(ej ) being the actor
producing data tokens on ej . The second value of δj ,k , noted δ1j ,k ,
correspond to the last firing of src(ej ) needed for the firing of ak .
In other words, δj ,k represent the interval of firings of src(ej ) on
which firing k of actor a depends to execute. Since dependencies are
necessary in increasing order, the first and the last firing number of
src(ej ) are sufficient to define completely the dependency interval.

∆a = edges

y
firings of a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
δ0,0 δ0,1 · · · δ0,qa−1
...

...
. . .

...

δNin−1,0 δNin−1,1 · · · δNin−1,qa−1

 (1a)

δj ,k =
[
δ0j ,k δ1j ,k

]
(1b)

Taking the example of Figure 5, Equation (2) gives the corre-
sponding dependency matrix of actor D. Firing 0 of actor D, D0,
depends on the firings 0 to 0 of actor B, i.e D0 can be fired as soon
as B0 is finished. Similarly, D1 depends on firings 0 to 1 of actor B.
Hence, D1 can be fired if and only if B0 and B1 have finished their
execution.

∆D =
[ D0 D1 D2 D3

®BD [0 0] [0 1] [1 2] [2 2]
]

(2)

Theorem 1
LetG be a consistent and live SDF Graph, and A be the associated set



EMSOFT 2019, October 13–18, 2019, New-York, United-States F. Arrestier et al.

of actors. If and only ifG is consistent, there exist a repetition vector q
of size |A|. For any firing k of an actor a ∈ A, and for any input edge

ej ∈ a, there exists a dependency interval δj ,k =
[
δ0j ,k δ1j ,k

]
with

δ0j ,k , δ
1
j ,k the first and last dependencies of ej , respectively.

We have:

δ0
j,k =

⌊
k ∗ c j − dj

pj

⌋
(3a)

δ1
j,k =

⌊
cj ∗ (k + 1) − dj − 1

pj

⌋
(3b)

where c j , pj and dj are the consumption rate, the production rate and
the number of initial delays on the edge ej , respectively.

Proof of Eqation (3b). Let b ∈ A be the actor producing data
tokens on input edge ej of actor a and qb and qa be the repetition
vector values of b and a, respectively. If and only if G is consistent,
then the sum of all data tokens produced by actor b is equal to the
sum of all data tokens consumed by actor a. Equation (4) formalizes
this property.

l=qa−1∑
l=0

(c j ) =

i=qb−1∑
i=0

(pj ) (4)

For any firing k of actor a to execute, the sum of all the data
tokens consumed by firings of actor a up to k must be less or equal
to the sum of all the data tokens produced by actor b and the initial
delays of the edge ej . Formally, for any ak , k ∈ [0; qa[, there exists
a given positive integer m ∈ [0; qb[ verifying Equation (5).

l=k∑
l=0

(c j ) ≤
i=m∑
i=0

(pj ) + dj (5)

We search the minimal value m0 of m such that Equation (5)
holds. In other words, we search the minimal value m0 for which
the sum of all the data tokens produced by actor b and the initial
delays is greater or equal to the sum of data tokens consumed by
actor a up to its firing k . Consequently, this means that for m0 − 1,
the sum of all data tokens produced by actor b and the initial delays
is strictly inferior to the sum of the data tokens consumed by actor
a up to firing k which translates in Equation (6).

l=k∑
l=0

(c j ) >

i=m0−1∑
i=0

(pj ) + dj (6)

By developing the sums in Equation (5) comes:

(k + 1) ∗ c j ≤ (m0 + 1) ∗ pj + dj (7a)
(k + 1) ∗ c j − dj

pj
≤ m0 + 1 (7b)

Developing Equation (6):

(k + 1) ∗ c j > m0 ∗ pj + dj (8a)
(k + 1) ∗ c j − dj

pj
> m0 (8b)

And using the fact that ⌈x⌉ = n, n ∈ N if and only if n ≥ x > n − 1:

m0 + 1 =
⌈
(k + 1) ∗ c j − dj

pj

⌉
(9a)

m0 =

⌈
(k + 1) ∗ c j − dj

pj

⌉
− 1 (9b)

Finally, since k , c j and pj are positive integers, we have:

m0 =

⌊
(k + 1) ∗ c j − dj − 1

pj

⌋
(10)

■

To prove Equation (3a), we search for the minimal value n0 such
that the sum of the initial delays and of all data tokens produced by
a given actor b is greater than the sum of all data tokens consumed
by a given actor a, up to its kth firing. This definition translates to
Equation (11). The rest of the developments are similar to the proof
of Equation (3b) and are omitted due to space limitations.

l=k∑
l=0

(c j ) <

i=n0∑
i=0

(pj ) + dj (11)

Having delays on a Fifo may result in negative values for δ0
j,k

and δ1
j,k . If δ

0
j,k or δ1

j,k is negative, this means that firing k of actor a
depends on initialization tokens coming either from previous graph
iteration or from a setter actor setting those initial tokens [2].

4.2 Taking hierarchy into account
Equations (3a) and (3b) hold in the general case of SDF graphs. How-
ever, to take into account the hierarchical specificity of the πSDF
and IBSDF MoCs, it is necessary to define additional equations to
define the behavior of interfaces. In this section, only the interfaces
are discussed as the other actors inside a subgraph behave the same
way as in a SDFG, meaning that Equations (3a) and (3b) apply to
them. As defined in [9, 19], input and output interfaces act as a
"frontier" between a hierarchical actor and its inner subgraph defi-
nition. All data tokens of an input interface must be consumed at
least once during an iteration of a subgraph. If more data tokens
are consumed, due to repetition vector values, then the interface
behaves like a circular buffer producing the same data tokens as
many times as needed. Symmetrically, an output interface only
outputs the last data tokens produced by the actor connected to
it and discards the rest. Importantly, interfaces have a repetition
vector value of 1.

C1A 1

2 H
1B 1

1
3

D 21 E 11

F11

2 1
1

3

G1

x4 
x2 

x1 

x2 

x1 x1 
x3 

x1 

Figure 7: Hierarchical πSDF graph example.



Numerical Representation of Directed Acyclic Graphs EMSOFT 2019, October 13–18, 2019, New-York, United-States

Consumed Token

Forwarded Token

Non-Discarded Token

Discarded Token

E0 E1

G0

H0

E2

G1

H0

G2

E3

H0

Production Order

H
ie

ra
rc

h
y
 L

e
v
e
l

CG

COUTG

PE

G1

x3 

E
1

3

x4 

Figure 8: Behavior of the output interface connecting the
subgraph H to actor G in Figure 7. Tokens are named after
the corresponding firing of the actor producing them.

Figure 8 illustrates the behavior of the output interface connect-
ing the subgraphH to the actorG in Figure 7. In Figure 7, the actor E
is executed 4 times within the subgraph H, producing 4 data tokens
on its output data port connected to the output interface itself con-
nected to the actor G in the upper-graph. The output interface only
consumes 3 data tokens, meaning that only the last three executions
of the actor E are used for this interface, as showed in Figure 8 with
the first data token produced by actor E being discarded.

Equations (12) give the dependency interval definition for an
output interface oif of a given subgraph.

δ0
oif = qP −

⌈
coif
poif

⌉
(12a)

δ1
oif = qP − 1 (12b)

where qP is the repetition vector value of the actor producing
data tokens on oif, coif the consumption rate of the interface oif and
poif the production rate on the interface oif. In Figure 8, poif corre-
sponds to PE = 1, coif corresponds toCoutG = 3 and qP corresponds
to qE = 4. Applying Equations (12a) and (12b) to Figure 8 gives the
first dependency on E equal to δ0

outG = 1 and the last dependency
on E equal to δ1

outG = 3. Note that delays on Fifos connected to
output interfaces do not impact Equations (12a) and (12b) due to
the behavior of the interface to only output the last data tokens
produced on it. Dependencies on output interfaces also give to the
scheduling algorithm the earliest time at which a hierarchical actor
can be considered to have finished its internal execution.

Equation (12b) comes directly from the definition of the output
interfaces [19]. If the interface only outputs the last data tokens
produced on it, then the last dependency of the interface is nec-
essarily the last firing of the actor producing data tokens on it.
Equation (12a) is derived using a similar development to the one of
Equation (3a). The aim is to find the minimum number of firings N
of the actor producing data tokens on output interface oif such as:

N∑
i=1

poif ≥ coif (13a)

N−1∑
i=1

poif < coif (13b)

Using the developments of Equation (3a), it comes:

N =

⌈
coif
poif

⌉
(14)

The first dependency of the output interface is then defined by:

δ0
oif = qP − N (15a)

δ0
oif = qP −

⌈
coif
poif

⌉
(15b)

which corresponds to Equation (12a).
Input interfaces inherit the dependencies of the hierarchical ac-

tors to which they belong. This comes directly from the definition of
input interfaces that state that input interfaces can start executing
as soon as the hierarchical actor is ready to fire in its parent graph.
Therefore, actors connected to input interfaces can start their exe-
cution as soon as the subgraph starts and the only dependency to
check is related to the presence of delays.

4.3 Relaxed execution model for πSDF
In [8], a relaxed model of execution is used on the IBSDF MoC to
maximize the throughput of an application containing multiple
levels of hierarchy. The relaxed execution model allows for actors
contained inside an IBSDF subgraph to start their execution without
having to wait for data tokens on all interfaces of their containing
hierarchical actor. For example, in the graph of Figure 7, and with
a relaxed execution model, actor F can execute directly after the
execution of actor B independently of the executions of actorA. We
apply the same relaxed execution model to the πSDF MoC.

Taking into account the relaxed constraint in the numerical
model of the SR-DAG adds some complexity to the previously
proposed equations. We will first investigate the case of the output
interfaces. Relaxing the executionmodel of the πSDF leads to extend
the dependency resolution problem of an actor depending on a
hierarchical actor from its level of hierarchy to the subgraph level.
For example, in the graph of Figure 7 dependencies of actor C
are now 2-dimensional. Indeed, actor C depends on executions of
actor H and for each firing of actor H , depends on executions of
actor E. The objective is thus to combine Equations (3a) and (3b) to
Equations (12a) and (12b), respectively.

We note δN
a |j,k the sub-matrix of size 1 × 2, with N the total

number of levels of hierarchy the firing k of an actor a depends on
for its input edge ej . δN

a |j,k is a generalization of δj,k introduced in
Section 4.1. Equation (16) gives the general definition of δN

a |j,k .

δN
a |j,k =

[ [
δ0,0

a |j,k · · · δ0,N−1
a |j,k

] [
δ1,0

a |j,k · · · δ1,N−1
a |j,k

] ]
(16)

Similarly to the definition of δj,k given in Section 4.1, δN
a |j,k repre-

sents the interval of dependencies of firing k of actor a. The main
difference is that δ0j ,k and δ1j ,k are now defined as sub-matrices of

size 1 × N . δ0,nj ,k is the first dependency of the kth firing of actor a

at level n of hierarchy. Similarly, δ1,nj ,k is the last dependency of ak
at the level n of hierarchy. The generalized definitions of δ0,nj ,k and



EMSOFT 2019, October 13–18, 2019, New-York, United-States F. Arrestier et al.

δ1,nj ,k are given in Equations (17a) and (17b), respectively.

δ0,n
a |j,k =


δ0

a |j,k, n = 0, see Equation (3a)

qpn −

⌈
C0,n

a|j ,k
Pn

⌉
, n ∈ [1;N [

(17a)

δ1,n
a |j,k =


δ1

a |j,k, n = 0, see Equation (3b)

qpn −

⌈
C1,n

a|j ,k
Pn

⌉
, n ∈ [1;N [

(17b)

where:
• qpn , the repetition vector value of the actor producing data
tokens on the output interface at level n of hierarchy.

• Pn , the production rate on the output interface at level n of
hierarchy.

• C0,n
a |j ,k , the updated consumption rate of the output interface

at level n of hierarchy for the first dependency.
• C1,n

a |j ,k , the updated consumption rate of the output interface
at level n of hierarchy for the last dependency.

C0,n
a |j ,k and C1,n

a |j ,k correspond to the updated consumption rates
of the output interface at the level n of hierarchy for the first de-
pendency and the last dependency, respectively. For each level n
of hierarchy, the updated consumption rate of the corresponding
output interface depends on the one of the level n−1, up to the con-
sumption rate of the edge ej of actor a at the top level of hierarchy.
The definitions of C0,n

a |j ,k and C1,n
a |j ,k are given by Equations (18a)

and (18b), respectively.

C0,n
a |j ,k =

{
((δ0

a |j,k + 1)) ∗ pj + dj − k ∗ c j , n = 1
C0,n−1

a |j ,k − (qpn−1 − (δ0,n−1
a |j,k + 1)) ∗ Pn−1, n ∈ [2;N [

(18a)

C1,n
a |j ,k =

{
((δ1

a |j,k + 1)) ∗ pj + dj − (k + 1) ∗ c j + 1, n = 1
C1,n−1

a |j ,k − (qpn−1 − (δ1,n−1
a |j,k + 1)) ∗ Pn−1, n ∈ [2;N [

(18b)

where:
• c j , the consumption rate of edge ej of actor a.
• pj , the production rate of edge ej .
• dj , the initial delay of edge ej .
• k, the firing of actor a for which dependencies are computed.

Due to space limitation, the full development of these equations
is not given in this paper. However, we provide the concept used
to derive the equations. A more complete development is given in
the joint technical report. A multi-level hierarchical πSDF graph
is presented in Figure 9 and Figure 10 shows the corresponding
data tokens dependency analysis. Figure 10 shows the direct data
dependencies across the different levels of hierarchy.

For instance, the first data token consumed by A1 is produced
by E2 during the second firing of the subgraph B (B1), in the first
firing of the subgraph H (H0). Examples of relaxed and non-relaxed
dependencies are also given in Figure 10 for A0. With non-relaxed
dependencies, A0 depends only on H0, then the output interface of
H depends on B1 and finally the output interface of B depends on
E2. In other words, with non-relax dependencies, A0 has to wait
for the complete execution of the second firing of the subgraph B

and the corresponding firings of actor E before it can be fired. With
relaxed dependencies, A0 depends directly on E2, from B0 and H0,
and the dependencies due to the interfaces of the different levels of
hierarchy are omitted.

By analyzing the distribution of the different data tokens and
how the consumption rate of the output interfaces is influenced
across the different levels of hierarchy, it comes a direct relation-
ship linking the level n to the level n − 1 that is expressed in the
Equations (18a) and (18b) with the terms C0,n−1

a |j ,k and C1,n−1
a |j ,k , re-

spectively. The subtraction term of the Equations (18a) and (18b)
corresponds to the offset that should be applied in order to have the
actual consumption rate of the output interface of the next level of
hierarchy. This subtraction comes from the inverse behavior of the
output interfaces. For instance, in Figure 10, the real consumption
rate of A0 on the output interface of B0 is equal to 1 and not 3.
Similarly, the consumption rate of A2 on the output interface of H1
is 2 instead of 3 which will make A2 dependent on B1 and not B0.

H A
x2 x3

23

B
x2 

32

E 1 2

x3

Subgraph H

Subgraph B

Top-Level Graph

Figure 9: Multi-Level Hierarchical πSDF graph example.

E1 E2 E2

B1 B1B0

A0 A0 A1

E1E0E0

B0

H0 H0 H0

E1 E2 E2

B1 B1B0

A1 A2 A2

E1E0E0

B0

H1 H1 H1

H
ie

ra
rc

h
y
 L

e
v
e
l

Production Order

Non-Relaxed DependencyRelaxed Dependency

Figure 10: Dependency analysis of the graph of Figure 9.
The graphical formalism is the same as in Figure 8

In Section 4.1, we explained that the definition of an interval is
sufficient to define the full dependencies of an actor for a given
input edge due to the fact that there can be no discontinuity in the
dependencies. In other words, if an actor A depends on an actor B
with the following interval [B0 B2], then actor Amust also depends
on B1. This property is also applicable to the hierarchy case. This
means that if an actorA depends on the following dependency inter-
val [[G0 H0] [G1 H1]], it must depend on all firings ofG and H that
fall in between except for the discarded firing of actors due to the
behavior of the interfaces. Using Equations (16) , (17a) and (17b) on
the example graph of Figure 9 we obtain the following dependency



Numerical Representation of Directed Acyclic Graphs EMSOFT 2019, October 13–18, 2019, New-York, United-States

intervals for actors A.

δ0A |0,1 = [0 1] (19a)

δ1A |0,1 = [[0 1] [1 0]] (19b)

δ2A |0,1 = [[0 1 2] [1 0 2]] (19c)

Equation (19a) corresponds to the dependency interval of A1 at
the top level of hierarchy, Equation (19b) corresponds to the de-
pendency interval of A1 in the subgraph H and Equation (19c)
corresponds to the fully relaxed dependency interval of A1. Equa-
tion (19a) shows that A1 depends on H0 to H1 and Equation (19b)
shows that A1 depends on B1 from H0 to B0 from H1. Finally, Equa-
tion (19c) shows that A1 depends on E2 from [H0 B1] to E2 from
[H1 B0]. It is possible to individually tune the number of hierarchy
levels for which the execution of an actor is relaxed which gives
flexibility to the scheduling algorithm. In this paper, we will only
consider the cases of no-relaxation and full-relaxation.

It is important to note that for dynamic applications with pa-
rameter changes in a hierarchical actor H , it is necessary to store
the different values of the parameters of each instance of H as it
may influence the repetition vector in a particular instance of H
and change the dependencies for actors depending on H . This con-
straint is not necessary for the non-relaxed execution model as the
subgraph is hidden from any actor depending on H .

For the case of input interfaces, as stated in Section 4.2 no spe-
cial equations have to be derived. Actors depending on interfaces
directly inherit dependencies of the corresponding input edge of
the containing hierarchical actor. This inheritance goes up to the
top level of hierarchy. However one particular case has to be con-
sidered, the case of an actor consuming more data tokens on an
input interface that the interface produces. Since, interfaces have a
repetition vector value strictly equal to 1, a special actor, called a
duplicate actor, is introduced. A duplicate actor has one input port
and one output port and duplicates the tokens received on its input
port as many times as needed to respect the consistency property.
Duplicate actors are automatically inserted during graph analysis.

4.4 Resource allocation
The proposed numerical approach is compatible with dataflow
MoCs derived from the SDF MoC and can be used to derive a
schedule the same way DAG would. Indeed, it is possible to build
an API that emulates accesses to an SR-DAG using the proposed
numerical model. From the user point of view, the emulated SR-
DAG behaves as a standard SR-DAG, the only difference being that
dependencies are computed on-the-fly instead of having a pre-built
graph. Therefore, any resource allocation algorithm that uses an
SR-DAG can be based on the proposed numerical model instead.

The main advantage of our proposed method is to remove the
costly step of building and storing the SR-DAG. However, using our
method may result in an increase of the complexity of the original
resource allocation algorithm, compared to using the SR-DAG, due
to the computation of the dependencies done on-the-fly.

In the experiments of Section 5, to demonstrate the capacity of
our model to be used in a real resource allocation algorithm and
evaluate the performance gain over the SR-DAG representation, a
naive greedy scheduling algorithm is used. The performance of the

greedy algorithm is not the focus of this paper. The chosen greedy
algorithm works as follows:

(1) Create a list with all actors of the graph.
(2) Find an actor a in the list that can be scheduled.
(3) Map actor a onto an available processor.
(4) Remove actor a from the list.
(5) If no more actors, exit scheduling. Else go back to step 2.
The main difference between the SR-DAG-based greedy sched-

uler and the numerical one comes from the input graph represen-
tation used. Using the SR-DAG, the SR-DAG itself is used and the
greedy scheduler directly goes through the actor list of the graph
to find the first actor that can be scheduled. Using the numerical
model, the original πSDF representation of the application is used
and the greedy scheduler goes through the πSDF actor list, then for
each actor it computes on-the-fly the dependencies of the actor, and
for the current firing of the actor, to check if it can be scheduled.

5 EXPERIMENTS
5.1 Experimental Setup

Table 1: Experimental platform characteristics

Platform Processor Cores RAM GCC

Laptop Intel®Core™i7-7820HQ 4 32GB DDR4 7.3.0

Jetson TX2 ARM Cortex™-A57 4 + 2 8GB LPDDR4 5.4.0+ NVIDIA Denver 2

ODROID-XU3 Samsung Exynos 5422 4 + 4 2GB LPDDR3 4.9.2

The different experiments are conducted on 3 different platforms
ranging from an x86 laptop with medium processor to a very low
power ODROID-XU3 platform. The characteristics of these plat-
forms are summarized in Table 1. The Spider library was compiled
with O3 level of optimizations on all platforms. Four applications
from the official repository1 of the Preesm tool [18] have been used
to conduct the experiments. These applications are state-of-the-art
AI, and computer vision applications. The four applications fea-
ture different levels of hierarchy and task and data parallelism, as
summarized in Table 2 where |GπSDF | corresponds to the number
of actors in the πSDF representation, Nlevels corresponds to the
number of hierarchical levels and |GSR-DAG | corresponds to the
number of actors in the SR-DAG representation of the application.
The number of edges for both MoCs is noted in the NEdges column
of the corresponding MoC.

In the applications used for our experimentation, all parame-
ter values are changing at each graph iteration, thus triggering a
complete rescheduling of the application. Although unrealistic, this
behavior was forced, even in case of static parameter values, in order
to emphasize the most dynamic, and thus the most complex sce-
nario for the runtime allocation of resources. In the case of a more
static behavior, both the DAG-Based and numerical model-based
solutions can benefit from optimizations to conserve information
between successive graph iterations, which is out of the scope of
this paper.

1https://github.com/preesm/preesm-apps



EMSOFT 2019, October 13–18, 2019, New-York, United-States F. Arrestier et al.

Table 2: Applications description

πSDF SR-DAG

Application |GπSDF | NEdges Nlevels |GSR-DAG | NEdges

SqueezeNet 108 272 2 5436 17248

Reinforcement Learning 188 459 3 417 1114

Stabilization 20 41 2 101 325

Sobel-Morpho 6 7 0 65 85

5.2 Results
In this section, we present the different experimental results ob-
tained for our implementation of the presented numerical model
into the Spider tool and compare them to the reference imple-
mentation that uses an SR-DAG model. Two configurations of the
proposed numerical model are compared to the reference imple-
mentation. The first configuration is referred to the relaxed con-
figuration and corresponds to the use of the relaxed execution
model presented in Section 4.3, and the second configuration is
referred to the standard configuration and corresponds to the non-
relaxed execution model of the πSDF MoC. In these experiments,
the metrics used for comparing the different configurations are the
computation time and the memory footprint of the runtime man-
ager performing the scheduling and mapping of a πSDF application
onto multi-cores processor platforms. The scheduling algorithm
used in these experiments is the greedy scheduling algorithm de-
scribed in Section 4.4. Despite being a rather simple algorithm, this
scheduling algorithm allows to rapidly demonstrate the feasibility
of our proposed models. Nevertheless, the results show that using
the direct numerical model gives overall great improvements both
in terms of computational complexity and memory footprint. The
measured application performance may be further optimized with a
smarter scheduling algorithm [15], which would reduce the sched-
uling time of all experiments, but would not change the memory
nor the construction time overhead of the SR-DAG based runtime.

5.2.1 Memory footprint. In this section, we present the memory
footprint of the different representations for the scheduling and
mapping. No differentiation is made between the relaxed and stan-
dard configurations of the numerical model as both configurations
share the same memory footprint.

Table 3 shows the total memory footprint of Spider during the
scheduling and mapping of the applications. The gains expressed
in Table 3 represent, as a percentage, the amount of memory saved
with the numerical model compared to the reference SR-DAG im-
plementation. Results show significant memory reduction with up
to 98.63% of memory reduction for the reinforcement-learning ap-
plication and an average memory reduction of 97.34%. This high
memory reduction is due to the fact that in our proposed implemen-
tation, we only store the current firing value and the total number
of firings of all πSDF actors during the mapping and scheduling
phase as all dependencies are computed on-the-fly when needed.

In addition to the memory needed for the different representa-
tions, there is memory used to store information about the schedule
execution. The memory used for the schedule execution is similar
in both the SR-DAG and the numerical model and is comprised in
the values of Table 3. In other words, there exists an upper bound

Table 3: Memory footprint of the representations

Application Reference (SR-DAG) Numerical Model Gain (%)

SqueezeNet 8405.9 KB 515.3 KB 93, 87

Reinforcement Learning 5183.7 KB 70.9 KB 98.63

Stabilization 782.8 KB 11.8 KB 98.49

Sobel-Morpho 404.5 KB 6.8 KB 98.32

to the potential memory footprint reduction that depends on the
memory used for the schedule execution. Figure 11 shows the rel-
ative memory footprint of the numerical model and the SR-DAG
representation over the total memory footprints of Table 3, hence
highlighting the relative memory footprint of the schedule execu-
tion information. Values of Figure 11 show that actual memory
used by the numerical models to perform scheduling and mapping
only account for 0.93% to 11.15% of the total memory footprint of
Spider whereas in the case of the SR-DAG representation, actual
memory used for the scheduling and mapping is greater than 92%
of the total memory footprint. Hence, Figure 11 emphasizes the
low memory footprint overhead of the proposed approach on the
runtime over the reference SR-DAG representation.

0 20 40 60 80 100
Relative memory footprint (%)

SqueezeNet

Reinforcement-Learning

Stabilization

Sobel-Morpho

0.93

11.15

8.47

5.88

92.01

98.88

98.39

98.05

Num Ref

Figure 11: Relative memory footprint of representations
over total memory footprint.

5.2.2 Execution time. In this section, the execution times of the dif-
ferent configurations of the numerical model (relaxed and standard)
are compared to the reference implementation. Then, a comparison
of the schedule latency, i.e execution time for one graph iteration,
for the two configurations of the numerical model is performed,
highlighting a potential trade-off between execution time and sched-
ule latency.

Table 4: Intermediate Representation building time in ms

Laptop Jetson TX2 ODROID-XU3

Application Ref Num Ref Num Ref Num

SqueezeNet 7.105 0.221 39.43 0.664 79.77 1.90

Reinforcement Learning 0.868 0.180 6.03 0.551 12.41 1.71

Stabilization 0.138 0.017 0.67 0.059 1.70 0.19

Sobel-Morpho 0.061 0.005 0.23 0.017 0.69 0.06



Numerical Representation of Directed Acyclic Graphs EMSOFT 2019, October 13–18, 2019, New-York, United-States

Table 4 presents the execution times taken by the construction
phase of the intermediate representations. In the case of the SR-DAG
(Ref column), this time corresponds to the construction of the SR-
DAG and the initialization of the schedule execution information.
In the case of the numerical model (Num column), the value of
Table 4 corresponds to the initialization of the schedule execution
information and the allocation of the arrays used to store firing
information during the scheduling and mapping phase. Note that
the construction phase is shared for both relaxed and standard
configurations, thus no difference is made between them in Table 4.
On all three platforms, building the numerical model is significantly
faster than building the SR-DAG representation, with a maximum
speedup of 59.39 for the SqueezeNet application on the Jetson TX2.

Table 5 shows the resource allocation execution times for the
three compared configurations. In Table 5, Num-R and Num-S refer
to the relaxed and the standard configurations of the numerical
model, respectively. The results show significantly lower schedul-
ing times for the standard configuration over the two others. This
is explained by the hierarchical nature of the standard execution
model and the greedy scheduling algorithm used. Indeed, the greedy
algorithm iterates over the actors of a graph until it finds an actor
that can be scheduled. In the numerical model configurations, the
algorithm is thus much faster, as it iterates over the πSDF graph
which contains fewer actors than the SR-DAG one (see Table 2).
Moreover, in the standard configuration, actors located in nested
levels of hierarchy are not tested until the corresponding hierar-
chical actor can be scheduled reducing furthermore the number of
tested actors per iteration of the greedy algorithm.

Interestingly, Table 5 shows that the relaxed configuration has
overall higher resource allocation times than the reference con-
figuration. Contrary to the standard configuration, in the case of
relaxed execution, every actor of the πSDF is tested per iteration
of the greedy algorithm. Moreover, the complexity of fetching the
dependencies of an actor located in a deep level of hierarchy is
significantly higher than when dealing with same level of hierarchy
dependencies. This effect is particularly visible with the SqueezeNet
application which possesses a high number of dependencies be-
tween actors belonging to separate subgraphs. However, the case
of the relaxed execution could be improved in future implemen-
tations by storing hierarchical dependencies, thus avoiding their
re-computation at the cost of an increased memory footprint. An-
other way of improving the relaxed execution model would be to
perform graph analysis before the first graph iteration to simplify
the πSDF hierarchy whenever it is possible.

Finally, Table 6 gives the relative difference of the obtained sched-
ule latency when scheduling with the numerical models compared
to the reference implementation. A value of 0% means that the
obtained schedule latency is equal to the one of the reference. Small
relative differences in latency (inferior to 5%) are explained by two
factors. Firstly, in the SR-DAG representation, Fork and Join actors
are explicitly scheduled due to the fact that they are part of the re-
sulting graph whereas they are not in the numerical representation.
Secondly, Spider performs several passes of optimizations on the
SR-DAG to reduce the number of special actors (Fork, Join, Broad-
cast and Roundbuffer actors) introduced during the transformation.
However, optimizations do not necessarily remove all special actors
introduced during the transformation. Importantly, optimizations

passes may also remove special actors that are part of the original
πSDF graph which can further improve the obtained schedule la-
tency which is not the case for the numerical representation where
no optimizations are performed on the πSDF graph.

Table 6 shows no clear improvement of the schedule latency
of the relaxed execution model over the standard one on 3 out of
the 4 tested applications. For the Sobel-Morpho application, this
is explained by the absence of hierarchy, thus there is no need for
relaxation. In the case of the Stabilization application, the obtained
latency is limited by the topology of the graph itself with synchro-
nization points that can not be reduced. However, in the case of
the Reinforcement-Learning application, a significant gain with a
difference up to 24.1 percentage points can be achieved using the
relaxed execution model at the cost of higher scheduling time.

Figure 12 shows the relative total execution time for the three
configurations and for the three different platforms. The total exe-
cution time is the sum of the intermediate representation building
time (Table 4) and the scheduling time (Table 5). The relative total
execution time is the relative difference of the total execution time
of the numerical representations with the total execution time of the
reference. Figure 12 shows that even with higher scheduling time
for the relaxed configuration, a minimum reduction of 47.11% of to-
tal execution time is achieved when considering the total execution
time spent in the resource allocation phase of Spider.

For the SqueezeNet application, a reduction of up to 94.5% of the
total execution time is achieved on the Jetson platform with the
standard execution model with 0.22% of increase on the obtained
schedule latency (Table 6). By comparison, the relaxed configura-
tion reduces the execution time of 75.53% on the Jetson platform
with a negligible impact on the obtained schedule latency (0.11%).
On the other hand, for the reinforcement learning application, there
is a non-negligible difference in the obtained schedule latency for
the Jetson and Odroid platforms (19.15 and 24.1 percentage points,
respectively) with a difference inferior to 10 percentage points of
execution time between the relaxed and the standard execution
models. Therefore, depending on the application graph topology
and the targeted platform, there is a trade-off between better sched-
uling performance and execution time. Finally, it is important to
note that the execution time of the relaxed configuration could be
improved with additional optimizations of the implementation in
Spider, which would reduce the gap with the standard configura-
tion in terms of raw execution time performance.

6 CONCLUSION
In this paper, we proposed a numerical representation of dependen-
cies relationship between actors first for the SDF MoC and then
extended to the πSDF MoC. We showed that numerical represen-
tation is better suited for fast resources allocation of application
than DAG-based methods due to the cost of building and storing
DAG. Experiments on various computer vision and machine learn-
ing applications showed significant gains compared to DAG-based
methods both in scheduling time and memory overhead. Future
work will investigate hierarchy scheduling algorithm and the in-
tegration with other state-of-the-art scheduling methodology and
algorithms.



EMSOFT 2019, October 13–18, 2019, New-York, United-States F. Arrestier et al.

Table 5: Resource allocation execution time in ms of the different configurations.

Laptop Jetson TX2 ODROID-XU3

Application Ref Num-R Num-S Ref Num-R Num-S Ref Num-R Num-S

SqueezeNet 2.491 4.856 1.043 22.51 14.50 2.76 23.10 23.19 4.49

Reinforcement Learning 0.105 0.327 0.120 0.50 0.91 0.35 0.81 1.47 0.71

Stabilization 0.020 0.055 0.019 0.08 0.13 0.06 0.18 0.24 0.12

Sobel-Morpho 0.012 0.010 0.009 0.05 0.03 0.03 0.11 0.06 0.05

0 20 40 60 80 100
Relative Execution Time (%)

Reinforcement-
Learning

Sobel-Morpho

SqueezeNet

Stabilization

100.00

100.00

100.00

100.00

22.29

16.78

24.47

24.93

13.78

16.61

5.50

16.19

A) Jetson TX2

0 20 40 60 80 100
Relative Execution Time (%)

100.00

100.00

100.00

100.00

52.09

21.02

52.89

45.85

30.75

18.97

13.18

23.35

B) Laptop

0 20 40 60 80 100
Relative Execution Time (%)

100.00

100.00

100.00

100.00

24.02

13.95

24.40

22.49

18.43

13.67

6.18

16.24

C) Odroid-XU3

Reference
Relaxed
Standard

Figure 12: Relative total execution time, intermediate representation building time + scheduling time, for the 3 platforms.

Table 6: Relative change in schedule latency (%) for the
different configurations.

Laptop Jetson TX2 ODROID-XU3

Application Num-R Num-S Num-R Num-S Num-R Num-S

SqueezeNet 0.11 0.22 -0.05 0.22 0.07 4.30

Reinforcement Learning 1.36 8.19 3.10 22.25 1.61 25.71

Stabilization 5.45 5.45 4.55 4.55 9.20 9.20

Sobel-Morpho −2.23 −2.23 4.86 4.86 0.00 0.00

Average 1.17 2.91 3.12 7.97 2.72 9.80

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No 732105. and from the French Agence Nationale de la
Recherche under grant ANR-15-CE25-0015 (ARTEFaCT project).

REFERENCES
[1] Matin Abadi et al. 2016. TensorFlow: A system for large-scale machine learning.

265–283.
[2] Florian Arrestier, Karol Desnos, Maxime Pelcat, Julien Heulot, Eduardo Juarez,

and Daniel Menard. 2018. Delays and states in dataflow models of computation.
In Proceedings of the 18th International Conference on Embedded Computer Systems
Architectures, Modeling, and Simulation - SAMOS ’18. ACM Press, Pythagorion,
Greece, 47–54. https://doi.org/10.1145/3229631.3229645

[3] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2009. StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. (2009), 16.

[4] Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya. 2001. Parameterized
dataflow modeling for DSP systems. IEEE Transactions on Signal Processing 49,
10 (2001), 2408–2421.

[5] Shuvra S Bhattacharyya, Edward A. Lee, and Praveen K. Murphy. 1996. Software
Synthesis from Dataflow Graphs. Kluwer Academic Publishers, Norwell, MA,
USA.

[6] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. 1996. Cycle-static
dataflow. IEEE Transactions on Signal Processing 44, 2 (Feb. 1996), 397–408. https:
//doi.org/10.1109/78.485935

[7] Morteza Damavandpeyma, Sander Stuijk, Twan Basten, Marc Geilen, and Henk
Corporaal. 2013. Schedule-Extended Synchronous Dataflow Graphs. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 32, 10 (Oct.
2013), 1495–1508. https://doi.org/10.1109/TCAD.2013.2265852

[8] Hamza Deroui, Karol Desnos, Jean-François Nezan, and Alix Munier-Kordon.
2017. Relaxed Subgraph ExecutionModel for the Throughput Evaluation of IBSDF
Graphs. In International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS).

[9] Karol Desnos, Maxime Pelcat, Jean-François Nezan, Shuvra S. Bhattacharyya,
and Slaheddine Aridhi. 2013. Pimm: Parameterized and interfaced dataflow
meta-model for mpsocs runtime reconfiguration. In Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International
Conference on. IEEE, 41–48.

[10] Pascal Fradet, Alain Girault, and Peter Poplavko. 2012. SPDF: A schedulable
parametric data-flowMoC. In Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 769–774.

[11] Thierry Gautier, Joao VF Lima, Nicolas Maillard, and Bruno Raffin. 2013. Xkaapi:
A runtime system for data-flow task programming on heterogeneous architec-
tures. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on. IEEE, 1299–1308.

[12] Kronos Group. 2013. The OpenVX API for hardware acceleration. In http://
www.khronos.org/openvx.

[13] Julien Heulot, Maxime Pelcat, Karol Desnos, Jean-François Nezan, and Slaheddine
Aridhi. 2014. Spider: A synchronous parameterized and interfaced dataflow-based
rtos for multicore dsps. In Education and Research Conference (EDERC), 2014 6th
European Embedded Design in. IEEE, 167–171.

[14] J. Keinert, C. Haubelt, and J. Teich. 2006. Modeling and Analysis of Windowed
Synchronous Algorithms. In 2006 IEEE International Conference on Acoustics Speed
and Signal Processing Proceedings, Vol. 3. IEEE, Toulouse, France, III–892–III–895.

https://doi.org/10.1145/3229631.3229645
https://doi.org/10.1109/78.485935
https://doi.org/10.1109/78.485935
https://doi.org/10.1109/TCAD.2013.2265852


Numerical Representation of Directed Acyclic Graphs EMSOFT 2019, October 13–18, 2019, New-York, United-States

https://doi.org/10.1109/ICASSP.2006.1660798
[15] Y.-K. Kwok. 1997. High-performance algorithms of compile-time scheduling of

parallel processors. Ph.D. Dissertation. Hong Kong University of Science and
Technology. Advisor(s) Ahmad, Ishfaq.

[16] Edward A. Lee and David G. Messerschmitt. 1987. Synchronous data flow. Proc.
IEEE 75, 9 (1987), 1235–1245.

[17] Edward A. Lee and Thomas M. Parks. 1995. Dataflow process networks. Proc.
IEEE 83, 5 (1995), 773–801.

[18] Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean-François Nezan,
and Slaheddine Aridhi. 2014. Preesm: A dataflow-based rapid prototyping frame-
work for simplifying multicore dsp programming. In Education and Research
Conference (EDERC), 2014 6th European Embedded Design in. IEEE, 36–40.

[19] Jonathan Piat, Shuvra S. Bhattacharyya, and Mickaël Raulet. 2009. Interface-
based hierarchy for synchronous data-flow graphs. In Signal Processing Systems,
2009. SiPS 2009. IEEE Workshop on. IEEE, 145–150.

[20] José Luis Pino, Shuvra S. Bhattacharyya, and Edward A. Lee. 1995. A hierarchical
multiprocessor scheduling framework for synchronous dataflow graphs. Electronics
Research Laboratory, College of Engineering, University of California.

[21] Sebastian Ritz, Matthias Pankert, V. Zivojinovic, and Heinrich Meyr. 1993. Op-
timum vectorization of scalable synchronous dataflow graphs. In Application-
Specific Array Processors, 1993. Proceedings., International Conference on. IEEE,
285–296.

[22] Jiahao Wu, Timothy Blattner, Walid Keyrouz, and Shuvra S. Bhattacharyya. 2018.
A design tool for high performance image processing on multicore platforms. In
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
Dresden, Germany, 1304–1309. https://doi.org/10.23919/DATE.2018.8342215

[23] George F. Zaki, William Plishker, Shuvra S. Bhattacharyya, and Frank Fruth.
2012. Partial Expansion Graphs: Exposing Parallelism and Dynamic Scheduling
Opportunities for DSP Applications. In 2012 IEEE 23rd International Conference on
Application-Specific Systems, Architectures and Processors. IEEE, Delft, Netherlands,
86–93. https://doi.org/10.1109/ASAP.2012.14

[24] George F. Zaki, William Plishker, Shuvra S. Bhattacharyya, and Frank Fruth.
2017. Implementation, Scheduling, and Adaptation of Partial Expansion Graphs
on Multicore Platforms. Journal of Signal Processing Systems 87, 1 (April 2017),
107–125. https://doi.org/10.1007/s11265-016-1107-8

https://doi.org/10.1109/ICASSP.2006.1660798
https://doi.org/10.23919/DATE.2018.8342215
https://doi.org/10.1109/ASAP.2012.14
https://doi.org/10.1007/s11265-016-1107-8

	Abstract
	1 Introduction
	2 Context: Models of Computation
	2.1 SDF Model of Computation
	2.2 SDF Model of Computation
	2.3 Single-Rate Directed Acyclic Graph

	3 Challenges and Related Work
	3.1 Run-Time Challenges
	3.2 Existing Solutions

	4 Numerical Modeling of SR-DAG
	4.1 Dependency Representation for SDFGs
	4.2 Taking hierarchy into account
	4.3 Relaxed execution model for SDF
	4.4 Resource allocation

	5 Experiments
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

