

Origine des bijoux néolithiques en callaïs de l'ouest de la France

Guirec Querré, Thomas Calligaro, Serge Cassen

► To cite this version:

Guirec Querré, Thomas Calligaro, Serge Cassen. Origine des bijoux néolithiques en callaïs de l'ouest de la France. Guirec Querré, Serge Cassen et Emmanuelle Vigier. La parure en callaïs du Néolithique européen, Archaeopress, pp.129-199, 2019, 978-1-78969-280-8. 10.32028/9781789692808-10. hal-02351654

HAL Id: hal-02351654 https://univ-rennes.hal.science/hal-02351654

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Origine des bijoux néolithiques en Callaïs de l'ouest de la France

Guirec Querré, Thomas Calligaro, Serge Cassen

Résumé. 747 perles et pendelogues en *callaïs* sur les 841 connues actuellement provenant de 27 occupations néolithiques de la moitié nord de la France ont été analysées par PIXE, afin de déterminer leur nature minéralogique et leur provenance. La grande majorité de ces éléments de parure est concentrée autour du golfe du Morbihan, dans la région de Carnac (56). Les concentrations en aluminium et phosphore constituant les deux éléments majeurs de la variscite ont été détectés dans la très grande majorité des cas. Seules cing perles, notamment deux du Tumulus Saint-Michel et une du Mané Lud présentent également des teneurs élevées en cuivre, typiques de la turquoise. L'utilisation du modèle chimiométrique élaboré sur la base des analyses PIXE des principaux gisements ouest-européens selon un ensemble de critères géochimiques discriminants permet, pour 22 sites, de déterminer la provenance des ensembles de parure en variscite. Les résultats confirment qu'aucun objet ne provient de Pannecé, l'unique gisement français, ni des mines néolithiques de Can Tintorer dans la région de Barcelone. La totalité des perles et pendeloques provient uniquement des deux gisements ibériques orientés vers la façade atlantique : Encinasola (Huelva) au sud-ouest et Palazuelo (Zamora) au nord-ouest. L'étude de la chronologie des approvisionnements montre que les plus anciennes perles et pendelogues proviennent d'Encinasola et qu'à partir de 4000-4300 ans avant notre ère s'effectue un basculement et que les éléments de parure en variscite proviennent de Palazuelo.

Durant le Néolithique, des transferts sur de longues distances, pouvant atteindre près de 2000 kilomètres, se sont produits sur la façade atlantique, réseaux de transfert qui ont évolué au cours des trois millénaires concernés par ce type de mobilier.

Mots clés : variscite, turquoise, Néolithique, gisements, Europe, PIXE, provenance.

Abstract. 747 beads and pendants in *callaïs* of the 841 currently known from 27 Neolithic occupations in the northern half of France were analyzed by PIXE to determine their mineralogical nature and provenance. The great majority of these ornaments are concentrated around the Gulf of Morbihan, in the region of Carnac (56). The concentrations of aluminum and phosphorus constituting the two major elements of variscite were detected in the most of the cases. Only five beads, notably two from the tumulus Saint Michel and one from the Mané Lud also have high contents of copper, which correspond to turquoise. The use of the chemometric model developed on the basis of PIXE analyses of the main Western European deposits, according to a set of discriminating geochemical criteria, makes it possible, in 22 cases, to determine the origin of the variscite finery sets. The results confirm that no objects come from Pannecé, the only French deposit, nor from the Neolithic Can Tintorer mines in the region of Barcelona. All the beads and pendants only come from the two Iberian deposits facing the Atlantic coast: Encinasola (Huelva) in the Southwest and Palazuelo (Zamora) in the Northwest. The study of the chronology of supplies shows that the oldest beads and pendants come from Encinasola and that from 4000-4300 years BC shows an about face and that the elements of variscite ornament come from Palazuelo.

During the Neolithic era, transfers over long distances, reaching nearly 2000 kilometers, occurred on the Atlantic coast, and the transfer networks that evolved along the 3 millennia concerned by this type of furniture.

Keywords: variscite, turquoise, Neolithic, deposits, Europe, PIXE, origin.

Introduction

En Préhistoire, l'étude de la circulation des matériaux lithiques est une approche riche en informations relatives aux mouvements de groupes humaines, à leurs périmètres d'action ou leurs zones de circulation,

sur les relations qu'ils ont pu entretenir entre eux et leur évolution au cours du temps. Dans le monde des matériaux lithiques, lorsque l'on aborde plus précisément l'étude des pierres précieuses ou considérées comme telles par les groupes préhistoriques, elle revêt un intérêt particulier car elle permet de mettre en évidence des échanges de longue à très longue distance. Ainsi, l'étude de la parure utilisée par les occupants de l'Europe occidentale durant le Néolithique informe non seulement sur la nature de ces objets d'apparat, au rôle symbolique et parfois signe de richesse et/ou de puissance, mais elle est également une clé d'entrée pour la mise en évidence d'un ou plusieurs réseaux de transfert à l'échelle du sous-continent. Dans le cadre du programme *Callaïs,* nous nous sommes focalisés sur la parure en *callaïs,* variscite et turquoise, perles et pendeloques, de l'ouest de la France. C'est en effet dans cette région et plus particulièrement dans le sud du Morbihan que se trouve la plus grande concentration en Europe d'éléments de parures de cette nature connue à ce jour. Ils ont été mis au jour à la fin du XIXème siècle et au début du XXème, lors des premières fouilles des grands tumulus dans la région de Carnac (Fouquet 1862 ; Lefèbvre, Galles 1863).

1. Méthodologie

1.1 Modèle chimiométrique

Le programme variscite est basé sur deux approches complémentaires : l'une axée sur l'étude des sources de variscite, l'autre sur l'étude des bijoux néolithiques en callaïs.

La première, consacrée aux sources de matières premières de l'Europe occidentale, est élaborée à partir de leur inventaire, de leur échantillonnage exhaustif, de l'analyse par PIXE des échantillons de références et enfin de la synthèse des données. C'est à partir des critères archéologiques, géographiques, géologiques et géochimiques de chacun des gisements ouest-européens de *callaïs*, variscite et/ou turquoise, qu'un modèle chimiométrique a été établi (Querré *et al.*, ce volume).

Sans détailler l'ensemble de la démarche ayant abouti à l'élaboration de ce modèle, présentée dans l'article précité, les principaux éléments sont les suivants. Quatorze gisements ou bassins gîtologiques sont actuellement inventoriés en Europe occidentale. Parmi eux et bien que des échantillons de références de la plupart d'entre eux aient été analysés, certains ont été écartés pour différentes raisons. Pour certains, ceux de Sardaigne (Italie) et d'Allemagne en particulier, jamais aucun objet en *callaïs* n'a été découvert dans les nombreuses occupations néolithiques proches ou éloignées lors des fouilles anciennes et récentes. Pour d'autres gisements, dont celui de Saint Austell en Cornouaille anglaise ou celui de Montebras dans la Creuse (France), il s'agit de gîtes de turquoise exclusivement, sans qu'aucune trace significative de variscite susceptible de fournir de la matière première pour les tailleurs de cette pierre n'ait été décelée. Enfin, d'autres gisements cités dans la littérature, dont celui d'Incantada en Andalousie, s'avèrent n'avoir tout simplement jamais existé, aucune trace de phosphates n'ayant été réellement observée sur le terrain.

Restent cinq gisements européens compatibles avec les précédents critères et susceptibles d'avoir été exploités au Néolithique, quatre ibériques et un armoricain. Pour les gisements ibériques, trois d'entre eux sont ceux qui présentent des traces d'exploitations anciennes : Gavà, dans le sud de Barcelone, où se trouvent les mines néolithiques de Can Tintorer ; Palazuelo de las Cueva, dans la région de Zamora, au nord-ouest de l'Espagne ; Encinasola, dans la région de Huelva, au sud-ouest de l'Espagne, où se trouve la mine de Pico Centeno. Le gisement de El Bostal se trouve dans la région de Zamora. Aucune trace d'exploitation n'y a été décelée. C'est également le cas du gisement armoricain de Pannecé en Loire-Atlantique. Il a été conservé du fait de sa localisation au sein des occupations néolithiques de l'ouest de la France, en particulier celles de la région de Carnac-Locmariaquer. Ce sont les échantillons de références de ces cinq gisements pour lesquels les analyses ont été les plus nombreuses, afin de tenir compte non seulement de la composition moyenne de la variscite, mais également de la gamme de composition des pierres vertes au sein même de ces gisements (tabl. 1). Le modèle chimiométrique

qui a été établi est basé pour sa version analogique sur les concentrations en huit éléments chimiques : fer (Fe), vanadium (V), chrome, arsenic (As), calcium (Ca), silicium (Si), zirconium (Zr) et uranium (U). Ce sont non seulement les concentrations absolues et relatives qui sont prises en compte, mais également le degré d'homogénéité des gisements ou, au contraire, leur hétérogénéité. Il faut remarquer que ce sont précisément ces éléments chimiques qui entrent dans la composition des différents minéraux de la famille de la variscite et se substituent soit au phosphore, soit à l'aluminium de la variscite de composition « idéale ».

Ainsi, les principaux critères géochimiques permettant d'attribuer une origine géographique à un objet archéologique sont décrits sous la forme d'un modèle itératif quantitatif (fig. 1).

Ce modèle peut être également traduit sous forme graphique à l'aide de quatre diagrammes discriminants (fig. 2) reprenant les critères similaires au modèle quantitatif.

Le premier est le diagramme ternaire V-Cr-Fe qui permet d'individualiser la variscite de Pannecé (F), très caractéristique et très homogène, ainsi que les échantillons provenant de Palazuelo, très spécifiques tant en composition qu'en terme d'étalement de composition. Les différences entre les rapports Cr/V des séries sont également très bien mises en évidence dans ce diagramme ainsi que les variations relatives en fer.

Le diagramme binaire U *versus* Zr individualise le gisement d'El Bostal, enrichi en uranium mais sans zirconium, ainsi que le gisement de Pannecé, qui ne contient aucun de ces deux éléments.

Le diagramme binaire Cr+V *versus* As isole les échantillons de variscite provenant d'Encinasola, avec leurs teneurs en As très étalées, pouvant atteindre de très fortes concentrations en cet élément.

Le diagramme binaire Si *versus* Ca met en exergue les points représentatifs des variscites de Gavà, qui s'individualisent nettement avec des teneurs très variables et parfois élevées pour ces deux éléments chimiques contrairement à la variscite des autres gisements.

L'ensemble des différences entre les cinq gisements de variscite est également mis en évidence lorsque l'on compare les moyennes, les écart-types (tabl.1) et également l'ensemble des variables décrites précédemment à savoir : V*, Cr*, Fe* (valeurs normalisées à 100% par rapport à V+Cr+Fe), le rapport Cr/V, les concentrations en U, Zr, (Cr+V), As, Ca et Si (fig. 3).

L'attribution univoque à une source d'un groupe d'analyses correspondant à un lot d'éléments de parure nécessite de remplir la totalité des critères géochimiques représentés dans chacun des quatre diagrammes géochimiques, et uniquement eux.

Dans certains cas, le modèle peut échouer dans la détemination de la provenance des objets étudiés. C'est notamment le cas lorsque le nombre d'objets en variscite pour un site est faible et/ou lorsque la composition chimique des objets est ubiquiste dans un ou plusieurs diagrammes. Des cas de ce type seront décrits lors de l'étude des lots par site.

1.2 Analyse PIXE des objets archéologiques

Le modèle chimiométrique ayant pour objectif de déterminer l'origine des objets en variscite est basé sur l'analyse chimique par PIXE des références géologiques de ce minéral (Querré *et al.*, ce volume). Par souci de cohérence, c'est le même protocole analytique qui a été utilisé pour caractériser les éléments archéologiques eux-mêmes. Ce sont également des conditions d'analyse comparables qui ont été employées, en compensant leur évolution au cours du programme pour garantir la quantification des éléments discriminants utilisés dans le modèle (Querré *et al.*, 2015, ce volume). Ce sont les mêmes éléments chimiques qui sont dosés (Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Ni, Mo et U). Les concentrations des éléments majeurs de la variscite, Al et P, ne sont pas apparus significatifs pour la détermination de la provenance des éléments de parure en variscite comme proposé par Odriozola (Odriozola, 2015; Odriozola *et al.*, 2010, 2013). Par contre, ce sont huit éléments mineurs et en éléments traces (Fe, V, Cr, As, Ca, Si, Zr et U) qui permettent de discriminer les cinq principales sources de variscite de l'Europe occidentale.

		Can Tintore	r Gavà (n=27	(Enci	nasola (n=77				EI Bo	stal (n=24)		
	Min	Max	Moyenne	Ecart- Type	8 %	Min	Max	Moyenne	Ecart- Type	8%	Min	Мах	Moyenne	Ecart- Type	8 %
Na	315	12680	2835	2591	91	0	4302	867	783	06	0	2336	721	597	83
Mg	851	13434	4197	3156	75	0	1811	329	477	145	0	2020	880	597	68
A	17713	207192	140062	41732	30	103031	221506	203260	17109	8	179919	215783	201001	7058	4
Si	14567	300262	112706	74521	66	0	37564	4900	7895	161	0	13361	5885	4421	75
٩	29621	239250	157836	63047	40	206093	266367	245676	10696	4	242177	261510	254794	6055	2
¥	167	7637	2980	2035	68	0	5388	671	842	125	78	1800	672	432	64
Ca	4187	345476	61374	80461	131	0	3666	439	515	117	0	6872	641	1343	210
Ħ	0	15127	2699	3571	132	34	3000	573	600	105	0	812	191	175	91
>	1	888	365	243	67	581	5287	2507	921	37	1729	3594	2763	464	17
പ	1	720	443	189	43	125	3860	1691	894	53	550	1281	968	179	18
Mn	0	184	35	49	142	0	44	9	8	132	0	114	16	24	154
Fe	7306	24426	13079	4600	35	2274	201149	21386	30558	143	3964	26082	8190	5074	62
CO	0	81	26	22	84	0	55	6	12	130	0	80	23	18	82
Ni	0	586	71	122	172	0	189	11	32	279	0	14	4	4	66
Си	11	393	98	108	110	0	3197	416	819	197	64	3510	560	1027	183
Zn	11	163	45	43	96	1	98	21	23	111	217	593	399	88	22
Ga	12	259	45	62	138	0	362	71	79	111	6	73	30	20	65
As	127	432	302	06	30	45	4783	610	802	131	39	210	62	35	57
Rb	0	51	7	11	145	0	201	8	24	299	0	12	4	4	66
Sr	96	34525	4847	10011	207	0	322	20	49	245	0	21	4	9	145
7	0	151	19	35	179	0	128	13	25	200	9	55	23	10	43
Zr	0	127	36	26	73	0	256	50	52	104	0	16	9	4	78
Νb	0	42	5	6	201	0	14	2	3	179	0	24	3	9	179
Π	0	205	35	53	153	0	152	17	33	193	37	1468	306	267	87
٧*	0	7	3	2	70	1	41	18	11	62	8	37	26	8	31
Cr*	0	9	3	2	50	0	38	13	11	88	3	12	6	3	29
Fe*	88	100	93	4	4	31	98	70	20	29	51	89	65	10	16
Cr/V	0,01	126	6,49	24,48	377	0,06	1,77	0,74	0,41	55,37	0,23	0,41	0,35	0,04	11,52
Cr+V	67	1464	809	397	49	1293	9147	4198	1429	34	2315	4875	3731	618	17

		Pal	azuelo (n=81				Pann	ecé (n=26)		
1	Min	Max	Moyenne	Ecart- Type	8 %	Min	Max	Moyenne	Ecart- Type	δ %
	0	5285	1266	1072	85	65	9503	2771	2207	80
60	0	2891	604	677	112	0	3485	826	899	109
	37377	217013	185243	43748	24	191379	218757	202580	7651	4
:=	0	211451	16348	37102	227	0	10728	2342	3297	141
4	138422	258780	237810	22335	6	245949	262549	257847	5090	2
\leq	0	81919	1769	9052	512	69	2524	1170	689	59
a	38	19787	846	2183	258	286	4756	1614	1149	71
i=	159	2908	1211	628	52	30	334	134	74	55
>	35	2773	1106	609	55	2594	4333	3249	565	17
5	1207	8980	3734	1527	41	1163	1791	1449	188	13
_	0	174	20	26	129	0	19	9	9	100
e	1130	298779	35907	71654	200	1185	2090	1586	249	16
0	0	227	19	41	208	0	18	7	S	78
li I	0	70	4	9	220	0	11	3	3	92
n	8	2768	427	871	204	2	112	27	25	92
c	1	138	26	27	107	8	117	22	23	106
e	4	420	137	91	66	92	223	163	23	14
s	26	702	138	126	91	3	16	6	3	31
0	0	712	14	80	576	0	4	1	1	126
<u> </u>	0	2590	55	290	531	0	74	19	22	119
×	0	133	7	18	270	0	7	1	2	256
<u>د</u>	0	240	48	46	95	0	10	1	2	235
0	0	35	2	9	252	0	9	1	2	174
	0	262	13	35	268	0	12	4	3	82
*	0	21	8	6	75	44	55	52	3	5
*	1	59	25	15	62	22	25	23	1	3
*	31	66	66	20	30	22	31	25	2	10
>	0,94	56,29	5,08	6,48	127,37	0,4	0,57	0,45	0,04	8,66
>	1570	10366	4841	1732	36	3848	6116	4698	736	16

Fig. 1 : modèle chimiométrique sous sa forme itérative.

Fig. 2 : Modèle chimiométrique sous sa forme graphique.

Fig. 3 : Comparaison des cinq gisements européens de variscite sur la base des variations prises en compte dans le modèle chimiométrique : V*, Cr*, Fe* (valeurs normalisées à 100% par rapport à V+Cr+Fe), le rapport Cr/V, les concentrations en U, Zr, (Cr+V), As, Ca et Si.

Site	commune	dpt	nb obj	nb anal
Beg er Hâvre	Plouhinec	56	1	1
Couronne Blanche	Petit-Auverné	44	1	3
Er Grah	Locmariaquer	56	18	36
Er Lannic	Arzon	56	2	2
Ile Carn	Ploudalmézeau	29	3	3
Joselière	Pornic	44	3	9
Kercado	Carnac	56	150	151
Kerdro Vihan	La Trinité-sur-Mer	56	1	1
Kerlagad	Carnac	56	48	87
Keriaval	Carnac	56	2	2
Kervilor	La Trinité-sur-Mer	56	15	40
Lutfang	Crac'h	56	12	36
Le Moustoir	Carnac	56	1	1
Mane er Hroëck	Locmariaquer	56	51	56
Mane Lud	Locmariaquer	56	27	28
Mane Rutual	Locmariaquer	56	1	1
Petit Mont	Arzon	56	6	19
Roh Vras	Saint-Philibert	56	1	1
Saint-Michel	Carnac	56	135	146
Table des Marchands	Locmariaquer	56	1	7
Tumiac	Arzon	56	254	260
Bouguon	Bougon	79	4	12
Lazzaro	Colombelles	14	1	3
Les Monts	Plichancourt	52	1	2
Les Sables	Saint Laurent-Médoc	33	3	3
Replat	Aime	73	2	2
Tassin	Marclopt	42	3	3
TOTAL			747	915

Tabl. 2 : Les sites archéologiques de la moitié nord de la France étudiés dans la cadre du programme *CALLAÏS* avec le nombre d'objets archéologiques en variscite provenant de chaque site, analysés par PIXE et nombre total d'analyses PIXE par site.

2. Interprétation des analyses PIXE des éléments de parure

Le programme *Callaïs* a permis de caractériser plus de 900 perles et pendeloques en variscite issues de 46 sites archéologiques de France, d'Espagne et du Portugal qui représentent près de 1200 analyses PIXE. Nous nous focaliserons dans cet article sur des sites localisés dans la moitié nord de la France ce qui représente 915 analyses de 747 objets provenant de 27 sites archéologiques (tabl. 2). La plupart des sites, 17, se trouvent dans le Morbihan, deux sont situés en Loire-Atlantique, un dans le Finistère, un dans le Calvados, un dans la Marne, un en Gironde, un en Savoie et un dans le Rhône.

L'étude de la parure provenant de sites du sud de la France a déjà fait l'objet d'une publication (Guilaine *et al.,* 2015). Celle concernant le mobilier en variscite de sites localisés en Espagne et au Portugal est présentée dans un autre article de ce volume (Dominguez-Bella *et al.,* ce volume).

On pourra s'étonner parfois du plus grand nombre d'analyses par rapport au nombre d'objets archéologiques étudiés (tabl. 2). Ceci s'explique du fait de l'évolution de la méthode analytique. Durant les premières années du programme *Callaïs*, chaque perle ou pendeloque faisait l'objet de trois analyses pour tenir compte de l'hétérogénéité éventuelle de la matière. À partir de 2008, le faisceau extrait d'AGLAE a été équipé d'un système de balayage qui permet de moyenner la composition sur une surface représentative du matériau, dans notre cas sur un carré d'un demi millimètre de côté (Querré *et al.*, 2013). Une seule analyse par objet a suffit dans ce cas. On constatera donc, selon la période d'analyse, soit un nombre d'analyses supérieur à celui des objets, soit un nombre égal.

Les perles et pendeloques étudiées sont conservées au musée de Préhistoire Miln-Le Rouzic de Carnac, au musée d'Histoire et d'Archéologie de la Ville de Vannes (Fonds Société polymathique du Morbihan), dans les dépôts de fouille de Bretagne, Champagne Ardennes, Normandie des Services régionaux de l'archéologie des DRAC, au musée d'Archéologie Nationale de Saint-Germain-en-Laye, au musée de Préhistoire Finistérienne de Penmarc'h, au Bristish Museum de Londres pour une pendeloque du Mané er Hroëck. Enfin, un objet provient d'une collection particulière.

L'analyse chimique par PIXE permet d'établir très rapidement la nature minéralogique des éléments de parure et de répondre à la question : s'agit-il de variscite ou de turquoise ou d'une autre nature minéralogique ? Contrairement à certains sites du sud de la France comme la grotte de Las Claousos IV ou de la grotte René-Carrié (Guilaine *et al.*, 2015), aucune perle en malachite n'a été mise en évidence. Parmi les 747 perles et pendeloques analysées, seules cinq d'entre elles sont en turquoise, une provenant du Mané Lud, deux du tumulus Saint-Michel, une de la sépulture de Beg er Hâvre à Plouhinec et une du site d'Aimé en Savoie. Cela représente 0,7 % du total du corpus, soit une proportion largement minoritaire. Une perle du Tumulus Saint-Michel est en quartz de couleur verdâtre pouvant être confondue avec une perle en variscite. La très grande majorité des objets possèdent une composition dominée par le phosphore et l'aluminium, caractéristique de la variscite.

Les résultats obtenus en appliquant le modèle aux séries d'objets issues de chacun des sites sont présentés ci-dessous.

N.B. : Afin de ne pas alourdir cet article, nous avons choisi de ne faire figurer dans le corps du texte que les compositions moyennes des objets, les écart-types, maximum et minimum pour chaque site archéologique, ainsi qu'une figure comparant les principales variables discriminantes du modèle chimiométrique, des objets archéologiques d'une part et de la source proposée d'autre part. Pour plus de détail, le lecteur trouvera en annexe les analyses PIXE individuelles (annexe 3).

2.1 Beg er Hâvre (Plouhinec, 56)

La sépulture de Beg er Hâvre a fourni une unique perle-pendeloque de couleur plutôt bleutée que verte (cf. Cassen *et al.,* ce volume). L'analyse par PIXE a révélée qu'il s'agissait d'un objet non pas en variscite mais en turquoise (un phosphate d'aluminium et de cuivre hydraté).

2.2 Couronne Blanche (Grand-Auverné, 44) (tabl. 3, pl. 1)

Il s'agit d'une unique perle en « *callaïs* » découverte anciennement et conservée au musée départemental Dobrée de Nantes. Elle est inventoriée comme provenant du « Dolmen de Couronne Blanche, Petit-Auverné, L.-A, Perle turquoise, *CALLAÏS*, tombelles formée de 4 pierres d'ardoises », mais cette attribution diffère de celle du catalogue du musée probablement plus juste : sépulture en coffre (« *stone-cist* ») du Moulin de Roche-Mort, Grand-Auverné (Loire-Atlantique). Cette sépulture en ciste est incluse dans une nécropole de tombes semblables dans laquelle un des fouilleurs mentionne un vase à ouverture elliptique caractéristique d'une étape ancienne du Néolithique moyen (Cassen *et al.,* ce volume). La composition chimique moyenne obtenue par PIXE de cet unique objet confirme la nature minéralogique

de celui-ci, à savoir de la variscite. Les trois analyses sont quasi identiques et ne permettent pas de déterminer l'origine de la matière première (cf. annexe A, fig. 1). Les principaux caractères peuvent correspondre à trois gisements. Il y a donc **indétermination** sur la provenance de l'unique perle en variscite de Couronne Blanche.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	V	Cr	Mn	Fe	Со
			min	989	300	181961	1573	255513	306	122	1363	638	851	0	25436	29
ne			max	1279	1157	184044	8332	263915	516	404	2084	742	1015	5	30530	35
ancl	1	3	х	1145	664	183229	4339	260619	437	223	1660	680	913	2	27136	32
⊡Ö			σ	146	443	1113	3543	4484	114	157	377	55	89	3	2939	3
			δ%	13	67	1	82	2	26	70	23	8	10	173	11	9

	Ni	Cu	Zn	Ga	As	Rb	Sr	Υ	Zr	Nb	U	V *	Cr*	Fe*	Cr/V	Cr+V
min	0	22	19	44	368	0	3	0	7	0	0	2	3	94	1,29	1510
max	4	90	61	56	442	12	7	5	9	0	10	2	3	95	1,37	1757
X	2	58	45	48	402	4	5	3	8	0	3	2	3	94	1,34	1593
σ	2	34	23	7	37	7	2	3	1	0	6	0	0	0	0,05	142
δ%	100	59	50	14	9	154	45	87	13	-	173	3	2	0	3,44	9

Tabl. 3 : Composition chimique des objets en variscite du site de Couronne-Blanche (44). « no » nombre d'objets analysés ; « na » : nombre total d'analyses PIXE ; min, max : valeurs minimum et maximum de la variable ; X et σ : moyenne et écart-type ; δ % : coefficient de dispersion en pourcentage ([σ /X]x100) ; V*, Cr*, Fe* sont les valeurs normalisées à 100% par rapport à la somme (V+Cr+Fe). Toutes les concentrations élémentaires sont exprimées en partie par million (ppm).

Planche 1 : Comparaison des analyses chimiques des objets en variscite avec le référentiel du modèle chimiométrique appliquée au site de Couronne Blanche (44).

2.3 Tumulus d'Er Grah (Locmariaquer, 56) (tabl. 4, fig. 4, pl. 2)

Le site fouillé dans les années 1980 a permis la mise au jour de plusieurs perles en *callaïs*. Une partie d'entre elles ont été publiées (Le Roux, 2006). La série de perles publiée a déjà fait l'objet d'analyses chimiques (Kiratisin et Demaille, 2006). Cette étude analytique qui a mis en œuvre des analyses chimiques par microanalyse X sur un microscope électronique à balayage n'a pas permis de déterminer réellement l'origine des perles. Au cours du programme « *Callaïs* », 36 analyses PIXE ont été faites sur 18 objets (tabl. 4). Les perles sont celles qui figurent dans la publication de Le Roux et ses collaborateurs (Le Roux, 2006), d'autres sont inédites. Par contre, il apparaît assez difficile de déterminer pour certaines d'entre elles si elles ont été découvertes dans le sol enterré du tumulus ou bien au sein même de la ciste ou bien même des deux. Quoiqu'il en soit, les analyses montrent un ensemble cohérent sans distinction de plusieurs groupes de composition. L'ensemble des analyses est traité selon l'hypothèse où ces éléments de parure ont une même origine.

Les perles d'Er Grah présentent un rapport Cr/V proche de 1 (moyenne 1,35+/-0,49, tabl. 4, fig. 4). Ce caractère est typique des échantillons d'Encinasola et uniquement ce gisement (Cr/V _{Encinasola} = 0,74+/-0,41). Les autres données géochimiques sont tout à fait cohérentes avec cette origine : des concentrations extrêmement faibles en uranium de 0 à 39 ppm (0 ppm< U _{Encinasola} <152ppm). De très fortes teneurs en arsenic pouvant atteindre près de 2000 ppm (50 ppm< As _{Encinasola} <5000 ppm) ainsi qu'une somme des concentrations en vanadium et chrome également élevée (Cr+V _{Er Grah} = 3500+/-1200 ppm ; Cr+V _{Encinasola} = 4200+/-1500 ppm). Le silicium est très peu abondant ainsi que le calcium. Tous ces caractères géochimiques de perles en variscite issus du tumulus d'Er Grah sont semblables aux échantillons d'**Encinasola**, origine la plus probable de ces objets.

site	no	na		Na	Mg	Al	Si	Р	к	Са	Ti	v	Cr	Mn	Fe	Со
			min	484	0	161613	0	228680	176	133	276	635	496	0	4471	0
Ч.			max	3295	2506	213532	36602	259632	3353	8146	2248	4754	3979	75	42394	58
Dra	18	36	х	1664	795	197359	7315	250243	1224	983	973	1546	1949	11	15258	17
Er G			σ	690	606	12918	10637	8652	781	1558	508	702	878	19	9139	16
			δ%	41	76	7	145	3	64	158	52	45	45	163	60	95

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	0	10	11	15	229	0	0	0	0	0	0	2	3	45	0,1	1646
max	38	656	1890	370	1766	16	403	26	58	11	39	27	38	93	2,24	5803
x	9	89	191	164	786	3	27	5	16	2	13	10	12	78	1,35	3495
σ	9	123	361	105	441	4	73	6	14	3	12	6	7	12	0,49	1205
δ%	105	138	189	64	56	130	267	108	89	196	91	60	60	15	36,14	34

Tabl. 4 : Composition chimique des objets en variscite du site de Er Grah (56). Même légende que le tabl. 3.

Planche 2 : Même légende que planche 1 appliquée au site d'Er Grah (Locmariaquer, 56).

Fig. 4 : Comparaison des compositions chimiques des objets en variscite du site de Er Grah (56) avec celles du gisement d'Encinasola. Par ordre : V*, Cr*, Fe* (valeurs normalisées à 100% par rapport à V+Cr+Fe), le rapport Cr/V, les concentrations en U, Zr, (Cr+V), As, Ca et Si.

2.4 Er Lannic (Arzon, 56) (tabl. 5, pl. 3)

Deux perles ont été analysées pour ce site (tabl. 5). Il s'agit bien de variscite, mais comme pour la perle du dolmen de Couronne-Blanche, la composition de ces deux objets est ubiquiste. Le modèle aboutit à une réponse non univoque puisque certains caractères peuvent à la fois correspondre aux variscites d'Encinasola et à celles de Palazuelo. Pour le site d'Er Lannic, aucune origine des perles en variscite ne peut être proposée sur la base des analyses PIXE ; il y a **indétermination** de provenance pour ces deux perles.

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	8678	3349	190527	0	236045	3617	2538	740	1097	1239	0	11671	0
ji j			max	11118	3381	193963	14090	244050	3643	4499	2870	1699	1246	0	26122	15
Lanı	2	2	х	9898	3365	192245	7045	240048	3630	3519	1805	1398	1243	0	18897	8
ш			σ	1725	23	2430	9963	5660	18	1387	1506	426	5	0	10218	11
			δ%	17	1	1	141	2	1	39	83	30	0	-	54	141

		Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
	min	8	36	416	20	406	0	44	5	16	1	0	6	4	83	0,73	2343
[max	23	137	813	201	1032	2	87	9	93	5	6	8	9	90	1,14	2938
	Х	16	87	615	111	719	1	66	7	55	3	3	7	7	87	0,93	2641
	σ	11	71	281	128	443	1	30	3	54	3	4	1	3	5	0,29	421
	δ%	68	83	46	116	62	141	46	40	100	94	141	20	50	5	30,83	16

Tabl.5 : Composition chimique des objets en variscite du site de Er Lannic (56). Même légende que le tabl. 3.

Planche 3 : Même légende que planche 1 appliquée au site dEr Lannic (Arzon, 56).

2.5 Île Carn (Ploudalmézeau,29) (tabl. 6, fig. 5, pl. 4)

Trois perles découverte par P.-R. Giot lors des fouilles du tumulus de l'île Carn ont été analysées (tabl. 6). Malgré le faible nombre d'analyses, il est possible d'attribuer leur origine au gisement **d'Encinasola**. En effet, les caractères chimiques de ces perles sont suffisamment marqués et tout à fait similaires aux variscites d'Encinasola, en particulier le rapport Cr/V proche de 1 (Cr/V = 1,17+/-0,49, tabl. 6, fig. 5), caractéristique des échantillons d'Encinasola et uniquement ce gisement (Cr/V _{Encinasola} = 0,74+/-0,41), les faibles teneurs relatives en fer par rapport au vanadium et chrome ainsi que les fortes teneurs en arsenic des perles comprises entre 500 et 2100 ppm (50 ppm< As _{Encinasola} <4800 ppm).

site	no	na		Na	Mg	AI	Si	Р	к	Са	Ti	v	Cr	Mn	Fe	Со
			min	843	722	188778	0	254384	470	429	394	1147	1290	0	5806	0
2			max	2045	1910	200880	2822	262306	788	788	867	2711	1997	0	27026	7
Cal	3	3	х	1395	1239	196186	941	259133	600	595	571	1683	1730	0	14270	4
lle (σ	607	609	6492	1629	4190	167	181	258	891	384	0	11242	4
			δ%	43	49	3	173	2	28	30	45	53	22	-	79	90

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	1	20	28	50	484	0	0	5	3	0	2	4	4	65	0,7	2437
max	27	44	36	90	2059	0	12	8	23	4	16	19	22	92	1,68	4615
Х	11	33	31	70	1099	0	6	7	10	3	8	12	13	75	1,17	3413
σ	14	12	4	20	842	0	6	2	11	2	7	7	9	15	0,49	1106
δ%	122	37	14	28	77	-	106	23	113	87	85	62	67	20	41,89	32

Tabl. 6 : Composition chimique des objets en variscite du site de Ile Carn (29). Même légende que le tabl. 3.

Fig. 5 : Comparaison des compositions chimiques des objets en variscite du site de l'île Carn (29) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 4 : Même légende que planche 1 appliquée au site Île Carn (Ploudalmézeau, 29).

2.6 La Joselière (Pornic, 44) (tabl. 7, fig. 6, pl. 5)

Trois perles discoïdes beige et vert pâle ont été découvertes dans la chambre sud du dolmen de La Joselière, monument attribué au Néolithique moyen II vers 4100-3600 av. J.-C. Les neuf analyses obtenues sur ces objets présentent un rapport Cr/V proche de l'unité (Cr/V = 1,13+/-0,52) (tabl. 7, fig. 6) comme les échantillons de variscite d'Encinasola, avec également des teneurs élevées en arsenic (300 ppm< As La Joselière < 1300 ppm). Ces valeurs ainsi que celles des autres éléments chimiques discriminants sont les mêmes que la variscite **d'Encinasola**. Les objets de La Joselière proviennent donc probablement de la source d'Andalousie.

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	354	473	158170	2013	192343	277	53	232	1389	1255	0	6439	0
ière			max	5339	7170	198051	77670	263327	8389	1297	1029	2363	2972	27	41014	64
osel	3	9	х	2352	2278	182447	20180	245193	2099	458	695	1872	1995	8	22323	24
La Jo			σ	1614	2119	14499	24464	23317	2624	463	256	343	639	9	14345	19
			δ%	69	93	8	121	10	125	101	37	18	32	112	64	80

	Ni	Cu	Zn	Ga	As	Rb	Sr	Υ	Zr	Nb	U	V *	Cr*	Fe*	Cr/V	Cr+V
min	0	5	15	31	302	0	0	0	0	0	0	3	6	64	0,53	3189
max	3	45	34	164	1311	38	15	14	53	5	25	23	13	91	1,82	4624
Х	1	19	21	78	678	7	3	8	22	1	9	10	9	81	1,13	3867
σ	1	13	7	52	395	12	5	5	17	2	10	7	3	10	0,52	524
δ%	153	68	35	67	58	180	155	63	77	200	119	68	34	12	45,52	14

Tabl. 7 : Composition chimique des objets en variscite du site de Joselière (44). Même légende que le tabl. 3.

Fig. 6 : Comparaison des compositions chimiques des objets en variscite du site de la Joselière (44) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 5 : Même légende que planche 1 appliquée au site La Joselière (Pornic, 44).

2.7 Kercado (Carnac, 56) (tabl. 8, fig. 7, pl. 6)

Ce monument est parmi ceux qui ont fourni un nombre très important d'éléments de parure dans le sud de l'Armorique. 150 objets en variscite ont été analysés (tabl. 8). L'importante série, 151 analyses chimiques, permet de couvrir une large gamme de composition. Comme pour les précédents sites, tous les paramètres discriminants du modèle chimiométrique sont en accord avec la composition des variscites d'Encinasola : rapport Cr/V proche de 1, proportion du fer relativement faible par rapport au chrome et au vanadium, zirconium de faiblement concentré à de fortes teneurs, pas d'uranium, teneurs en arsenic de faibles à élevées, pas de silicium ni de calcium (fig. 7). Ce sont donc des mines de Pico Centeno à **Encinasola** d'où provient la série de perles et pendeloques en variscite déposée dans le monument de Kercado.

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	1170	0	139680	0	188814	261	190	161	458	925	0	5772	0
9			max	10886	6251	217336	94688	256487	7191	36222	3446	6090	3892	49	70522	48
rcac	150	151	х	4768	2250	191367	14523	239530	1653	2383	1178	1730	2126	4	21312	16
A A			σ	1598	789	13718	20412	12653	1051	3812	665	638	636	7	11847	11
			δ%	34	35	7	141	5	64	160	56	37	30	207	56	73

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	0	27	38	16	72	0	0	0	0	0	0	1	2	58	0,25	1978
max	71	1224	1332	1097	2952	38	2594	78	297	20	150	25	23	95	3,42	7596
x	5	279	177	120	821	9	99	10	42	2	15	8	10	82	1,37	3857
σ	10	144	154	105	496	9	302	13	56	4	16	5	5	8	0,59	873
δ%	224	51	87	88	60	95	307	124	134	156	105	55	47	10	43,11	23

Tabl. 8 : Composition chimique des objets en variscite du site de Kercado (56). Même légende que le tabl. 3.

Fig. 7 : Comparaison des compositions chimiques des objets en variscite du site de Kercado (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

analyses 151	
Planche 6 : Même légende que planche	1 appliquée au site Kercado (Carnac, 56).

2.8 Kerdro Vihan (La Trinité-sur-Mer, 56) (tabl. 9, pl. 7)

Nous disposons uniquement de l'analyse d'un seul objet en variscite issu de ce site (tabl. 9). Malheureusement, sa composition chimique n'est pas suffisamment spécifique d'un gisement pour pouvoir en attribuer l'origine. C'est donc un cas **d'indétermination** pour cette unique perle de Kerdro Vihan.

site	no	na	Na	Mg	A	1	Si	Р		К	Са		Ti	V	Cr	Mn	Fe	Со
Kerdro Vihan	1	1	2996	2192	204	473	0	2487	766	635	8204	4 6	29	1270	1862	0	10643	0
	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V*	Cr*	Fe*	Cr/V	Cr+	·V	
	1	58	472	58	422	0	821	. 5	10	5	2	9	14	77	1,47	313	32	

Tabl. 9 : composition chimique de la perle en variscite du site de Kerdro Vihan (56). Même légende que le tabl. 3.

Planche 7 : Même légende que planche 1 appliquée au site Kerdro Vihan (La Trinité-sur-Mer, 56).

2.9 Kerlagad 1 (Carnac, 56) (tabl. 10, fig. 8, pl. 8)

La fouille de cette tombe à couloir a permis de mettre au jour une importante série de perles en variscite. Nous en avons analysé 48, ce qui représente 87 analyses. La composition des objets est très étalée, en particulier en ce qui concerne le fer par rapport au vanadium et au chrome. Le rapport Cr/V est très élevé puisqu'il varie entre 1,64 et 10,54 (tabl. 10 et fig. 8) avec une moyenne de 4,76+/-1,88, ce qui est une moyenne quasi identique à celle des échantillons de Palazuelo (Cr/V _{Palazuelo} = 5,1 +/-6,5). Les autres éléments chimiques de ce groupe d'objets sont tout à fait semblables à ceux des échantillons provenant du gisement de Palazuelo (fig. 8). D'après leur analyse, les perles de Kerlagad proviennent donc du gisement de **Palazuelo**.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	668	234	179739	0	238276	279	163	186	386	1643	0	2068	0
ad			max	8662	2381	202875	16137	262304	4198	2955	3035	1545	7331	25	28490	22
rlag	48	87	х	2354	924	196999	3140	257151	1201	553	1033	911	4119	4	8028	8
Ke			σ	1545	398	4485	3429	4738	824	387	635	266	1503	6	5309	6
			δ%	66	43	2	109	2	69	70	61	29	36	177	66	76

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V*	Cr*	Fe*	Cr/V	Cr+V
min	0	6	49	43	22	0	0	0	0	0	0	2	9	24	1,64	2114
max	11	509	477	484	479	11	37	8	188	8	26	16	65	89	10,54	8567
х	2	50	187	156	151	2	4	1	43	1	4	8	35	58	4,76	5030
σ	2	62	80	100	92	2	6	2	44	2	5	3	13	15	1,88	1609
δ%	128	125	43	65	61	140	143	171	104	173	125	40	38	26	39,38	32

Tabl. 10 : Composition chimique des objets en variscite du site de Kerlagad (56). Même légende que le tabl. 3.

Fig. 8 : Comparaison des compositions chimiques des objets en variscite du site de Kerlagad (56) avec celles du gisement de Palazuelo. Même légende que fig. 4.

Planche 8 : Même légende que planche 1 appliquée au site Kerlagad 1 (Carnac, 56).

2.10 Keriaval (Carnac, 56) (tabl. 11, fig. 9, pl. 9)

Deux perles provenant de cette tombe à couloir sont connues et ont été analysées par PIXE. Malgré le faible nombre d'analyses, une par perle (tabl. 11 et fig. 9), leur composition est suffisamment typique pour que l'on puisse leur attribuer une origine. Les proportions relatives en V, Cr et Fe sont telles que les gisements de Gavà, Pannecé et El Bostal ne correspondent pas à celles des perles. Le rapport Cr/V des perles est faible (0,87 et 2,13), plus compatible avec les échantillons d'Encinasola. Les teneurs des autres éléments, en particulier les fortes concentrations en As (entre 460 et 880 ppm) et les faibles teneurs en silice (entre 7700 et 14900 ppm), sont caractéristiques de celles observées pour les variscites provenant d'Encinasola (As=620ppm+/-800 et Si = 5000 ppm +/-7900) et non celles de Palazuelo (As=140ppm+/-130 et Si=16600ppm+/-38000). Les deux perles issues du monument de Keriaval proviennent plus probablement **d'Encinasola**.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	1985	1444	162433	7695	246263	1446	360	2256	1524	2126	5	20276	0
<u>a</u>			max	2355	1880	193753	14920	254361	2116	2175	3836	2442	3243	11	21103	0
riav	2	2	х	2170	1662	178093	11308	250312	1781	1268	3046	1983	2685	8	20690	0
Ke			σ	262	308	22147	5109	5726	474	1283	1117	649	790	4	585	0
			δ%	12	19	12	45	2	27	101	37	33	29	53	3	-

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	3	114	61	45	457	10	1	6	50	0	0	6	9	82	0,87	4568
max	10	250	157	133	885	19	1	14	644	0	0	10	13	82	2,13	4767
x	7	182	109	89	671	15	1	10	347	0	0	8	11	82	1,5	4668
σ	5	96	68	62	303	6	0	6	420	0	0	3	3	0	0,89	141
δ%	76	53	62	70	45	44	0	57	121	-	-	35	27	0	59,3	3

Tabl. 11 : Composition chimique des objets en variscite du site de Keryaval (56). Même légende que le tabl. 3.

Fig. 9 : Comparaison des compositions chimiques des objets en variscite du site de Keriaval (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 9 : Même légende que planche 1 appliquée au site Keriaval (Carnac, 56).

2.11 Kervilor (La Trinité-sur-Mer, 56) (tabl. 12, fig. 10, pl. 10)

C'est un ensemble de 15 perles dans la tombe à couloir de Kervilor située au lieu dit le Mané Bras de la commune de La Trinité-sur-Mer qui a été l'objet d'une analyse PIXE. Quarante analyses chimiques ont été obtenues et traitées avec le modèle chimiométrique (tabl. 12 et fig. 10). Le nombre élevé des analyses, leur grande diversité et leurs caractéristiques très marquées font que les critères du modèle chimiométrique sont tous réalisés. C'est donc sans aucune ambiguïté que l'on peut attribuer l'origine des perles de Kervilor à **Encinasola**.

site	no	na		Na	Mg	Al	Si	Р	к	Ca	Ti	v	Cr	Mn	Fe	Со
			min	1054	0	163280	0	196887	362	132	124	1084	786	0	3761	0
5			max	6487	4279	211372	32476	258841	4358	61061	3212	6380	3697	120	59237	74
S III	15	40	х	2615	2246	188181	12842	246047	1216	2303	1170	2544	2226	8	22058	29
⊻			σ	1155	884	8445	6410	10723	692	9551	645	1236	815	21	15120	22
			δ%	44	39	4	50	4	57	415	55	49	37	254	69	75

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	0	28	27	11	219	0	0	0	0	0	0	3	1	46	0,21	3035
max	26	303	356	259	2583	35	7572	31	130	19	90	33	29	95	2,23	9312
х	4	92	75	91	974	5	232	5	26	2	21	13	11	76	1,07	4770
σ	7	63	63	60	577	8	1197	7	29	4	23	9	7	14	0,59	1335
δ%	165	69	84	66	59	145	516	138	112	182	109	70	65	19	55,46	28

Tabl. 12 : composition chimique des objets en variscite du site de Kervilor (56). Même légende que le tabl. 3.

Fig. 10 : Comparaison des compositions chimiques des objets en variscite du site de Kervilor (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 10 : Même légende que planche 1 appliquée au site Kervilor (La Trinité-sur-Mer, 56).

2.12 Luffang (Crac'h, 56) (tabl. 13, fig. 11, pl. 11)

La fouille de l'allée sépulcrale coudée de Luffang a permis de mettre au jour 12 perles dont chacune a fait l'objet de trois analyses par la méthode PIXE. Nous disposons ainsi de 36 analyses chimiques élémentaires de cet ensemble (tabl. 13 et fig. 11). Comme pour la précédente série d'analyses, celles des perles de Luffang se répartissent de manière tout à fait symptomatique et correspondent en tout point aux compositions des échantillons de **Palazuelo**.

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	441	0	173580	0	228020	348	178	283	454	1591	0	2226	0
ള			max	13963	5589	204171	55144	262518	5962	2197	2127	1632	4539	25	12013	28
iffar	12	36	х	2722	1212	198481	7181	254780	1243	567	929	866	3010	5	5222	12
Ľ			σ	3078	1192	6223	11517	9405	1336	484	544	298	845	7	2258	8
			δ%	113	98	3	160	4	107	85	59	34	28	146	43	66

		Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
m	in	0	13	70	34	29	0	0	0	4	0	0	6	17	30	2,06	2263
m	ax	66	266	575	334	236	10	50	7	171	10	15	17	61	76	7,01	5514
	x	6	49	230	132	105	2	5	2	35	2	4	10	34	56	3,89	3876
	σ	11	50	129	78	48	3	9	2	41	3	4	3	10	11	1,74	890
δ	%	200	103	56	59	45	123	193	138	119	143	88	33	30	19	44,82	23

Tabl. 13 : Composition chimique des objets en variscite du site de Luffang (56). Même légende que le tabl. 3.

Fig. 11 : Comparaison des compositions chimiques des objets en variscite du site de Luffang (56) avec celles du gisement de Palazuelo. Même légende que fig. 4.

Planche 11 : Même légende que planche 1 appliquée au site Luffang (Crac'h, 56).

2.13 Le Moustoir (Carnac, 56) (tabl. 14, pl. 12)

Une seule perle a été découverte dans la tombe ouest du site du Moustoir et nous ne disposons que d'une seule analyse (tabl. 14). Malheureusement, la composition chimique de la variscite n'est pas suffisamment caractéristique pour que le modèle chimiométrique puisse en attribuer une provenance précise. Il existe une donc une **indétermination** sur la provenance de la perle du Moustoir.

site	no	na	Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
Le Moustoir	1	1	9522	3507	204878	0	235235	2044	7649	294	1047	1908	0	19288	9

Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
0	622	48	197	476	0	163	30	3	4	17	5	9	87	1,82	2955

Tabl. 14 : composition chimique de la perle en variscite du site du Moustoir (56). Même légende que le tabl. 3.

Planche 12 : Même légende que planche 1 appliquée au site Le Moustoir (Carnac, 56).

2.14 Mane er Hroëck (Locmariaquer, 56) (tabl. 15, fig. 12, pl. 13)

Cette tombe sous forme de ciste au sein d'un grand tumulus de type carnacéen était particulièrement riche en mobilier, y compris en parure de *callaïs*. En effet, 41 perles et 10 pendeloques ont été mises au jour pour ce site. 56 analyses PIXE ont été obtenues (tabl. 15 et fig. 12). Le grand nombre d'analyses permet d'avoir une bonne représentativité de la source dont les objets sont issus et ainsi de déterminer, avec une meilleure probabilité, la provenance des éléments de parure. C'est le cas des objets du Mané er Hroëck pour lesquels l'ensemble des paramètres géochimiques sont cohérents avec une provenance de la variscite d'Encinasola. On notera en particulier le rapport Cr/V proche de 1 et les fortes teneurs en As qui sont caractéristiques de ce dernier gisement. Les perles et pendeloques découvertes au Mané er Hroëck ont donc été confectionnées avec de la variscite provenant **d'Encinasola**.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
сk			min	2337	0	189114	0	230631	410	0	205	528	475	0	6205	0
Iroë			max	9868	4373	215946	6907	246339	2444	4162	4759	4318	4191	42	49803	38
er	51	56	х	6323	2675	207167	233	241258	1148	917	1225	1453	1642	2	20920	9
ane			σ	1601	807	5086	1135	3542	448	840	846	692	747	8	9439	9
ž			δ%	25	30	2	486	1	39	92	69	48	45	371	45	104

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V *	Cr*	Fe*	Cr/V	Cr+V
min	0	17	16	16	100	0	0	0	0	0	0	2	3	70	0,16	1309
max	44	199	206	561	2341	8	3328	108	235	13	32	26	18	95	2,97	6932
x	8	74	82	110	824	2	66	9	35	2	12	7	7	86	1,27	3095
σ	8	48	36	119	428	2	444	15	44	4	8	4	3	7	0,55	1191
δ%	101	65	44	108	52	150	677	159	126	180	64	64	47	8	43,26	38

Tabl. 15 : composition chimique des objets en variscite du site de Mane er Hroëck (56). Même légende que le tabl. 3.

Fig. 12 : Comparaison des compositions chimiques des objets en variscite du site de Mane er Hroëck (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

NOM DU SITE : Mane er Hroëck (Locmariaquer, 56).	Réponse univoque : Encinasola
Nombre d'objets total : 51	
Nombre d'analyses : 56	

Planche 13 : Même légende que planche 1 appliquée au site Mane er Hroëck (Locmariaquer, 56).
2.15 Mane Lud (Locmariaquer, 56) (tabl. 16, fig. 13, pl. 14)

Les analyses ont porté sur la totalité des 28 objets, une pendeloque et 27 perles en *callaïs* découvertes dans la tombe à couloir du Mané Lud. Au total, 29 analyses ont été obtenues (tabl. 16 et fig. 13). Lors des analyses sur AGLAE, une des perles s'est révélée être non pas en variscite mais en turquoise (inventaire musée de Préhistoire de Carnac : Mané Lud R82.9.17.13). Tous les autres objets sont en variscite.

La turquoise a la faculté de se modifier sous l'impact du faisceau de protons lors de l'analyse PIXE. Cela se traduit par un très léger brunissement sur le point d'impact et un taux de comptage extrêmement élevé pour le détecteur de rayons X haute énergie, du fait de la présence en grande quantité de cuivre, ce qui n'est pas le cas de la variscite qui, elle, ne change pas de couleur sous l'impact du faisceau et ne contient que des traces de cuivre. Pour la turquoise, les deux phénomènes sont détectés visuellement dans les premières fractions de seconde de l'analyse, le faisceau est immédiatement stoppé pour préserver l'objet. Par voie de conséquence, nous ne disposons pas de suffisamment de statistique pour déterminer la composition de la pierre en éléments traces, mais suffisamment pour confirmer sa nature. De toute manière, les analyses chimiques élémentaires de la turquoise ne sont pas suffisantes pour en déterminer la provenance comme l'ont montré de nombreux travaux sur ce matériau et il est nécessaire de procéder à des analyses isotopiques du plomb et du strontium par exemple (Thibodeau *et al.*, 2015) en utilisant des techniques de spectrométrie de masse nécessitant des prélèvements, ce qui n'était pas possible pour cette étude.

Du point de vue historique, la présence de turquoise dans la parure néolithique de l'ouest de la France est une nouvelle donnée qui n'avait pas encore été mise en évidence. En fait, pour le site du Mané Lud, la couleur de la perle en turquoise apparaît légèrement différente, un peu plus bleue, de celles des perles et pendeloques en variscite. Les deux types de minéraux pouvant être cogénétiques et associés dans les gisements, il est probable que les Néolithiques qui ont collectés la matière première sur le site d'extraction n'ont pas fait de différence entre les différentes variétés minéralogiques. Seule la couleur et la finesse des pierres leur importaient.

Les analyses des 27 objets en variscite replacées dans le modèle chimiométrique permettent d'attribuer la provenance de ces objets sans aucune ambiguïté au gisement de Palazuelo. Les critères déterminants sont les concentrations relatives en fer, vanadium et chrome tant dans leurs proportions relatives que dans leurs concentrations absolues ainsi que dans le rapport Cr/V particulièrement élevé, Cr/V _{Mané Lud} = 4,25 +/-2,45, proche de celui de Palazuelo (Cr/V _{Palazuelo} = 5,08 +/-6,48) alors que pour Encinasola le rapport est inférieur à 1 (Cr/V _{Encinasola} = 0,74 +/-0,41).

Les perl	es et	la pendo	eloque en	variscite d	u Mané	é Luc	l proviennent i	fort pro	bal	olement o	lu site d	de Pa	lazuel	0
----------	-------	----------	-----------	-------------	--------	-------	-----------------	----------	-----	-----------	-----------	--------------	--------	---

site	no	na		Na	Mg	AI	Si	Р	к	Са	Ti	v	Cr	Mn	Fe	Со
			min	1687	1365	169310	0	226280	301	137	586	648	1266	0	3436	0
pn-			max	7944	2742	209117	18704	256911	8780	4227	4437	2218	7009	32	85064	17
ne l	27	28	х	4354	2021	198816	2058	249373	1578	1077	1574	1035	3831	6	15301	4
Ma			σ	1706	408	7365	4364	7223	1529	933	893	399	1682	10	16487	5
			δ%	39	20	4	212	3	97	87	57	39	44	165	108	126

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V*	Cr*	Fe*	Cr/V	Cr+V
min	0	11	32	39	47	0	0	0	10	0	0	2	2	35	1,02	2069
max	22	213	503	393	1793	89	59	17	333	11	43	12	55	97	9,79	7988
х	4	59	180	159	329	7	10	3	80	2	5	7	26	67	4,25	4866
σ	5	44	99	97	428	18	14	4	77	3	8	3	14	16	2,45	1661
δ%	135	74	55	61	130	264	140	149	97	133	175	43	55	24	57,55	34

Tabl. 16 : composition chimique des objets en variscite du site de Mane Lud (56). Même légende que le tabl. 3.

Planche 14 : Même légende que planche 1 appliquée au site Mane Lud (Locmariaquer, 56).

Fig. 13 : Comparaison des compositions chimiques des objets en variscite du site de Mane Lud (56) avec celles du gisement de Palazuelo. Même légende que fig. 4.

2.16 Mané Rutual (Locmariaquer, 56) (tabl. 17, fig. 14, pl. 15)

La tombe à couloir du Mané Rutual n'a fourni qu'une seule perle en *callais*. Son analyse chimique ne correspond aux échantillons ni de Pannecé, ni de El Bostal, ni de Gavà (tabl. 17 et fig. 14). Le rapport Cr/V est petit (1,38) et compatible avec le gisement d'Encinasola. La teneur en arsenic est également assez élevée (As_{Mané Rutual} = 950 ppm) ce qui correspond également au gisement d'Encinasola (As_{Encinasola} = 620 ppm +/-800) alors qu'il est quasiment absent des variscites de Palazuelo (As_{Palazuelo} = 142 ppm +/-130). Ainsi, la perle du Mané Rutual présente plutôt les

site	no	na	Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
Mané Rutual	1	1	1597	1605	192292	5240	241622	1117	5171	2603	2555	3530	3	26288	0

Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
2	58	80	71	953	16	1815	40	73	0	12	8	11	81	1,38	6085

Tabl. 17 : composition chimique de la perle en variscite du site de Mané Rutual (56). Même légende que le tabl. 3.

Planche 15 : Même légende que planche 1 appliquée au site Mané Rutual (Locmariaquer, 56).

Figure 14 : Comparaison des compositions chimiques de la perle en variscite du site du Mane Rutual (56) avec celles du gisement d'Encinasola. Même légende que figure 4.

caractéristiques chimiques des échantillons d'Encinasola d'où elle proviendrait plus probablement. 2.17 Petit Mont (Arzon, 56) (tabl. 18a et b, fig. 15a et b, pl. 16 et 17)

Sur les 10 perles et la pendeloque provenant du Petit Mont signalées dans les publications (De Cussé, 1864 ; BSPM, 1866, p. 147 ; Lecornec, 1994), sept objets ont été analysés, la pendeloque et six perles, à partir desquels nous avons obtenus 19 analyses.

Le cas du Petit Mont est particulier dans le sens où l'on ne peut pas appliquer directement le modèle chimiométrique sur l'ensemble des analyses. En effet, deux groupes d'objets se distinguent au sein de l'ensemble en fonction de leurs compositions chimiques. Ces deux groupes sont particulièrement bien visibles dans le diagramme As versus (V+Cr) et, dans une moindre mesure, dans le diagramme ternaire V*-Cr*-Fe*. La distinction de deux types d'objets est confirmée par les fouilles anciennes et récentes, puisque la pendeloque a été découverte au contact du tumulus primaire et à l'extérieur de la tombe IIIA, et la plus grosse perle fut découverte dans les pierres du cairn et donc à l'extérieur de la chambre (Lecornec, 1988 ; rapport d'opération SRA Bretagne, p. 7). La pendeloque serait plus ancienne, datant du Néolithique moyen I, alors que 9 des 10 perles proviendraient de la tombe IIIA et dateraient

NOM DU SITE : LE PETIT MONT 1	Réponse univoque : Encinasola.
Nombre d'objets total : 2	
Nombre d'analyses : 7	

Planche 16 : Même légende que planche 1 appliquée au site Petit Mont (Arzon, 56).

ainsi du Néolithique moyen II (voir Cassen *et al.*, ce volume). Les analyses confirment donc l'existence de deux groupes chronologiques ayant des compositions différentes et, éventuellement, deux sources de variscite. Toutefois, seule la pendeloque correspondrait à la période d'occupation la plus ancienne. Or, les analyses montrent qu'une des perles, la plus grosse et la plus globuleuse, se rapproche du point de vue géochimique de la pendeloque plutôt que des autres perles ; sa position stratigraphique la mettant à l'écart des autres perles, elle pourrait, elle-aussi, renvoyer à une phase antérieure au fonctionnement sépulcral de la chambre III. Nous avons donc utilisé le modèle chimiométrique sur chacun des groupes géochimiques pour en déterminer la provenance.

Le premier groupe composé de la pendeloque et de la perle sphérique présente les caractéristiques des échantillons d'Encinasola (tabl. 18a et fig. 15a). Le rapport Cr/V est de 0,68 pour la pendeloque et de 1,07 pour la perle, les teneurs en arsenic sont élevées comme pour Encinasola, 750ppm et plus de 2000ppm. La pendeloque est attribuée au Néolithique moyen I et serait donc, avec la plus grosse perle, les objets en variscite les plus anciens du monument. Elles proviendraient du gisement d'Encinasola.

Le second groupe d'objets en variscite découverts au Petit Mont est composé de cinq perles (tabl. 18b et fig. 15b). Ces objets présentent toutes les caractéristiques chimiques des variscites provenant du gisement de Palazuelo. Le rapport Cr/V est élevé : (Cr/V = 3,29 + -0,6) et les teneurs As relativement basses (As = 100+-70 ppm). Ce deuxième groupe d'objets en variscite correspond au Néolithique moyen II et serait donc plus récent que les objets du premier groupe.

Ainsi, les analyses des huit objets en variscite du Petit Mont correspondent à deux provenances différentes, l'une **d'Encinasola** pour les objets du Néolithique moyen I, l'autre de **Palazuelo** pour les objets du Néolithique moyen II.

NOM DU SITE : LE PETIT MONT	Réponse univoque : Palazuelo.
Nombre d'objets total : 4	
Nombre d'analyses : 12	

Planche 17 : Même légende que planche 1 appliquée au site Petit Mont (Arzon, 56).

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	416	713	195361	552	253167	350	229	286	800	809	0	11050	0
nt 1			max	1776	1808	200003	7638	259010	810	693	661	1924	1310	50	20285	12
Mo Mo	2	7	х	876	1148	198084	4015	256142	509	345	429	1176	1018	13	14125	3
etit			σ	469	469	1798	3037	2314	156	178	135	446	243	18	3454	5
			δ%	54	41	1	76	1	31	52	31	38	24	141	24	146

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V*	Cr*	Fe*	Cr/V	Cr+V
mi	1 0	18	15	30	750	0	0	0	0	0	0	4	4	80	0,68	1652
ma	k 14	42	30	80	2032	14	9	7	14	11	28	12	8	91	1,07	3234
X	3	27	20	48	1457	3	5	3	8	3	13	7	6	86	0,9	2194
σ	5	10	5	18	621	5	4	3	5	5	11	3	1	4	0,12	681
δ%	169	36	25	37	43	189	73	91	67	132	85	35	19	4	13,8	31

Tabl.18a : composition chimique des objets en variscite du groupe 1 du site de Petit Mont (56). Même légende que le tabl. 3.

Fig. 15a : Comparaison des compositions chimiques des objets en variscite du site du Petit Mont 1 (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	268	0	184372	0	229861	426	194	365	453	1916	0	3639	0
ont 2			max	2608	1953	219585	16540	258542	4411	3264	4499	1356	5172	17	59151	16
M	4	12	х	992	1160	196275	6890	251007	2197	967	1235	991	3149	2	13708	8
Detit			σ	675	551	8519	5597	7708	1264	974	1102	309	925	5	15190	5
			δ%	68	48	4	81	3	58	101	89	31	29	268	111	70

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V*	Cr*	Fe*	Cr/V	Cr+V
min	0	13	4	70	40	0	0	0	0	0	0	2	8	42	2,53	2369
max	10	471	138	262	297	6	10	11	168	7	16	15	43	90	4,23	6454
Х	2	69	24	125	99	1	3	3	37	1	5	7	23	70	3,29	4140
σ	3	127	38	56	65	2	3	3	47	2	5	4	10	14	0,6	1199
δ%	156	186	159	45	66	174	87	121	126	346	100	50	44	20	18,12	29

Tabl. 18b : composition chimique des objets en variscite du groupe 2 du site de Petit Mont (56). Même légende que le tabl. 3.

Fig. 15b : Comparaison des compositions chimiques des objets en variscite du site du Petit Mont 2 (56) avec celles du gisement de Palazuelo. Même légende que fig. 4.

2.18 Roh Vras (Saint-Philibert, 56) (tabl. 19, fig. 16, pl. 18)

Nous ne disposons pour la tombe à couloir de Roh Vras que d'une seule analyse sur une unique perle en variscite (tabl. 19 et fig. 16). Lorsque l'on applique le modèle chimiométrique à l'analyse de cette perle, les deux paramètres discriminants sont les proportions relatives V*-Cr*-Fe* ainsi que le rapport Cr/V. Ce dernier est particulièrement élevé (Cr/V = 6,93), compatible avec une variscite originaire de Palazuelo et uniquement ce site sachant que les autres critères du modèle sont ubiquistes. C'est donc plutôt une provenance de **Palazuelo** qui peut être proposée pour cette perle.

site	no	na	Na	Mg		AI	Si		Р	К		Са	-	Ti	v	C	Cr	Mn	F	e	Со	,
Roh Vras	1	1	3060 323 182615 7770		228	3498	144	45	825	36	506	663	L 45	83	0	63	775	C	כ			
			Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Z	r N	lb	U	V*	Cr*	Fe*	* Cr	·/v	Cr+	v	_
			0	380	113	341	115	26	23	0	8	3	3	0	1	7	92	2 6	,93	524	4	

Tabl. 19 : composition chimique de la perle en variscite du site de Roh Vras (56). Même légende que le tabl. 3.

Fig. 16 : Comparaison des compositions chimiques de la perle en variscite du site de Roh Vras (56) avec celles du gisement de Palazuelo. Même légende que fig. 4.

2.19 Tumulus Saint-Michel (Carnac, 56) (tabl. 20, fig. 17, pl. 19)

Comme les autres grands tumulus de type carnacéen, la ciste centrale du tumulus Saint-Michel était particulièrement riche en perles de *callaïs* puisque 138 objets y ont été découverts lors des anciennes fouilles : 11 pendeloques et 127 perles.

Planche 18 : Même légende que planche 1 appliquée au site Roh Vras (Île-aux-Moines, 56).

Une des perles (inventaire IM 0816-48) apparaissant faite dans une matière verte mais légèrement plus translucide et plus foncée que la variscite s'est avérée être exclusivement en silice (SiO₂ = 94,3 %). Il s'agit probablement d'agate, une forme de silice pouvant prendre différentes couleurs dont le vert. Les traces de fer, sans doute sous sa forme réduite (Fe = 812ppm), et de cuivre (Cu = 84ppm) pourraient expliquer la coloration de cette pierre. Deux autres perles (inventaire R82.15.53.14 et IM 0816-52) se sont révélées être en turquoise avec des

teneurs en aluminium, phosphore et cuivre élevées. Comme dans le cas du Mané Lud, la couleur de ces deux pierres est proche des perles et pendeloques qui leur sont associées.

Les 11 pendeloques et les 124 perles restantes sont en variscite avec l'aluminium et le phosphore comme éléments majeurs (tabl. 20 et fig. 17). Le grand nombre d'analyses permet d'avoir une très bonne statistique et d'utiliser le modèle chimiométrique dans la meilleure configuration possible. Tous les paramètres géochimiques sont compatibles avec une provenance de cet ensemble **d'Encinasola**. C'est donc fort probablement de cette source dont est issu l'ensemble des objets en variscite découvert dans la ciste centrale du tumulus Saint Michel à Carnac.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	464	0	147867	0	203024	0	130	125	316	437	0	3668	0
s St			max	9961	2684	212860	43060	261572	15306	21682	3868	5922	7296	77	142907	125
lich(135	146	х	2569	676	196572	3428	246456	963	1011	1069	1136	1451	15	27144	17
Ln Ln ⊃			σ	1745	723	12092	6062	9531	1318	2107	630	777	847	18	25273	23
			δ%	68	107	6	177	4	137	208	59	68	58	118	93	131

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	0	6	21	11	35	0	0	0	0	0	0	0	0	51	0,37	890
max	33	3122	845	754	2805	222	3404	59	224	9	195	29	40	99	4,39	10853
x	5	738	151	79	877	10	58	7	28	1	16	6	7	87	1,49	2587
σ	6	1068	128	100	532	26	303	7	36	2	24	5	5	9	0,68	1430
δ%	125	145	85	128	61	266	521	104	125	186	146	82	72	10	45,44	55

Tabl. 20 : composition chimique des objets en variscite du site de Tumulus St Michel (56). Même légende que le tabl. 3.

Planche 19 : Même légende que planche 1 appliquée au site Tumulus Saint-Michel (Carnac, 56).

2.20 La Table des Marchands (sol enterré) (Locmariaquer, 56) (tabl. 21, fig. 18, pl. 20)

Plusieurs éléments de parure ont été découverts lors des fouilles récentes de la Table des Marchands qui ont déjà fait l'objet d'une publication (Querré, 2009). Une seule perle sub-sphérique en *callais* a été découverte dans le paléosol sur lequel a été érigé la tombe à couloir. La provenance proposée en 2009 était Encinasola. Cette détermination avait été établie sur la base d'un nombre plus réduit d'analyses des différentes sources potentielles. Si nous appliquons le modèle géochimique à partir des 7 points d'analyse PIXE obtenue sur cette grosse perle (tabl. 21 et fig. 18), la provenance d'Encinasola est confirmée avec un rapport Cr/V bas proche de 1 (Cr/V = 0,93 +/-0,22), des teneurs en As élevées associées à des concentrations en Cr et V élevées. Le gisement d'**Encinasola** comme site de provenance de la perle de la Table des Marchands est à nouveau confirmé par le modèle chimiométrique et la composition de la perle.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
Ł			min	684	0	192718	0	254305	507	106	890	1017	957	4	7575	12
ls Ma			max	2046	1032	197318	7699	260621	944	1771	2069	1609	1474	35	23448	40
des	1	7	х	1058	655	194842	1794	258869	779	511	1375	1326	1209	22	15994	27
able c			σ	458	368	1860	2775	2243	183	566	417	197	208	11	5707	10
Ľ ⁰			δ%	43	56	1	155	1	24	111	30	15	17	50	36	38

	Ni	Cu	Zn	Ga	As	Rb	Sr	Υ	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	4	3	30	47	517	0	0	2	0	0	0	6	5	78	0,79	2155
max	12	33	53	86	752	2	670	12	29	5	23	12	10	89	1,38	2964
x	7	18	42	66	631	0	97	6	15	1	11	8	7	85	0,93	2535
σ	4	13	9	12	86	1	253	3	13	2	9	3	3	5	0,22	318
δ%	55	71	22	19	14	265	260	58	83	265	78	33	36	6	23,4	13

Tabl. 21 : composition chimique des objets en variscite du site de la Table des Marchands (56). Même légende quele tabl. 3.

Fig. 18 : Comparaison des compositions chimiques des objets en variscite du site de la Table des Marchands (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 20 : Même légende que planche 1 appliquée au site Table des Marchands (Locmariaquer, 56).

2.21 Tumiac (Arzon, 56) (tabl. 22, fig. 19, pl. 21)

Cette tombe en forme de ciste est la plus riche en éléments de parure en *callaïs* puisque 12 pendeloques et 240 perles y ont été découvertes. 260 analyses PIXE ont été faites sur ce remarquable ensemble (tabl. 22 et fig. 19). Avec un tel nombre d'analyses, la statistique est excellente, y compris pour le modèle chimiométrique. L'ensemble des points d'analyses se placent, dans les différents diagrammes, dans les mêmes zones que les échantillons d'Encinasola. Ce sont les mêmes concentrations en vanadium, chrome et fer avec les mêmes rapports de concentration. Les fortes concentrations en arsenic dans les perles et pendeloques (As = 0,1 % en moyenne et pouvant dépasser 0,5 %), sont particulièrement spécifiques du gisement d'Encinasola. C'est donc sans ambiguïté que l'on peut proposer comme source d'exploitation d'origine des bijoux déposés dans la ciste de Tumiac, **Encinasola**.

site	no	na		Na	Mg	AI	Si	Р	к	Са	Ti	v	Cr	Mn	Fe	Со
			min	0	0	153875	0	202534	0	0	106	387	436	0	4797	0
ပ္ခ			max	13779	3562	221861	63125	261742	5759	97190	5160	4586	6081	439	88022	143
l mi	254	260	х	2812	773	205669	1740	243303	1062	1810	1281	1693	2009	20	21739	27
-			σ	1757	869	9754	6155	8240	850	6081	888	821	960	37	13212	27
			δ%	62	112	5	354	3	80	336	69	49	48	179	61	101

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	υ	V*	Cr*	Fe*	Cr/V	Cr+V
min	0	12	15	4	26	0	0	0	0	0	0	0	1	57	0,16	923
max	198	4626	1686	1031	5418	71	1003	39	299	31	94	28	30	99	3,9	10303
х	17	173	81	122	950	2	24	7	30	2	15	8	9	83	1,34	3703
σ	22	328	109	145	684	6	79	6	39	4	15	5	5	9	0,63	1508
δ%	128	189	134	119	72	273	324	93	132	185	96	60	54	11	47,15	41

Tabl. 22 : composition chimique des objets en variscite du site de Tumiac (56). Même légende que le tabl. 3.

Fig. 19 : Comparaison des compositions chimiques des objets en variscite du site de Tumiac (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 21 : Même légende que planche 1 appliquée au site Tumiac (Arzon, 56).

2.22 Bougon (Deux-Sèvres, 79) (tabl. 23, fig. 20, pl. 22)

Les quatre perles étudiées proviennent d'au moins deux tombes à couloir de la nécropole de Bougon. Les analyses ont déjà été publiées (Querré, 2003) mais lors de la rédaction de cet article, le programme *Callaïs* n'était qu'à ses prémices et nous ne disposions pas réellement d'une base de référence suffisante pour déterminer la provenance de ces perles avec une fiabilité suffisante (tabl .23 et fig. 20).

Les concentrations relatives en V, Cr et Fe sont celles correspondant aux variscites d'Encinasola. Le rapport Cr/V est proche de 1, caractéristique des échantillons provenant du sud de l'Espagne, comme leur dispersion avec une large gamme de concentration relative en Fe (Fe de 0,6 à 2,7 %). On remarquera également les teneurs en As, jusqu'à 0,1 %. C'est à nouveau le gisement **d'Encinasola** qui est proposé pour les 4 perles en variscite découvertes à Bougon.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	182	187	153356	2674	178076	727	4981	728	1665	2063	0	6238	15
n			max	3606	6246	197555	100292	257427	9525	16485	2116	3381	3910	111	27721	40
oguc	4	12	х	1897	1578	186219	21093	240421	2752	7911	1333	2537	3263	17	12439	24
BG			σ	1027	1973	14357	30298	24559	2593	4001	418	554	558	40	6513	6
			δ%	54	125	8	144	10	94	51	31	22	17	232	52	27

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V *	Cr*	Fe*	Cr/V	Cr+V
min	0	25	18	86	374	0	18	10	1	0	0	5	9	51	0,99	3929
max	25	62	123	205	1011	22	34	28	53	11	39	24	26	85	1,73	6874
X	11	40	47	135	574	6	26	18	18	3	5	16	20	65	1,32	5800
σ	9	12	37	39	237	7	5	6	20	3	11	7	6	13	0,25	990
δ%	82	31	79	29	41	111	21	35	110	116	211	43	32	20	19,16	17

Tabl. 23 : composition chimique des objets en variscite du site de Bougon (79). Même légende que le tabl. 3.

Fig. 20 : Comparaison des compositions chimiques des objets en variscite du site de Bougon (79) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 22 : Même légende que planche 1 appliquée au site Bougon (Bougon, 79).

2.23 Le Lazzaro (Colombelles, 14) (tabl. 24, fig. 21, pl. 23)

C'est dans la structure 297 correspondant à une sépulture datée de l'étape finale du Rubané récent du Bassin parisien que cette unique perle en forme de crache de cerf a été découverte. Malgré le faible nombre d'analyses, trois pour un unique objet, la composition de la variscite est suffisamment caractéristique pour en déduire sa provenance probable, à savoir Encinasola. Le rapport Cr/V de 0,67 à 0,69 est proche des échantillons de la région d'Huelva (Cr/V _{Encinasola} = 0,74 +/-0,41). Les teneurs en arsenic sont également assez élevées, supérieures à 500 ppm. C'est à nouveau à **Encinasola** que l'on peut attribuer la provenance de la perle de Lazzaro selon les critères géochimiques.

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	1740	604	196041	5633	245226	768	4778	944	1592	1053	0	15145	21
6			max	1866	860	198151	7443	250372	1063	11807	1155	1656	1096	0	16806	30
Izarı	1	3	х	1788	726	197145	6777	248245	929	7215	1029	1614	1074	0	15863	24
Ľ			σ	68	128	1058	995	2686	149	3979	111	36	22	0	853	5
			δ%	4	18	1	15	1	16	55	11	2	2	-	5	22

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	9	16	10	67	529	0	16	19	0	0	0	8	6	85	0,65	2645
max	13	19	17	74	535	12	94	27	8	9	10	9	6	86	0,69	2730
х	11	18	13	71	533	5	49	23	3	3	6	9	6	85	0,67	2688
σ	2	2	4	4	3	6	41	4	5	5	6	0	0	1	0,02	43
δ%	18	9	28	5	1	115	83	17	173	173	87	5	3	1	2,99	2

Tabl. 24 : composition chimique des objets en variscite du site du Lazzaro (14). Même légende que le tabl. 3.

Fig. 21 : Comparaison des compositions chimiques des objets en variscite du Lazzaro (14) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 23 : Même légende que planche 1 appliquée au site Le Lazzaro (Colombelles, 14).

2.24 Les Monts (Plichancourt, 51) (tabl. 25, fig. 22, pl. 24)

La similitude entre ce site et le précédent est grande puisqu'il s'agit également d'une sépulture ancienne du Rubané récent du Bassin parisien et qu'une unique perle en forme de crache de cerf y a été découverte. Là encore, c'est plutôt vers une origine andalouse que les deux analyses penchent. Le rapport Cr/V est de 1,56 -1,57, nettement plus proche de celui d'Encinasola ((Cr/V_{Encinasola} = 0,74+/-0,41) que de celui de Palazuelo (Cr/V_{Palazuelo} = 5,08 +/-6,48). La teneur en arsenic est assez élevée (X_{As} = 600 et 750 ppm) comme celle des échantillons de variscite du gisement **d'Encinasola**. C'est donc de cette dernière exploitation que la perle du site des Monts est probablement originaire.

site	no	na		Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
			min	14095	4040	192488	2010	230125	8135	6218	839	1093	1697	77	14618	0
nts			max	15134	4221	194711	9162	235798	10792	8719	1079	1189	1871	77	15178	0
β	1	2	х	14615	4131	193600	5586	232962	9464	7469	959	1141	1784	77	14898	0
Les			σ	735	128	1572	5057	4011	1879	1768	170	68	123	0	396	0
			δ%	5	3	1	91	2	20	24	18	6	7	0	3	-

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	0	54	153	116	608	0	30	0	0	0	0	6	9	83	1,55	2790
max	0	84	167	132	751	0	55	0	0	0	0	7	11	84	1,57	3060
x	0	69	160	124	680	0	43	0	0	0	0	6	10	84	1,56	2925
σ	0	21	10	11	101	0	18	0	0	0	0	0	1	1	0,01	191
δ%	-	31	6	9	15	-	42	-	-	-	-	7	8	2	0,95	7

Tabl. 25 : composition chimique des objets en variscite du site des Monts (51). Même légende que le tabl. 3.

Fig. 22 : Comparaison des compositions chimiques des objets en variscite du site des Monts (51) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 24 : Même légende que planche 1 appliquée au site Les Monts (Plichancourt, 51).

2.25 Tumulus des Sables (Saint-Laurent-Médoc, 33) (tabl. 26, fig. 23, pl. 25)

Trois perles en variscite ont été mises au jour dans une tombe sous tertre lors de la fouille du tumulus des Sables, au cœur du Médoc. Cette tombe est datée du Néolithique récent-Campaniforme. Les trois analyses de ces perles traitées par notre modèle chimiométrique aboutissent à la conclusion suivante : les perles proviennent du gisement de Palazuelo. En effet, les concentrations relatives en Cr*-V*-Fe* ne correspondent pas à celles de Pannecé, ni à celles d'El Bostal. Le rapport moyen Cr/V est élevé (3,45 +/-1,9) ce qui correspond au gisement de Palazuelo, celui d'Encinasola étant inférieur à 1. Pour tous les autres éléments chimiques pris en compte dans le modèle (U, Zr, Cr+V, As, Si et Ca), les analyses des perles du Tumulus des Sables sont bien compatibles avec celles du gisement de **Palazuelo**.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
les			min	160	1244	171874	2765	197297	226	1788	877	1571	5107	27	11479	6
			max	7983	3832	200208	61461	253612	11475	43970	2771	2879	8734	331	17506	8
Sab	3	3	х	3176	2527	184131	25460	225334	4743	17436	1574	2072	6430	151	14431	7
Les			σ	4208	1294	14548	31529	28158	5943	23102	1042	705	2002	160	3015	1
			δ%	133	51	8	124	12	125	132	66	34	31	106	21	16

	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	V *	Cr*	Fe*	Cr/V	Cr+V
min	0	35	5	187	182	0	0	0	11	2	5	6	21	58	1,89	6874
max	9	74	145	220	385	18	11	3	42	4	10	11	35	68	5,56	10305
Х	5	49	82	200	255	8	5	1	32	3	8	9	28	63	3,45	8503
σ	5	22	71	17	113	9	6	2	18	1	3	2	7	5	1,9	1722
δ%	97	44	86	9	44	115	103	115	57	33	35	27	26	8	54,99	20

Tabl. 26 : composition chimique des objets en variscite du site de Tumulus des Sables (33). Même légende que le tabl. 3.

Fig. 23 : Comparaison des compositions chimiques des objets en variscite du site du tumulus des Sables (33) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 25 : Même légende que planche 1 appliquée au site Tumulus des Sables (Saint-Laurent-Médoc, 33).

2.26 Replat (Aime, 73) (tabl. 27, pl. 26)

Deux perles-pendeloques ont été découvertes dans cette tombe en ciste. Lors de leur analyse par PIXE au faisceau extrait, la première s'est avérée être en turquoise du fait de sa forte teneur en aluminium, phosphore et cuivre. L'analyse de la seconde montre bien qu'il s'agit de variscite. Malheureusement, la composition de cet objet ne permet pas de déterminer sa provenance car le modèle chimiométrique aboutit à une **indétermination** entre Palazuelo et Encinasola. Cependant, la forte teneur en arsenic tendrait plutôt à pencher pour une provenance du sud-ouest de l'Espagne.

site	no	na	Na	Mg	Al	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
Replat	1	1	5826	5148	169683	34643	213241	6503	8020	2976	1839	6103	58	34242	0

Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
20	71	88	302	2358	8	22	10	58	0	24	4	14	81	3,32	7942

Tabl. 27 : composition chimique de la perle en variscite du site de Replat (73). Même légende que le tabl. 3.

Planche 26 : Même légende que planche 1 appliquée au site Replat (Aime, 73).

2.27 Tassin (Marclopt, 42) (tabl. 28, fig. 24, pl. 27)

Trois perles proviennent de cette tombe sous tertre probable située dans le département de la Loire. Les trois analyses PIXE présentent les caractéristiques suivantes : un rapport Cr/V proche de 1, compatible avec Encinasola, des teneurs très faibles en uranium (moyenne de 13 ppm) et en zirconium (moyenne de 44 ppm), ce qui élimine le gisement d'El Bostal comme source potentielle, une forte concentration en arsenic (de 550 ppm à 2300 ppm) ainsi qu'une somme des teneurs Cr+V élévée (de 4.000 à 6.000ppm) ce qui est caractéristique du gisement d'Encinasola et enfin une quasi absence de calcium (moyenne de 1.000 ppm) et de silicium (moyenne de 6.000 ppm) excluant ainsi le gisement de Gavà. Pour ces trois perles, la provenance la plus probable est donc **Encinasola**.

site	no	na		Na	Mg	AI	Si	Р	К	Са	Ti	v	Cr	Mn	Fe	Со
_			min	720	1647	186807	4042	241933	918	702	1527	2284	1331	15	9067	2
			max	3145	2138	201998	10159	244962	2246	1485	2948	2580	3638	30	41233	6
assil	3	3	х	1740	1866	194542	6095	243487	1364	1019	2105	2446	2827	23	25721	4
			σ	1257	250	7599	3519	1516	764	412	747	150	1297	8	16113	2
			δ%	72	13	4	58	1	56	40	35	6	46	33	63	57

	Ni	Cu	Zn	Ga	As	Rb	Sr	Υ	Zr	Nb	U	۷*	Cr*	Fe*	Cr/V	Cr+V
min	0	12	39	28	547	0	2	9	37	0	11	5	8	70	0,54	3805
max	3	36	135	315	2334	6	5	19	52	12	15	19	11	87	1,59	6092
x	2	26	75	208	1196	2	4	12	44	4	13	11	10	80	1,16	5273
σ	2	12	52	157	989	3	2	6	8	7	2	8	2	9	0,55	1274
δ%	92	48	69	75	83	173	43	47	17	173	15	71	17	11	47,63	24

Tabl. 28 : composition chimique des objets en variscite du site de Tassin (42). Même légende que le tabl. 3.

Fig. 24 : Comparaison des compositions chimiques des objets en variscite du site de Tassin (56) avec celles du gisement d'Encinasola. Même légende que fig. 4.

Planche 27 : Même légende que planche 1 appliquée au site Tassin (Marclopt, 42).

3 Synthèse globale

Tout d'abord, les analyses PIXE de la presque totalité des perles et pendeloques en callaïs de l'ouest et plus largement de la moitié nord de la France, ont permis de confirmer que la variscite, un phosphate d'aluminium hydraté, était bien la matière qui constituait tous ces éléments de parure. Toutefois, cinq d'entre elles se sont révélées être en turquoise : une provenant du Mané Lud, deux du tumulus Saint-Michel, une de la sépulture de Beg er Hâvre à Plouhinec et une du site d'Aime en Savoie. Bien que de couleur un peu différente, l'utilisation de ce minéral par les Néolithiques n'avait jamais été mise en évidence jusqu'à présent dans l'ouest de la France. La coexistence variscite-turquoise est possible dans les gisements phosphatés (cf. Fernandez *et al.*, ce volume). Il est donc probable que la turquoise ayant servi à confectionner les cinq perles en question ait été collectée par les Néolithiques avec la variscite dans les gisements associés.

Ensuite, pour la grande majorité des sites étudiés, l'application du modèle chimiométrique permet d'attribuer une provenance aux objets en variscite. En effet, sur les ensembles d'objets analysés issus des 27 sites archéologiques, pour 22 d'entre eux, la provenance de la variscite a pu être proposée (tabl. 29). Pour les cinq autres sites archéologiques, il reste une indétermination quant à la provenance de la Blanche (44), Er Lannic (56), Kerdro Vihan (56), Le Moustoir (56) et variscite, en particulier : Couronne Aime (73). Ces indéterminations sont dues au faible nombre d'objets découverts dans les sites concernés : un objet pour quatre d'entre eux, deux pour Er Lannic. A contrario, l'attribution d'un lot d'objets en variscite est d'autant plus probante que le nombre d'objets provenant d'un site et, par conséquent, le nombre d'analyses est élevé, comme c'est le cas des sites de Kercado, Saint-Michel et Tumiac où le corpus dépasse la centaine d'individus. Pourtant, dans certains cas et malgré le faible nombre d'analyses, les compositions sont tellement caractéristiques qu'il est possible de proposer une provenance avec une bonne probabilité comme c'est le cas par exemple pour les perles de Lazzaro (14) et Plichancourt (52). Tous les sites dont les analyses ont pu être traitées à l'aide du modèle chimiométrique ont montré une cohérence dans leur composition et une unicité dans la provenance, exception faite pour l'un des sites, le Petit Mont où nous avons pu mettre en évidence deux groupes de compositions. Les deux groupes d'objets ont été constitués à partir des données à la fois archéologiques, typologiques et géochimiques. Chaque groupe a une provenance différente, Encinasola d'une part, Palazuelo d'autre part.

Pour les 22 lots d'objets en variscite étudiés, issus de 21 sites, pour lesquels le modèle chimiométrique a fourni un résultat univoque, deux provenances uniquement sont déduites : Palazuelo et Encinasola (tabl. 29).

Ce résultat confirme tout d'abord que l'unique gisement français de variscite, celui de Pannecé, n'a pas fourni de matière première et qu'il n'a probablement pas été exploité par les néolithiques. Cette conclusion avait déjà été avancée lors des premières études du mobilier morbihannais (Herbault et Querré, 2004 ; Querré *et al.*, 2008, 2013, 2015). Seules les sources ibériques peuvent être considérées pour leur provenance. D'autre part, il apparaît qu'aucune perle ou pendeloque ne provient de Gavà et plus globalement des mines néolithiques de Can Tintorer. Les sites de la moitié nord de la France et plus particulièrement les groupes humains occupant la côte morbihannaise ne se sont jamais approvisionné à partir du site méditerranéen. Le gisement d'El Bostal, dans la région de Zamora, n'a pas été non plus exploité.

Contrairement à Gavà, situé dans la sphère méditerranéenne, les gisements de variscite d'Encinasola et Palazuelo sont situés sur la partie occidentale de la péninsule Ibérique et plutôt tournés vers la façade atlantique. Ce sont donc des transferts Sud-Nord le long de façade atlantique que met en évidence la circulation de la variscite durant la période néolithique.

Les résultats de l'analyse PIXE des bijoux en variscite et l'utilisation du modèle chimiométrique montrent également, pour la variscite, des distances de transfert de plusieurs centaines de kilomètres, parfois supérieures à 1800 kilomètres. C'est par exemple le cas entre le site de Lazzaro (Colombelles), à proximité

site		Provenance							
Beg er Hâvre (Plouhinec, 56)			indétermination						
Couronne Blanche (Grand-Auverné, 44)			indétermination						
Er Grah (Locmariaquer, 56)	Encinasola								
Er Lannic (Arzon, 56)			indétermination						
Île Carn (Ploudalmézeau, 29)	Encinasola								
La Joselière (Pornic, 44)	Encinasola								
Kercado (Carnac, 56)	Encinasola								
Kerdro Vihan (La Trinité-sur-Mer, 56)			indétermination						
Kerlagat 1 (Carnac, 56)		Palazuelo							
Keriaval (Carnac, 56)	Encinasola								
Kervilor (La Trinité-sur-Mer, 56)	Encinasola								
Lutfang (Crac'h, 56)		Palazuelo							
Le Moustoir (Carnac, 56)			indétermination						
Mane er Hroëck (Locmariaquer, 56)	Encinasola								
Mané Lud (Locmariaquer, 56)		Palazuelo							
Mané Rutual (Locmariaquer, 56)	Encinasola								
Petit Mont 1 (Arzon, 56)	Encinasola								
Petit Mont 2 (Arzon, 56)		Palazuelo							
Roh Vras (Saint-Philibert, 56)		Palazuelo							
Saint Michel (Carnac, 56)	Encinasola								
La Table des Marchands (Locmariaquer, 56)	Encinasola								
Tumiac (Arzon, 56)	Encinasola								
Bougon (Bougon, 79)	Encinasola								
Le Lazzaro (Colombelles, 14)	Encinasola								
Les Monts (Plichancourt, 51)	Encinasola								
Les Sables (Saint-Laurent-Médoc, 33)		Palazuelo							
Replat (Aime, 73)			indétermination						
Tassin (Marclopt, 42)	Encinasola								
Nb de sites	16	6	5						

Tabl. 29 : tableau synthétique des attributions de provenance des ensembles de parures en callaïs des différentssites archéologiques de la moitié nord de la France à partir de leur composition chimique et dumodèle chimiométrique.

de Caen, et le gisement d'Encinasola, ceci au cours du Vème millénaire avant notre ère. Cette distance correspond au chemin terrestre le plus court.

À partir des datations absolues ou relatives des structures dans lesquelles les perles et pendeloques en variscite ont été découvertes (Cassen *et al.*, ce volume), il est possible d'établir une chronologie des approvisionnements en variscite au cours des différentes phases du Néolithique (tabl. 30). Il apparaît très nettement que pour les sites les plus anciens, de 5000 à 4300 ans av. J.-C. environ, les objets en variscite proviennent d'Encinasola au sud-ouest de la péninsule Ibérique. À partir de 4300-4000 avant

datation	site	provenance
2600 2200	Luffang (Crac'h, 56)	Palazuelo
5000-5500	Les Sables (Saint-Laurent-Médoc, 33)	Palazuelo
	Mané Lud (Locmariaquer, 56)	Palazuelo
4000-2600	Petit Mont 2 (Arzon, 56)	Palazuelo
4000-3000	Roh Vras (Saint-Philibert, 56)	Palazuelo
	Mané Rutual (Locmariaquer, 56)	Encinasola
	Kerlagat 1 (Carnac, 56)	Palazuelo
	Île Carn (Ploudalmézeau, 29)	Encinasola
	La Joselière (Pornic, 44)	Encinasola
	Kercado (Carnac, 56)	Encinasola
4300-4000	Keriaval (Carnac, 56)	Encinasola
	Kervilor (La Trinité-sur-Mer, 56)	Encinasola
	Petit Mont 1 (Arzon, 56)	Encinasola
_	Bougon (Bougon,79)	Encinasola
	Tassin (Marclopt, 42)	Encinasola
-		
	Er Grah (Locmariaquer, 56)	Encinasola
	Mane er Hroëck (Locmariaquer, 56)	Encinasola
4700-4300	Saint Michel (Carnac, 56)	Encinasola
	La Table des Marchands (Locmariaquer, 56)	Encinasola
	Tumiac (Arzon, 56)	Encinasola
5000-4700	Lazzaro (Colombelles, 14)	Encinasola
3000 4700	Les Monts (Plichancourt, 51)	Encinasola

Tabl. 30 : Évolution de la provenance des parures en callaïs en fonction de la chronologie du Néolithiqueouest-européen.

J.-C., la variscite provient de Palazuelo, au nord-ouest de la péninsule Ibérique. Seuls les ensembles d'objets provenant de Kerlagat 1 et de Mané Rutual font exception, mais peut-être correspondent-ils à une période de transition au cours de laquelle l'approvisionnement en variscite des sites de la moitié nord de la France a basculé du sud-ouest au nord-ouest de l'Espagne.

5.000 - 4.800 av. J.C.

4.700 – 4.300 av. J.C.

4.300 - 4.000 av. J.C.

4.000 – 3.800 av. J.C. 3.500 – 3.300 av. J.C.

Conclusion

En France, les sites néolithiques présentant des éléments de parure en callaïs se répartissent globalement en deux grands groupes. Le premier correspond au sud de la France le long du golfe du Lion ; il se situe dans la sphère méditerranéenne (cf. Cassen *et al.*, ce volume carte annexe 2). Le second groupe est localisé dans le sud du Morbihan où l'on trouve la plus grande concentration européenne de perles et pendeloques en callaïs ; il appartient à la sphère atlantique.

La nature chimique des perles et pendeloques en callaïs découvertes dans la moitié nord de la France a été déterminée par PIXE, une technique d'analyse totalement non destructive. C'est à partir d'un modèle chimiométrique basé sur la composition chimique, obtenue par PIXE, des échantillons de variscite provenant des différents gisements ouest-européens (Querré *et al.*, ce volume) que l'origine des objets archéologiques néolithiques peut être déterminée. La très large majorité des 747 perles et pendeloques analysées sur les 841 actuellement conservées – ce qui représente près de 90 % de l'effectif – est en variscite. Seules cinq perles sont en turquoise, leur couleur étant plus bleutée mais cependant proche de celle des objets en variscite. Ces exceptions montrent que les préhistoriques ne faisaient pas de différence entre la variscite et la turquoise, deux minéraux qui peuvent du point de vue géologique se trouver dans les mêmes gisements. Pour les objets de la moitié nord de la France, seuls deux gisements ont été exploités : Encinasola et Palazuelo.

La circulation d'objets socialement valorisés, souvent synonyme de matière noble et/ou précieuse, permet de mettre en évidence des transferts à longue distance. C'est ce que montrent les résultats des analyses PIXE des éléments de parure en callaïs puisque des transferts de l'ordre de 2000 kilomètres

peuvent être attestés. Un changement d'approvisionnement a été également mis en évidence vers 4000-4300 ans avant notre ère, dont l'explication reste à déterminer. Ces transferts, sans doute d'objets de parure sinon de matière première, témoignent durant tout le Néolithique de relations entre les groupes humains le long de la façade atlantique, sur de longues distances, ainsi qu'une évolution chronologique. Ce phénomène d'évolution des réseaux d'approvisionnement au cours du Néolithique est tout à fait remarquable.

Les réseaux de transfert de la *callaïs* s'inscrivent dans un cadre chrono-culturel durant lequel les transferts de matières, d'objets, de techniques, de concepts et d'idées prennent une dimension européenne, avec une multiplication des réseaux : si l'on prend l'exemple des tombes du Morbihan, haches en jade alpin, parures en variscite et turquoise de la péninsule Ibérique, haches en fibrolite des gisements armoricains et peut être ibériques, parures en ambre dont on ne connait pas l'origine, pas forcément baltique comme pour l'Espagne où elle provient de Sicile, jais et lignite de Grande Bretagne, des Pyrénées ou d'un autre lieu qui ne se trouve pas dans le Massif armoricain.

Remerciements

Nous tenons à remercier vivement les responsables de collections qui ont mis à disposition les objets archéologiques et parfois convoyés au C2RMF pour analyse sur AGLAE : E. Vigier, Carnac Museum, C. Le Pennec, Vannes Museum C. Louboutin (St Germain-en-Laye), A.E. Riskine[†] (Carnac), J. Santrot (Nantes), J. P. Mohen (Paris), J. Lecornec (Vannes), Emile Bernard[†] (Rennes)Toutes les analyses PIXE ont été réalisées avec l'accélérateur AGLAE du C2RMF- Paris grâce aux membres de l'équipe AGLAE, tout particulièrement Joseph Salomon[†] qui nous a quitté trop tôt et à qui est dédié cet article, Jean-Claude Dran, Claire Pacheco, Brice Moignard, Laurent Pichon et Quentin Lemasson. Qu'ils soient tous remerciés chaleureusement.

Bibliographie

- Billard, C., Bostyn, F., Hamon, C. et Meunier, K. 2014. *L'habitat du Néolithique ancien de Colombelles* « *Le Lazzaro » (Calvados)*. Paris, Société préhistorique française (Mémoire de la société préhistorique française 58).
- Cassen, S. (dir.) 2009. Autour de la table : explorations archéologiques et discours savants sur des architectures néolithiques à Locmariaquer, Morbihan (Table des Marchands et Grand Menhir). Nantes, Laboratoire de recherches archéologiques, Université de Nantes.
- Cassen, S., Boujot, C., Dominguez Bella, S., Guiavarc'h, M., Le Pennec, C., Prieto Martinez, M.P., Querré, G., Santrot, M.H. et Vigier, E. 2012. Dépôts bretons, tumulus carnacéens et circulations à longue distance.
 In P. Pétrequin, S. Cassen, M. Errera, L. Klassen et A. Sheridan (dir.), *JADE. Grandes haches alpines du Néolithique européen. Ve et IVe millénaires av. J.-C*: 918-994. Besançon, Presses Universitaires de Franche-Comté.
- Fouquet, M. 1862. Rapport sur la découverte d'une grotte sépulcrale dans la butte de Tumiac, le 21 Juillet 1853. Bulletin de la Société Polymathique du Morbihan 6 : 1-7.
- Guilaine, J., Vaquer, J., Gratuze, B. et Querré, G. 2015. Les perles en variscite des grottes de Las Claousos IV et de la grotte René-Carrié. In J. Guilaine, J. Vaquer, J. Zammite (dir.), *Grottes sépulcrales préhistoriques de Hautes-Corbières* : 89-104. Toulouse, Archives d'Ecologie Préhistorique, Toulouse..
- Herbaut, F. et Querré, G. 2004. La parure néolithique en variscite dans le sud de l'Armorique. *Bulletin de la société préhistorique française* 101(3) : 497-520.
- Kiratisin, A. et Demaille, D. 2006. Les perles en varsicite d'Er Grah. In C.T. Le Roux (dir.), *Monuments mégalithiques à Locmariaquer (Morbihan). Le long tumulus d'Er Grah dans son environnement* : 205-223. Paris, Centre national de la recherche scientifique (Gallia Préhistoire XXXVIIIe supplément).
- Lecornec, J. 1988. *Petit Mont, Arzon, Morbihan. Campagne 1988. Rapport d'opération programmée.* Rennes, DRAC Bretagne, Service régional de l'archéologie.

- Lefèbvre, M. et Galles, R. 1863. Mané-er-Hroëck. Dolmen découvert sous un tumulus à Locmariaquer. Bulletin de la Société polymathique du Morbihan : 18-33.
- Le Roux, C.-T. (dir.) 2006. *Monuments mégalithiques à Locmariaquer (Morbihan). Le long tumulus d'Er Grah dans son environnement*. Paris, Centre national de la recherche scientifique (Gallia Préhistoire, XXXVIIIe supplément).
- Mohen, J.-P. et Scarre, C. (dir.) 2002. *Les Tumulus de Bougon, Complexes mégalithiques du Ve au IIIe millénaire*. Paris, Errance.
- Naudinot, N., Meignen, L., Binder, D. et Querré, G. 2015. *Les systèmes de mobilité de la Préhistoire au Moyen-Âge. Actes des XXXVe Rencontres Internationales d'Archéologie et d'Histoire d'Antibes*. Antibes, éditions APDCA.
- Odriozola, C.P. 2015. A new approach to determine the geological provenance of variscite artifacts using the P/AI atomic ratios. *Archaeological and Anthropological Sciences* 7(3) : 329-350.
- Odriozola, C.P., Linares-Catela, J.A. and Hurtado-Pérez, V.M. 2010. Variscite source and source analysis: testing assumptions at Pico Centeno (Encinasola, Spain). *Journal of Archaeolical Science* 37(12): 3146-3157.
- Odriozola, C.P., Linares-Catela J.A., and Hurtado-Pérez, V.M. 2013. Provenancing Variscite Beads: Pico Centeno (Encinasola, Spain) Outcrop Case study. *Open Journal of Archaeometry* 1(17) : 81-84.
- Querré, G. 2003. Nature et origine des éléments en pierre précieuse découverts dans la nécropole néolithique de Bougon (Deux-Sèvres, France). In J.P. Mohen et C. Scarre (dir.), *Les Tumulus de Bougon, Complexes mégalithiques du Ve au IIIe millénaire* : 162-166. Paris, Errance, Paris.
- Querré, G. 2008. Caractérisation des perles en *callaïs* trouvées sur les sites de Villeneuve-Tolosane et Cugnaux (Haute-Garonne). In J. Vaquer, M. Gandelin et Y. Tchérémissinoff (dir.), *Défunts néolithiques en Toulousain* : 73. Toulouse, Archives d'écologie Préhistorique.
- Querré, G. 2009. Étude pétrographique d'éléments de parure et d'une céramique provenant du site de la Table des Marchands. In S. Cassen (dir.), *Autour de la table : explorations archéologiques et discours savants sur des architectures néolithiques à Locmariaquer, Morbihan (Table des Marchands et Grand Menhir)* : 658-665. Nantes, Laboratoire de recherches archéologiques, Université de Nantes.
- Querré, G. 2014. L'origine de la perle en variscite de la structure 297. In C. Billard, F. Bostyn, C. Hamon, et K. Meunier (dir.), *L'habitat du Néolithique ancien de Colombelles « Le Lazzaro » (Calvados)* : 266-270. Paris, Société préhistorique française, (Mémoire de la Société Préhistorique Française 58).
- Querré, G., Dominguez Bella, S. et Cassen, S. 2012. La variscite ibérique. Exploitation, diffusion au cours du Néolithique. In G. Marchand et G. Querré (eds), *Roches et sociétés de la Préhistoire. Entre massifs cristallins et bassins sédimentaires* : 307-315. Rennes, Presses Universitaires de Rennes.
- Querré, G., Calligaro, T., Domínguez-Bella, S. and Cassen, S. 2013. PIXE analyses over a long period: The case of Neolithic variscite jewels from Western Europe (5th-3th millennium BC). *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 318(A) : 149-156.
- Querré, G., Cassens S. et Calligaro, T. 2015. Témoin d'échanges au Néolithique le long de la façade atlantique : la parure en variscite des tombes de l'ouest de la France. In N. Naudinot, L. Meignen, D. Binder et G. Querré (dir.), *Les systèmes de mobilité de la Préhistoire au Moyen-Âge. Actes des XXXVe Rencontres Internationales d'Archéologie et d'Histoire d'Antibes* : 403-418. Antibes, éditions APDCA.
- Querré, G., Herbault, F. et Calligaro, T. 2008. Transport of Neolithic variscites demonstrated by PIXE analysis. *X-Ray Spectrometry* 37(2): 116-120.
- Thibodeau, A.M., Killick, D.J., Hedquist, S.L., Chesley, J.T. and Ruiz, J. 2015. Isotopic evidence for the provenance of turquoise in the southwestern United States. *Geological Society of America Bulletin* 127(11/12) : 1617–1631.
- Villalobos, R. y Odriozola, C.P. 2016. Las herramientas prehistóricas de las minas de variscita de Palazuelo de las Cuevas (Zamora) y Pico Centeno (Huelva). Análisis comparativo. *Zephyrus* 77 : 79-98.
