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ABSTRACT Given their outstanding performance, the Deep Neural Networks (DNNs) models have
been deployed in many real-world applications. However, recent studies have demonstrated that they are
vulnerable to small carefully crafted perturbations, i.e., adversarial examples, which considerably decrease
their performance and can lead to devastating consequences, especially for safety-critical applications, such
as autonomous vehicles, healthcare and face recognition. Therefore, it is of paramount importance to offer
defense solutions that increase the robustness of DNNs against adversarial attacks. In this paper, we propose
a novel defense solution based on a Deep Denoising Sparse Autoencoder (DDSA). The proposed method
is performed as a pre-processing step, where the adversarial noise of the input samples is removed before
feeding the classifier. The pre-processing defense block can be associated with any classifier, without any
change to their architecture or training procedure. In addition, the proposed method is a universal defense,
since it does not require any knowledge about the attack, making it usable against any type of attack.
The experimental results on MNIST and CIFAR-10 datasets have shown that the proposed DDSA defense
provides a high robustness against a set of prominent attacks under white-, gray- and black-box settings, and
outperforms state-of-the-art defense methods.

INDEX TERMS Deep neural network, security, adversarial attacks, defense, sparse autoencoder, denoising.

I. INTRODUCTION
Due to the increase use of deep neural networks (DNNs)
models in many practical applications, especially security-
sensitive applications, this raises an important issue as to
their robustness against adversarial attacks. Recently, it has
been shown that these models are vulnerable to small
quasi-imperceptible perturbations, i.e., adversarial exam-
ples, that can cause erroneous outputs [1], [2]. Different
works have demonstrated successful generation of adversar-
ial examples for different machine learning applications, such
as speech recognition [3], robot vision [4] and image classi-
fication [5]. For instance, in the image classification domain,
an adversarial example can be defined as an input image
carefully crafted by an adversary that is correctly classified
by humans, while is misclassified by the target DNN.

This is possible as all DNN models are based on the Inde-
pendent and Identically Distributed (IID) assumption, which
means that the training and the test sets roughly falls on a
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similar data distribution or the same manifold. Thus, the aim
of an attacker is to maximize the loss of the targeted DNN
on a given input, subject to the constraint that the perturba-
tions remain imperceptible [6] and at the mean time cause a
misclassification. To reach this objective, an attacker has to
carefully craft inputs that are not drawn independently from
each other and are not drawn from an identical distribution to
what the model is trained on. In other words, the adversarial
attacks are basically trying to find the shortest direction to
push an input out of its decision boundary to either a tar-
geted class or any other class (see Figure 1). The former
is known as a targeted attack, and the latter as untargeted
attack.

Different approaches for generating adversarial examples
have been proposed, depending on the adversary’s knowl-
edge, these attacks can be divided into three main categories.
The taxonomy of these categories is shown in Figure 2 and
are defined as follows:
• White-box attacks: in this setting, the adversary has full
access to both the defense strategy and the target model’s
architecture and parameters.
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FIGURE 1. Data distribution over the manifold.

FIGURE 2. White, Gray and Black box attacks settings.

• Black-box attacks: in this setting, the adversary has no
access to the model’s architecture and parameters. The
attacker only knows the output of the model (label or
confidence score) for a given input. In this case, in order
to generate an adversarial example, the attacker may
train another model or a substitute one based on the
output of the target model and exploits the transferability
property of adversarial examples [5], [7].

• Gray-box attacks: in this setting, the adversary has
full access to the model’s architecture and parameters,
but does not have any knowledge about the defense
technique.

A defense against adversarial example x ′ aims to make
the predicted class label of x ′ equals to that of clean sam-
ple x. The majority of defenses proposed in the literature are
either attack-specific or model-specific defenses with strong
limitations on the attacker, such as the allowed norm of the
perturbation ε, the number of iterations or the black-box
settings. Therefore, such defenses do not fulfill theKerckhoffs
principle [8], [9] and are not effective against new attacks.

In this paper, we propose a novel defense method based
on a Deep Denoising Sparse Autoencoder (DDSA). Our
approach aims to remove the adversarial noise from the input
sample, using image denoising as a preprocessing. Then,
the output of the proposed DDSA block is fed to the classifier,
as illustrated in Figure 3. Knowing that the adversarial pertur-
bations gradually increase as the image propagates through

the network during the forward pass [10], [11], this leads
to more noisy feature maps and inappropriate activations.
These latter route the model’s prediction to an incorrect label.
To address this, we propose a shallower architecture with a
sparsity constraint that ensures that a neuron fires only for
meaningful patterns, which limits the hallucinated activations
produced by the adversarial noise. Thus, the inclusion of
sparsity constraint to the denoising autoencoder with training
data including both clean and attacked samples, improves
the robustness of DNN against highly challenging state-of-
the-art adversarial attacks. In addition, the proposed method
is thought to be a universal defense, which can defend
against any attack without requiring any a priori knowledge
about it.

The rest of this paper is organized as follows. Section II
reviews several attack techniques and defense mechanisms
that have been proposed in the literature. The proposed
defense solution is detailed in Section III. The architec-
tures and the performance of the proposed defense on both
MNIST and CIFAR-10 datasets are provided and analysed in
Section IV. Finally, Section V concludes this paper.
It is important to note that the most notations and symbols

used in this paper are provided in Table 1.

II. RELATED WORK
In this section, first, the problem formulation of adversar-
ial examples is introduced, then we present different attack
models used to generate adversarial examples. Finally, some
defense mechanisms against these attacks are described.

A. PROBLEM FORMULATION
Given an image space ξ = [0, 1]H×W×C , a target classi-
fication model f (·) and a legitimate input image x ∈ ξ .
An adversarial example is a perturbed image x ′ ∈ ξ such that
f (x ′) 6= f (x) and d(x, x ′) ≤ ε, where ε ≥ 0. d is a distance
metric to quantify the similarity between the perturbed and
clean unperturbed inputs [6]. In the literature, three metrics
are commonly used for generating adversarial examples, and
all three are Lp norms, including L0 distance, the Euclidean
distance (L2) and the Chebyshev distance (L∞ norm) [12].

B. ADVERSARIAL EXAMPLES
In order to understand how DNN models make their clas-
sification decisions, Szegedy et al. [13] have studied their
performance on the non-IID setting, which led to unexpected
results. Starting with a clean image, they modified it by
following the gradient of the probability of another class until
the class changed, whereas the texture and shape are not
modified. This pioneer work demonstrated that very small
perturbations can completely change the output prediction of
the classifier.

In the following, we describe some prominent attacks that
we considered in the evaluation of our defense. For a com-
plete description of the state-of-the-art attacks, the reader is
refereed to the following review papers [14]–[16].
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FIGURE 3. DDSA defense block against adversarial examples.

TABLE 1. The used notations and symbols.

1) FAST GRADIENT SIGN METHOD
Goodfellow et al. [1] introduced a fast attack method called
Fast Gradient Sign Method (FGSM). The FGSM performs
only one step gradient update along the direction of the sign
of gradient at each pixel as follows

x ′ = x + ε sign(∇xJθ (x, y)), (1)

where θ is the set of model’s parameters and ∇J (·) com-
putes the gradient of the loss function J around the current
value of θ w.r.t. x. The sign(·) denotes the sign function
and ε is a small scalar value that controls the perturbation
magnitude.

Therefore, we can conclude that FGSM applies a
first-order approximation of the loss function to construct the
adversarial examples.

2) BOOSTING ADVERSARIAL ATTACKS WITH MOMENTUM
This attack is also refereed as Momentum Iterative Method
(MIM). Dong et al. [17] increased the effectiveness of the
FGSM attack by introducing the momentum term into its
iterative process, which improves the transferability of adver-
sarial examples. The gradients are calculated by

gt+1 = ω gt +
∇xJθ (x ′t , y)
||∇xJθ (x ′t , y)||1

, (2)

where gt is the gradient at iteration t , ω is the decay factor
and || · ||1 is the L1 distance.
Then, the adversarial example is calculated as follows

x ′t+1 = x ′t + ε sign (gt+1) . (3)

3) PROJECTED GRADIENT DESCENT
The Projected Gradient Descent (PGD) has been introduced
by Madry et al. in [18]. The authors formulated the genera-
tion of an adversarial example as a constrained optimisation
problem. Specifically, they introduced the following saddle
point optimization problem

min
θ
ρ(θ ),

with ρ(θ ) = E(x,y)∼D[max
δ∈S

Jθ (x + δ, y)], (4)

where E is a risk function and δ is the magnitude of the
perturbation.

This classic saddle point problem is a composition of
an inner maximization problem and an outer minimization
problem. The inner maximization is the same as attacking
a neural network by finding an adversarial example. On the
other hand, the outer minimization aims to minimize the
adversarial loss.
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4) CARLINI & WAGNER
Carlini and Wagner [12] introduced three attacks under three
different distance metrics: L0, L2 and L∞. The C&W attack
aims to minimize a trade-off between the perturbation inten-
sity ||δ||p and the objective function g(x ′), with x ′ = x + δ
and g(x ′) ≤ 0 if and only if f (x ′) = c and f (x) 6= c

min
δ
||δ||p + λ g(x ′),

such that x ′ ∈ [0, 1]n, (5)

where c is the target class and λ > 0 is a constant calculated
empirically through binary search.

5) RANDOMIZED FAST GRADIENT SIGN METHOD
Rand+FGSM attack is an enhanced version of FGSM,
aiming to increase its power against adversarial training
defense [19]. Before using FGSM, the authors propose to add
a small random noise to the clean input

x̂ = x + φ sign(X ), (6)

where φ is the noise factor and X is a random vector defined
in Rn by the multivariate Gaussian distribution N (0n, In) of
mean vector 0n and identity co-variance matrix In, and n =
W × H × C . Then, the FGSM attack is applied on the noisy
version x̂ as follows

x ′ = x̂ + (ε − φ)∇x̂J (x̂, y) with φ < ε. (7)

C. DEFENSES
Different defense strategies have been used to deal with
adversarial attacks [14]. In the following, we outline some
of them.

1) ADVERSARIAL TRAINING
An obvious defense approach is to augment the training
dataset with adversarial examples, which regularizes the net-
work and reduce over-fitting, and therefore make the network
more robust against adversarial attacks [1], [13], [20].

This defense can be useful if it has already been trained
with the same kind of attack as that exploited by an adversary.
However, adversarial training defense not tend to general-
ize across different attack strategies, thus leaving the clas-
sifier vulnerable to new/unknown attack models. Moreover,
an adversarial example can again be computed on an already
brute force trained networks [20].

2) DEFENSIVE DISTILLATION
Papernot et al. [21] exploited the notion of distillation intro-
duced by Hinton et al. [22] as a defense mechanism against
adversarial examples. First, the network is normally trained
to the exception of raising the temperature of the soft-
max function to a large value (40-50), so that it produces
smooth probability vectors. Then, these probability vectors
are used to label the training data and the same architecture
is retrained using these new labeled datasets to obtain the
new distilled network. Finally, the prediction is performed,

and subsequently, the temperature has to be set back to 1 at
test time.

Therefore, instead of constraining the network to provide
only the correct class, defensive distillation allows it to pro-
duce some scores for the other classes.

Defensive distillation tends to make the network more
robust to white-box attacks. However, it does not perform
well against black-box attacks [12].

3) MAGNET
Meng and Chen [23] introduced an effective defense frame-
work that consists of two components:

1) Detector: rejects examples that are far from the mani-
fold boundary.

2) Reformer: given an example x, reformer aims to find an
example x̂ within or close to the manifold. Thus, x̂ is a
close approximation to x.

For the detector part, the authors used an autoencoder to
reconstruct any input x and map it with x̂. Then, the two
images are classified and, based on their probability diver-
gence, it is decided whether it is adversarial or not. If it is
not, the probability of the reconstructed image is considered
as classification result.

III. PROPOSED METHOD
In this section, we first enumerate our supposed threat model,
and subsequently, we will describe in details the proposed
defense method.

A. THREAT MODEL
A threat model is an adversary with a specific set of assump-
tions. The proposed defense is build according to the threat
model outlined below:

1) We assume that the attacker has full access to the
classification model, i.e., gray-box attack.

2) We consider x ′ as an adversarial example if and only if
d(x, x ′) ≤ ε and f (x ′) 6= f (x).

3) We do not consider a specific classification model,
we defend all types of classification models against any
attack.

B. DEEP DENOISING SPARSE AUTOENCODER AS A
DEFENSE AGAINST ADVERSARIAL ATTACKS
In order to deal with the adversarial perturbations, we propose
to add a preprocessing block before any classification model
(see Figure 3). As a preprocessing block, we propose a deep
denoising sparse autoencoder or DDSA for short, as shown
in Figure 4.
The DDSA is a variant of autoencoder. An autoencoder

is a feed-forward unsupervised neural network algorithm
that is trained to learn a compressed representation of an
input, i.e., identity function fθ (x) ≈ x. Typically, the feed-
forward autoencoder consists of two parts, the encoder
and the decoder, where the encoder compresses the input
into a lower-dimension, while the decoder reconstructs the
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FIGURE 4. Deep denoising sparse autoencoder (DSSA).

output from this compressed representation. Furthermore,
the autoencoders exploit the fact that the data distribution
concentrates around a low-dimensional manifold and aim
to learn the structure of that manifold [24]. The adversarial
perturbations offset the data away from the manifold, and the
function of the proposed DDSA is to push back this corrupted
data to the learned manifold.

Thus, the idea behind the use of a denoising autoencoder
is to learn a representation extracted from the autoencoder
that is robust to adversarial perturbations. In other words,
the denoising autoencoder performs a dimensionality reduc-
tion, thus allowing to remove or reduce the adversarial noise.
This is done by minimizing its cost function J expressed as
the mean squared error loss function

J =
1
n

n∑
i=1

(
xi − fθ (x ′i )

)2
, (8)

where n is the number of samples and x ′ is the perturbed
version of x. It is important to note that we only used the PGD
attack to generate the perturbed samples. The latter have been
exploited in the training stage, because it has been shown that
adversarial training with PGD attack tends to generalize well
across a wide range of attacks [18]. This assumption has been
also verified by Carlini et al. in [25].
In addition, in order to maintain a good accuracy on clean

samples and to regularize the proposed DDSA block, we used
a training dataset including a mixture of clean and perturbed
samples. The training formulation is designed as follows.

θ∗ = argmin
θ

[
E(x,fθ (x ′))∈p̂data

(
max
δ∈S

J
(
x, fθ (x ′)

) )
+E(x,fθ (x))∈p̂data

(
J (x, fθ (x))

)]
, (9)

where p̂data is the training data distribution.
Moreover, by adding a sparsity constraint to the Fully

Connected (FC) layers of the proposed DDSA block, we con-
straint the neurons to be inactive most of the time in order to
extract only meaningful and relevant features. Specifically,
the sparsity constraint allows to force the activations of hid-
den units to be equal to some target activation µ. As we

use a ReLU activation function, the value of µ is set to 0.1
(i.e., a value close to 0)

Ex∼D[a
(j)
i ] = µ, (10)

where x is the input image sampled from a distribution D and
a(j)i is the activation of the ith hidden unit at the jth hidden
layer, which is the 2nd one in our case.
Then, in each iteration of gradient descent, the activa-

tion of the hidden units is calculated for each i and a
running-estimate µ̂i of the expectation is updated by the
following formula

µ̂i := 0.999 µ̂i + 0.001 a(j)i , (11)

where µ̂i is initialized to 0 (µ̂0 = 0), while the par-
ticular choice of 0.999 and 0.001 allows µ̂i to be an
exponentially-decayed weighted average of about the last
1000 observed values of a(j)i .
Finally, the following learning rule is used

bj−1i := bj−1i − α β (µ̂i − µ), (12)

where bj−1i is the bias term that is used as a regulator for our
constraint and α is the auto-encoder learning rate. Thus, when
the condition µ̂i > µ is valid, then we decrease the activation
by decreasing bj−1i and vice versa, with β is the learning rate
trying to satisfy the sparsity constraint.

Overall, at each iteration, the following steps are
performed:

1) Forward pass to compute FC layers activation.
2) Backpropagation to update the weights using (9) and,

consecutively, µ̂i and bj−1i are updated using (11)
and (12), respectively.

IV. EXPERIMENTAL RESULTS
In order to evaluate the efficiency of the proposed defense
method, we tested it against different set of attacks, including
FGSM [1], Rand+FGSM [19], MIM [17], PGD [18] and
C&W [12]. These latter represent a broad range of attack
models proposed in the literature.
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TABLE 2. Classifiers architectures for MNIST and CIFAR-10.

Additionally, the performance of the proposed DDSA
defense have been compared to two state-of-the-art defenses,
namely MagNet [23] and adversarial training [1], in addi-
tion to the trained Deep Denoising Autoencoder (DDA)
corresponding to the proposed DDSA method without the
sparsity constraint. The experiments were performed on the
MNIST [26] and CIFAR-10 [27] datasets:

• MNIST dataset [26]: consists of handwritten digits.
MNIST was split into training, validation and test sets
with 50,000, 10,000 and 10,000 samples, respectively.

• CIFAR-10 dataset [27]: consists of 60,000 images,
where each image has the following dimension
32× 32× 3. CIFAR-10 contains ten different classes,
and each class is divided into 5,000 training images and
1,000 test images.

Our implementation is build on open-source softwareClev-
erHans library [28] based on TensorFlow [29], with NVIDIA
GEFORCE GTX 1080 ROG.

In the following, first, we describe the different classifiers
and defenses architectures that we used for MNIST and
CIFAR-10 datasets. Then, the performance of the DDSA
defense under the three attack levels, namely black-box,
gray-box and white-box, are presented.

A. CLASSIFIERS AND DEFENSES ARCHITECTURES
1) CLASSIFIERS ARCHITECTURES
Table 2 describes classifiers architectures of MNIST
and CIFAR-10 datasets. For these considered classifiers,
we obtained accuracies of 98.96% and 81.42% on theMNIST
and CIFAR-10 datasets, respectively, which is not far from
state-of-the-art performance on these datasets.

The two architectures are based on convolutional neural
networks with the format Conv2D and fully connected layers
with the format dense (number of hidden units). We used the
rectified linear unit activation function and a dropout layer
with a rate of 0.25 to prevent overfitting.

Table 3 presents the training parameters used to train our
classifiers. We used the Adam optimization algorithm for the
MNIST classifier and RMSprop for the CIFAR-10 classifier,

TABLE 3. Training parameters of classification models.

TABLE 4. Deep denoising sparse autoencoder architectures.

which are the most commonly used learning algorithms. The
learning rate was set to 0.01 for the MNIST classifier and to
0.001 for the CIFAR-10 classifier, and we have not used the
learning rate decay as it slowed down the convergence signif-
icantly. The two classifiers have been trained for 64 epochs
with a batch size of 256 and 32 for MNIST and CIFAR-10
datasets, respectively.

2) DEFENSES ARCHITECTURES
Table 4 summarizes the architectures of our DDSA defense
for both MNIST and CIFAR-10 datasets. The two archi-
tectures are based on convolutional neural networks with
Conv2D layer, dense layers and a dropout using the ReLU
activation function. In addition, we used a Conv2DTranspose
for the deconvolution process and BatchNormalization to
normalize the hidden units activations and therefore speed up
the learning.

The network architecture of the reformer (encoder) used
for the MagNet defense, as specified in [30], is provided
in Table 5.
Finally, for the adversarial training defense, in addition to

the clean samples, also the training was performed using the
FGSM adversarial samples. These latter have been generated
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TABLE 5. Architecture of MagNet neural network encoder.

using a perturbation magnitude of ε = 0.3. These choices are
the most adopted in the literature.

B. DEFENSE EVALUATION
By following the recommendations of [31], our defense was
evaluated under the three different attack settings: 1) Black-
box attack, 2) Gray-box attack and 3)White-box attack, using
a plethora of different attacks, as is described in the next
sections.

1) RESULTS ON BLACK-BOX ATTACKS
In this section, we present defense results against FGSM,
Rand+FGSM, MIM, PGD and C&W as black-box attackers.
As previously described, in black-box setting, the attacker
has no access to the classifier and defense parameters. Thus,
as performed in [19], [32], to simulate black-box attack,
we train a substitute network with 150 samples taken ran-
domly from the test set augmented with synthetic images
labeled according to the output of the target classifier. Then,
the adversarial examples generated by this substitute network
are used to attack the classifier.

Table 6 reports the performance of our DDSA defense
against the five considered black-box attacks and is com-
pared to three other defense strategies. Theses results have
been obtained with ε = 0.3 as perturbation magnitude for
FGSM, Rand+FGSM, MIM and PGD attacks. In addition,
for Rand+FGSM, we fixed the first noise of magnitude to
α = 0.05, while we used the L2 norm for C&W attack with
a maximum of iterations of 1000, a confidence of 10 and a
learning rate of 1.0.

According to the obtained results, it is clear that all the
attacks have succeeded in greatly reducing the classifier
accuracy of up to 89% (i.e., without any defense solution).
On the other hand, all the defenses have globally succeeded
in decreasing the effect of the attacks, with relatively large
differences in performance. For instance, the adversarial
training defense achieved 76.6% and 68.5% of classifica-
tion accuracy for FGSM and Rand+FGSM attacks, respec-
tively. Thus, performed better than MagNet defense which
respectively obtained 60.7% and 52.2% accuracy for the
same attacks. These results were expected since the same
FGSM attack has been used to train the adversarial training
method. This is confirmed by the low classification accu-
racy obtained by the adversarial training for the remain-
ing attacks. Whereas, Magnet defense achieved somewhat

stable results across the different attacks. However, the per-
formance of these defenses are clearly lower than the pro-
posed DDSA defense that achieved significant increase in
the classification accuracy. Moreover, although our method
was trained using PGD attack, the improvements achieved
are not attack-dependent and concerns the whole considered
attacks, making our method a general defense applicable to
any attacks. In addition, compared the results of our DDSA
method to those of DDA show clearly the add value of the
sparsity constraint, thus allowing a consistent performance
improvement.

Consequently, thanks to the use of denoising autoencoder
with sparcity constraint as preprocessing block, the proposed
method is efficient in removing the adversarial noise from the
input images, making the classifier safer.

2) RESULTS ON GRAY-BOX ATTACKS
In gray-box attack level, the attacker has knowledge of the
classifier’s parameters without the defense strategy. Table 7
presents our defense results for the gray-box settings as well
as for the DDA defense on the MNIST dataset. From this
table, we can see that the gray-box attacks are more efficient
than the black-box attacks in reducing the classification accu-
racy, making them more challenging to defend.

As with the previous black-box attacks, the proposed
defense performs well against the gray-box attacks. Despite
the classification accuracy is slightly smaller than the results
of black-box attacks, however, compared to no defense case
the DDSA increases the accuracy by up of 87%, which is
more significant than the black-box results.

As illustrated in table 7, the obtained results confirm
the importance of using a denoising sparse autoencoder
instead of a normal DDA method with a mean squared
error loss function. In contrast to black-box results, where
DDA defense provides an acceptable result, against gray-box
attacks, the DDA is far from sufficient. However, the pro-
posed DDSA method shows that it is also robust against
gray-box attacks. Consequently, it is clear that our defense
is performing way better than the DDA method under all
considered gray-box attacks.

In addition, a defense is considered effective, if it resists
to a wide variety of attacks as well as different attack
parameters. Thus, in order to assess the effect of differ-
ent attack parameters on DDSA’s performance, in Figure 5,
we show the accuracy of classifier on MNIST dataset with
and without any defense against PGD, FGSM and MIM
gray-box attacks, with different perturbation magnitudes.
In Figure 5(a), it can be seen that the accuracy of classifier
gradually decreases while augmenting the magnitude of the
perturbation ε. Therefore, the attacks are more successful
with higher ε as the accuracy dropped with nearly 60%,
however, at the expense of being more detectable and visually
perceptible.

Figure 5(b) shows the accuracy of MNIST classifier using
our DDSA defense under the same gray-box attacks with
the same perturbations magnitude. Thanks to the inclusion
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TABLE 6. Classification accuracy using different defense strategies under various black-box attacks on the MNIST dataset. Note that DDA refers to
denoising autoencoder without sparsity constraint.

FIGURE 5. Accuracy of the classifier against FGSM, PGD and MIM gray-box attacks on the MNIST dataset: (a) without any defense, and
(b) after adding our DDSA defense block.

TABLE 7. Classification accuracy using different defense methods under
various gray-box attacks on the MNIST dataset.

of DDSA defense, the classifier is now highly confident and
robust against the attacks even for large values of ε. The
enhancement is significant for all ε values, except for the ε =
0.4 that generates very noisy image, making them difficult
to classify, even by a human. However, this is not the case
for PGD attack, which may be explained by the fact that our
DDSA was trained including this attack. Some adversarial
images defended by DDSA from MNIST dataset are shown
in Figure 7.
Furthermore, we investigated the effect of varying the

number of PGD attack iterations, ranging from 10 to 1000,

FIGURE 6. Defense against gray-box PGD attack with 10 to 1000 attack
iterations with a perturbation of ε = 0.3.

on the defense performance. Figure 6 shows that our defense
is more robust than DDA defense, where the latter decreases
rapidly with the increase of attack iterations, this is more
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FIGURE 7. Examples of defended images by DDSA from MNIST dataset.
For each digit, the top row shows the adversarial images with ε = 0.3,
while the bottom row represents the defended (denoised) images. The
predicted class label and its corresponding probability are provided for
each image.

TABLE 8. Classification accuracy under various gray-box attacks on the
CIFAR-10 dataset.

noticeable between 90 and 1000 iterations. However, our
defense approach provides somewhat stable results even
under the utmost 1000-iteration PGD attack for which our
DDSA has obtained 88.93% accuracy compared to only
74.14% accuracy achieved by the DDA.

Table 8 reports the performance of our defense against
different gray-box attacks on the CIFAR-10 dataset. FGSM,
Rand+FGSM, MIM and PGD attacks have been performed
with a perturbation magnitude of ε = 0.2 that rep-
resents, according to [31], a high distortion that makes
most images completely unrecognizable and hardly to
classify.

The obtained results on CIFAR-10 dataset are lower
than those achieved on MNIST dataset, it is clear that the
CIFAR-10 dataset is much more challenging to defend than
the MNIST one. However, here again our DDSA provides

FIGURE 8. Images from CIFAR-10 dataset are ordered form left to right as
the clean image, adversarial image perturbed with FGSM (ε = 0.2) and
the defended (denoised) image. The predicted class label and its
corresponding probability are provided for each image.

an increase in the classification accuracy and surpassed the
DDA method for all the considered attacks. The proposed
DDSA achieves the highest accuracy against the PGD attack
with 61.14% accuracy, while obtained the lowest accuracy
against C&W attack. Because it is important to specify that
the C&W attack is one of the most powerful attacks that
generates adversarial samples that are visually very close to
the clean image, i.e, adversarial images with very low noise.
As evidence of its effectiveness, it reduces the classification
accuracy to 0% and, by using theDDSAdefense, the accuracy
of classifier goes to 36.7%.

Furthermore, on the CIFAR-10 dataset, except for the
C&W attack, the remaining attacks provide adversarial
images that are highly perturbed and, therefore, are hardly
classified even for the human. Some visual examples
from CIFAR-10 dataset are illustrated in Figure 8. The
achievements of our DSSA method are comparable to
the state-of-the-art accuracy performance on the CIFAR-10
dataset [12], [33], [34].

3) RESULTS ON WHITE-BOX ATTACKS
In white-box attacks, the attacker has access to all of the
information about the classifier and defense mechanism.
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TABLE 9. Classification accuracy using different defense strategies under various white-box attacks on the MNIST dataset.

In Table 9, we report the classification accuracy under FGSM,
Rand+FGSM, C&W, MIM and PGD white-box attacks.
As can be seen, our DDSA method outperforms MagNet,
adversarial training and DDA defenses for C&W, MIM and
PGD attacks, but does not perform as well as adversarial
training on FGSM and Rand+FGSM attacks. This can be
explained by the fact that adversarial training defense has
been trained on an FGSM images perturbed set. However,
the DDSA results for both FGSM attacks may be acceptable
compared to non-use of a defense.

Moreover, although, adversarial training method obtained
a good result on both FGSM and Rand+FGSM attacks,
it achieved the lowest accuracy on the C&W, MIM and PGD
attacks. This is due to the fact that this defense does not
generalize as well as DDSA on other attacks.

V. CONCLUSION
In this paper, we proposed DDSA method, a defense against
adversarial attacks. The proposed defense, which consists
of applying sparsity constraint on a denoising autoencoder,
is used as a preprocessing block applied to the input samples
for removing the effect of adversarial noise. The proposed
method allows to increase the adversarial robustness of DNNs
and has been designed in such a way that can be deployed
with any classifier without any change to its architecture
or training stage. In addition, since it does not require any
knowledge about the attack, the DDSA defense can be used
against any type of attack.

The proposed defense has been evaluated against FGSM,
Rand+FGSM, C&W, MIM and PGD attacks under black-
box, gray-box and withe-box settings on two standard
datasets. The experimental results demonstrated that the pro-
posed defense can provide a significant improvement in the
robustness of DNNs against adversarial attacks, and outper-
forms two state-of-the-art defenses.

Even though the DDSA defense is providing satisfac-
tory results, we seek to improve our method against the
highly challenging C&W attack and white-box attack set-
tings. In addition, we believe that enhancing our defense by
making it hardly differentiable and randomized can increase
the robustness against gradient-based and non gradient-based
white-box attacks.
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