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ABSTRACT A printed spiral resonator without external lumped elements is proposed. Instead of employing
surface-mount device capacitors, the series-parallel capacitive plates are designed and etched on the same
substrate to achieve simultaneous conjugate matching between a pair of symmetrical near-field coupled
resonators. Simulations are conductedwith the aid of CSTMicrowave Studio. The proposed design displayed
satisfactory tolerance toward planar displacement at z-axis plane, lateral displacement at x- and y-axis planes,
as well as concurrent planar and lateral displacement. Positioned at perfect alignment with a transfer distance
of 15mm, the simulated andmeasuredmaximum power transfer efficiency achieved are 79.54% and 74.96%,
respectively. The variation ratio for planar displacement acquired is 0.29% when receiving resonator is
rotated from −180◦ till 180◦ with a step size of 15◦. Under rotational angle from 0◦ till 180◦, the measured
average variation ratio for lateral displacement at x- and y-axis up to 15 mm is 20.14%. The feasibility of
sustaining power transfer efficiency under various offsets depicts the possibility of integrating the proposed
simple design for low power wireless energy transfer applications, such as wireless charging for handheld
devices in consumer electronics and implanted biomedical devices.

INDEX TERMS Non-radiative wireless energy transfer, planar displacement, lateral displacement, transfer
efficiency.

I. INTRODUCTION
Resonator orientation vulnerability remains as one of the
challenges for designers in achieving acceptable power trans-
fer efficiency (PTE) in practical settings of Wireless Energy
Transfer (WET) applications especially in the event of the
ineluctable alignment positioning imperfection between the
source and receiver. Non-ideal alignment renders adverse
effects on its performance metrics namely coupling coeffi-
cient and transfer efficiency [1], [2]. As such, competency in
sustaining performance metrics is often pursued.

Mitigation strategies to overcome misalignments com-
prises of configuration and architecture of the resonators.
Alleviation of mutual inductance variations and degradation

of PTE due to lateral displacement are demonstrated with
a pair of optimized asymmetrical coils [3], an array of
transmitting resonator [4]–[6], multiple antiparallel square
resonator [7] and inclusion of metamaterial slab [8]. With a
3-dimensional (3-D) structure proposed in [9], alignment-free
WET system is revealed. However, bulkiness and additional
space required should be taken into consideration specifically
for space-constraint low-power applications such as wire-
less charging for handheld devices in consumer electronics
and implanted biomedical devices. Miniature designs which
report on robustness towards lateral misalignment proposed
are defected ground structure (DGS) resonator with enhanced
quality factor (Q-factor) [10], [11] and multilayer printed
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spiral resonator [12]. Nevertheless, these designs did not
investigate on endurance towards concomitant of planar and
lateral displacements.

Misaligned positioning of receiving resonator contributes
towards impedances mismatched due to mutual induc-
tance variations. Counteractive measures such as impedance
matching and frequency tuning techniques considered
include implementation of complex adaptive matching tech-
niques [13], switchable capacitive impedance matching
network for multiple receivers [14] and serial-parallel-
serial (SPS) compensation topology [15]. A simpler approach
is proposed in [16] where transfer efficiency is sustainable
under lateral displacements by performing L-matching tech-
nique at misaligned position or specifically at the edge of
resonator.

In this paper, a novel printed spiral resonator integrated
with capacitive compensated plates is proposed to scrutinize
the robustness towards imperfect orientations either caused
by planar or lateral displacements as well as simultaneous
types of displacement. Planar displacement refers to the angle
of rotation, ar when both centers of transmitter and receiver
resonators are aligned and set apart by an axial transfer dis-
tance, z as illustrated in Fig.1. Rotational angle begins from
−180◦ till 180◦ with step size of 15◦. The distance shift of
ax or ay from center of receiving resonator are known as
lateral displacement at x-axis and y-axis respectively without
changing the axial distance which is fixed specifically at
15 mm. The horizontal and vertical displacements vary from
0 till 15mmwith an incremental size of 3mm. Inset figures of
(iv) and (v) in Fig.1 visualize the top view of concurrent
planar and lateral displacements. The receiving resonator is
rotated up to 180◦ with step size of 45◦ before being subjected

FIGURE 1. Displacement types: (i) Planar (z-axis plane); (ii) Lateral (x-axis
plane); (iii) Lateral (y-axis plane); (iv) Planar (z-axis plane) & Lateral
(x-axis plane); (v) Planar (z-axis plane) & Lateral (y-axis plane).

to the respective lateral displacements of ax or ay. With
the exclusion of additional and space constricting matching
circuits, proposed design is fabricated on a single substrate.

This paper is organized as follows. Section II presents
the design evolution and configuration of proposed printed
spiral resonator with capacitive compensated-plates. Analysis
of simulation results and validation of measurements are
addressed in Section III. A comparison between proposed
design in this work and other published work is presented.
Finally, this paper is concluded in Section IV.

II. DESIGN APPROACH
A. PRINTED SPIRAL COIL (PSC)
The design and enhancement steps for printed spiral
coil (PSC) commences in the preliminary stage with the aid
from a full-wave electromagnetic simulator, CSTMicrowave
Studio as depicted in Fig.2.

FIGURE 2. Three stages of design method for PSC with capacitive
compensated-plates.

The relationship between optimal transfer distance, zop and
outermost diameter length of loop, `o at maximum excited
magnetic field derived in [17] and [18] yields

zop = 0.3931`o. (1)

Even though computed optimal transfer distance is
17.69 mm, axial distance, z selected is 15 mm instead
of 20 mm. Since the primary objective of this design is not
for distance enhancement, the aforementioned axial distance
is therefore decided in order to compensate for losses due to
capacitive plates as compared to external lumped elements.
However, capacitive plates proposed excel in terms of sim-
plicity in fabrication, compactness with thickness limited
only by height of substrate and copper as well as zero sup-
plementary cost incurred.

For single-sided square printed spiral loop design, the self-
inductance expression is given by [19]

Lssq = 0.635µn2t da[ln(2.07ϕ
−1)+ 0.18ϕ + 0.13ϕ2]. (2)

µ, nt and da denote conductor permeability, number of turns,
average side lengths of loop where da = 0.5(do + di) and
the outermost and innermost side lengths are represented
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by do and di respectively. ϕ is the conductor fill factor which
is equivalent to (do – di) (do+ di)−1 [20]. Cumulative sum of
self-inductance andmutual inductances between turns specif-
ically nt (nt − 1) is equivalent to the total inductance.

Mutual inductance is expressed as [21]

Mij = 2µ(rirj)0.5β−1[(1− 0.5β2)K (β)− E(β)], (3)

β = 2µ(rirj)0.5[(ri + rj)2 + z2]−0.5, (4)

M = ρ
n1∑
i=1

n2∑
j=1

Mij(ri, rj, z), (5)

where Mij represents partial mutual inductance between each
two turns on a pair of loops with turn radii, ri and rj while
complete elliptic integrals of the first and second kind are
denoted by K and E . ρ is the factor which is reliant on loop
profile. The relation between mutual inductance and self-
inductances of coupled resonators is defined with coupling
coefficient, k = M (L1L2)−0.5. Under-coupled and over-
coupled regimes occur when the transfer distance becomes
either too far or vice-versa leading to the decay of trans-
fer efficiency [22]. Similarly, various displacement between
a pair of resonators will reduce the transfer efficiency.
Transition point between under-coupled regime and
over-coupled regime is indicated by critical coupling.
Thackston et. al [23] reported that maximum power transfer
efficiency is attainable at this kcp value given

kcp = [1+ (1+ k2Q1Q2)0.5](Q1Q2)−0.5 (6)

where Q1 = ωL1R
−1
1 and Q2 = ωL2R

−1
2 are the quality

factors of primary and secondary resonators while ω denotes
angular resonance frequency. Approximation of PSC resis-
tance is given by [21]

Rs = Rdctc[δsk (1− e−tc/dsk )]−1 (7)

where Rdc = `c[σA]−1 and δsk = (φµσ )−0.5 are the DC
resistance and skin depth. `c, σ and tc refer to the total
conductor length, conductivity, cross-sectional area and con-
ductor thickness. µ is the product of permeability of free
space, µ0 and conductor’s relative permeability, µr.

PSC is typically designed with a constant conductor
trace width and spacing between adjacent conductor trace.
Designing larger constant conductor trace width for all turns
and smaller constant spacing will eventuate the amplifica-
tion of total resistance [24]. In contrast with typical PSC
design, progressive width decrement from outermost loop to
innermost loop leads to Q-factor’s amelioration by hindering
losses induced by eddy current [25]. As such, inhomogeneous
spatial distribution and width trace is proposed by performing
geometrical layout manipulation in full-wave electromag-
netic simulator. Proposed PSC is designed with only a single
turn on top layer while being enclosed with six turns on
the bottom layer. Gradual increment of conductor’s trace
width is performed from the innermost width of 0.65 mm to
outermost width of 1.9 mm. The spacing between conductors
is distributed gradually from innermost spacing of 2.5 mm to

outermost spacing of 1 mm. Table 1 details other geometrical
parameters of proposed design.

TABLE 1. Parameter properties of proposed design.

B. MODELLING OF CAPACITOR-PLATES
Compliance with simultaneous conjugate matching is a
prerequisite step towards attaining maximum power trans-
fer [26]. L-match impedance transformation is employed to
achieve convergence at resonance frequency of 13.56 MHz
when both reflection coefficients at input and output ports are
minimized. As shown in Fig. 3, L-match network comprises
of a series capacitor, Cstx,srx and a parallel capacitor, Cptx,prx
connected to a pair of symmetrical transmitting and receiv-
ing printed spiral resonator which is represented by Ltx,rx .
These values are determined from inbuilt search algorithm
in full-wave electromagnetic solver [18]. Lumped elements
of capacitors are used as impedance matching network in the
initial design.

FIGURE 3. Equivalent schematic of L-match network (Cstx,rx and Cptx,rx )
between a pair of coupled resonators (Ltx,rx ).

Maximum obtainable efficiency is dependent on coupling
coefficient and Q-factor and is given by equation (8) [27].
Ohira [28] pointed out that kQ = k2Q1Q2 is yet another
paramount performance indicator for coupled resonators.
kQ can be extracted from impedance matrix components [29]
as |Z21|(ESR)1 where ESR = [(R11R22) – (R12R21)]0.5 is the
Equivalent Scalar Resistance of two-port system. Derivation
of PTE comes from simulated S-parameters, specifically the
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magnitude of transmission coefficient, S21 in the subsequent
equation [30]. The benchmark for acceptable PTE in this
design is above 70% without any types of displacement.

PTEmax = [k2Q1Q2][1+ (1+ k2Q1Q2)0.5]−2]. (8)

PTE = |S21|2. (9)

Initial values for series and parallel capacitors determined
in the first stage will be used to compute geometrical capaci-
tive area, Acap required for capacitive plates modelling based
on equation (10) [31]. ε0, εr and Ts denote free space permit-
tivity (8.854× 10−15 F/mm), dielectric constant of substrate
and thickness of substrate.

Cstx,srx,ptx,prx = ε0εrAcap(Ts)−1 (10)

In order to minimized the footprint required for capacitive
plates, the series and parallel capacitive areas are subdivided
into three and two rectangular conductor strips respectively
as shown in Fig. 4. Both C-shaped and mirrored L-shaped
capacitive plates are modelled on top and bottom layer of the
substrate. Initial and optimized values of capacitive compen-
sation and capacitive area are tabulated in Table 2.

FIGURE 4. Geometry of the proposed design: Top Layer (Left); Bottom
Layer (Right).

TABLE 2. Initial and optimized capacitive compensation without
displacement.

III. RESULTS AND DISCUSSION
A. SIMULATED RESULTS
Table 3 details the extracted parameters from simulations
between initial design using capacitors as lumped elements
and proposed design integrated with capacitor-plates at per-
fect alignment.

Comparisons in terms of coupling coefficient and mutual
inductance are made between initial and proposed designs
under various types of displacement as shown in Fig. 5 till
Fig. 7. Even though stability of k and M are observed
when receiving resonator is subjected to planar and vertical

TABLE 3. Extracted parameters of initial and proposed design.

FIGURE 5. Simulated coupling coefficient and mutual inductance under
planar displacement.

displacements, there are rapid fluctuations of k and M under
vertical displacement as compared to the proposed design.
List of displacement-tolerant performance comparison is
shown in Table 4. Minimal variation ratios of k and kQ
indicate link stability with a decreased susceptibility towards
coupling variations caused by imperfect alignment between
a paired resonators. Variation ratios are computed as VRk =
(kmax–kmin) (kmax)−1 and VRkQ = (kQmax–kQmin) (kQmax)

−1

respectively. Improvement of the proposed design in compar-
ison with initial design can be distinguished from the amount
of variation ratio reduction percentages, 1VR.

B. EXPERIMENTAL RESULTS
Proposed design is fabricated on a double-sided FR-4 sub-
strate with dielectric constant of 4.7 as illustrated in Fig. 8.
The overall dimension is 66 mm × 70 mm. At ideal
orientation in which rotational angle, ar, lateral offset at
x-axis, ax and lateral offset at y-axis, ay are equivalent to
zero, the simulated and measured maximum power transfer
efficiency achieved are 79.54% and 74.96% respectively.
Both simulated and measured reflection and transmission
coefficient plots are depicted in Fig. 9. Slight resonance
frequency shift is observed from measured results owing to
fabrication imperfections.

The experimental setup to assist planar displacement is
performed with two acrylic sheets with dimensions of 15 mm
by 15 mm by 2 mm and a smaller acrylic sheet with dimen-
sions of 10 mm by 10 mm by 2 mm. The first and second
dissimilar acrylic sheets is separated by nylon PCB standoffs
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FIGURE 6. Simulated coupling coefficient and mutual inductance under
lateral displacement (x-axis).

FIGURE 7. Simulated coupling coefficient and mutual inductance under
lateral displacement (y-axis).

at 15 mm as shown in the inset of Fig. 10. The receiving res-
onator positioned on top of the first acrylic sheet is manually
rotated based on a protractor placed on the third acrylic sheet.
Measurement tool used is Keysight Vector Network Analyzer
(VNA) E5071C applicable for designs with frequency rang-
ing from 9 kHz till 6.5 GHz. Measurement results display
sustainable PTE which validates the simulated results when
receiving resonator is rotated from −180◦ to 180◦ with step
size of 15◦. Average PTE for simulated and measured results
are 79.48% and 74.83% respectively.

Tolerance towards displacement caused by both planar
and lateral offsets are investigated by deliberately rotating
receiving resonator at a specific ar before beingmoved across
x- and y-axis at various ax and ay in order to emulate prac-
tical applications of non-ideal orientations. ar ranges from
0◦ to 180◦ while lateral displacement quotient ranging from

TABLE 4. Comparison of simulated displacement-tolerant performance.

FIGURE 8. Fabricated printed spiral resonator with capacitive plates:
Top (Left); Bottom (Right).

0 till 1 refers to the ratio of lateral shift ax or ay to the
axial distance. The corresponding simulated and measure-
ment results as well as measurement setups are depicted
in Fig. 11 and Fig. 12. Reasonable agreement between sim-
ulated and measured results are observed for both plots.
Table 5 summarizes displacement-tolerant performance of
proposed design. Variation ratio, 1VR is used to assess the
extent of PTE sustainability and computed as [32]:

1VR(%) = 100 ∗ (PTEpeakmax − PTEpeakmin )

∗ (PTEpeakmax )
−1. (11)

Under planar displacement, variation ratio of measured
PTE obtained is 0.29% in which PTE is above 70% for all
rotational angles from −180◦ till 180◦. Average measured
variation ratio for both planar and lateral displacement at
x- and y- axis are 20.14%. For all rotational angles, lateral off-
sets of x- and y- axis, measured PTE obtained is above 55%.
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TABLE 5. Comparison of simulated displacement-tolerant performance.

FIGURE 9. Measurement setup for planar displacement: Top View (Left);
Perspective (Right).

FIGURE 10. Comparison of the simulated and measured PTE under planar
displacement.

Table 6 shows comparison between the proposed design
in this work with other published works related to planar
and lateral displacement designs. Most of the published
works emphasized on either lateral or planar misalignment

FIGURE 11. Comparison of the simulated and measured peak PTE under
planar and lateral displacement (x-axis).

FIGURE 12. Comparison of the simulated and measured peak PTE under
planar and lateral displacement (y-axis).

insensitive designs. However, robustness towards planar and
lateral offsets at the same instance is not being investigated.
As such, proposed design in this work appears to excel
by demonstrating satisfactory planar and concurrent planar
with lateral offsets aside from simplicity and hassle-free
design.
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TABLE 6. Comparison with published works.

IV. CONCLUSION
A novel printed spiral resonator with series-parallel capac-
itive compensated plates on a single printed circuit board
is presented. Without any displacement where ar, ax and
ay are equivalent to zero, maximum simulated and mea-
sured transfer efficiency of 79.54% and 74.96% are achieved.
Assessment on the endurance towards planar displacement
at z-axis, lateral displacement at x- and y-axis as well as
concurrent lateral and planar displacement are performed.
Variation ratio of transfer efficiency is computed at 0.29% for
planar displacement. Measurement results are substantiated
with the capability of robustness towards displacement when
the average variation ratio for concurrent types of offsets is
found to be 20.14%.With a minimized and flattened footprint
of 66 mm × 70 mm × 0.4 mm, sustainable power transfer
efficiency featuring tolerable displacement restraints in addi-
tion to straightforward assembly and cost-conscious design
is demonstrated for non-radiative low-power wireless energy
transfer application.
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