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Abstract. Novel zinc(II) and cobalt(II) complexes containing tripodal mono(phenolate) 

ligands have been synthesized and characterized. The resulting mononuclear complexes act as 

efficient initiators in the polymerization of rac-lactide to provide the corresponding 

biodegradable poly(lactic acid). Most of these polymerizations proceeded in a controlled 

fashion, giving polymers with narrow polydispersities and experimental molecular weights in 

good agreement with calculated values. 
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Introduction 

Disposal of olefin-based materials has led to serious environmental pollution. Therefore, 

biodegradable polymers have gained much attention as a replacement for conventional 
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synthetic polymers. Considering a decreasing feedstock and increasing economic and social 

pressures to reduce our dependence on petroleum, development of such biodegradable 

polymers has become fertile research ground.1 Among the biodegradable polymers that have 

been developed during the last two decades,2 poly(lactic acid) (PLA) is of particular interest.3 

These polymers, derived from renewable resources, have many properties similar or superior 

to traditional olefin-based polymers with the added benefit of biodegradability. Thus, research 

concerning PLA synthesis has been intense in both industrial and academic laboratories. 

Although several methods exist for synthesis of PLA, the most promising is the ring-opening 

polymerization (ROP) of lactide.4,5 Therefore, there has been particular emphasis over the 

past decade on the synthesis of metal-based or organic catalysts that are active ROP initiators 

for the synthesis of PLA.4a,4b,6 

Recent advances in catalyst design from our group and others have led to the synthesis of 

well-defined achiral metal-based complexes supported by phenolate ligands.7,8,9 Some of 

these derivatives have shown quite interesting performance for the polymerization of racemic 

lactide (rac-LA). As part of our ongoing effort to develop new catalysts for the ring-opening 

polymerization of cyclic esters, we report herein the synthesis and reactivity of new tripodal 

mono(phenolate) zinc and cobalt complexes. 

 

Results 

Synthesis of Mono(phenolate) Metal Complexes. The monophenolate pro-ligands 1-3 

were prepared by reductive amination, following a one-pot procedure using commercially 

available and easily accessible starting materials (Figure 1).10 Such ligand architecture allows 

for electronic and steric variations on the different donor fragments (Figure 1). All 

spectroscopic data of 1-3 are given in the Experimental Section. 
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Fig. 1. Synthesis of mono(phenolate) pro-ligands 1-3 

 

The coordination chemistry of the ligands was studied towards zinc and cobalt bisamide 

derivatives.11,12 Homoleptic metal precursors M[N(SiMe3)2]2 (M = Co, Zn) were reacted with 

one equivalent of the mono(phenol)s 1-3 to give the corresponding heteroleptic cobalt and 

zinc complexes {(L)M[N(SiMe3)2]} 4-8 in good yields (Scheme 1).13,14 The products, which 

were isolated as solids by evaporation of volatiles and washing of the residues with pentane, 

are moisture- and air-sensitive, readily soluble in aromatic hydrocarbons (benzene, toluene) 

and slightly soluble in aliphatic hydrocarbons (pentane, hexane). These complexes were 

characterized by mass spectrometry, elemental analysis, and NMR spectroscopy for 

diamagnetic zinc complexes 4, 6 and 8. Also, the crystal structure of complex 4 was 

determined by X-ray diffraction studies (Figure 2). Summary of X-ray data collection and 

refinement are listed in Table S1. The solid-state structure of 4 revealed the monomeric nature 

of the complex which adopts a distorted tetrahedral coordination geometry of the zinc atom. 

Only one pyridyl moiety is coordinated to the Zn center, which illustrates the strongly favored 



 4

formation of the four-coordinated Zn species.15 One bulky bis(trimethylsilyl)amido group 

occupies the remaining cis positions.  

 

 

Scheme 1. Synthesis of metal complexes 4-8 

 

 

Fig. 2. Crystal structure of complex 4. Hydrogen atoms and solvent molecule are omitted for 

clarity. Orange zinc, blue N, red O, violet Si. 
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Reactivity towards rac-lactide. Lactide polymerization was investigated with zinc 

and cobalt complexes 4-8 (Scheme 2). Representative polymerization data are given in Table 

1. Homopolymerization of rac-lactide with the prepared complexes proceeds rapidly at room 

temperature for monomer-to-initiator ratios up to 400. The molecular weight distributions are 

all unimodal, indicative of a single-site behavior.  

 

Scheme 2. Synthesis of PLA 

 

To examine the effects of the metal center on the polymerization behavior, the lactide 

polymerization ability of complexes 4 and 5 having the same phenolate substituents was first 

evaluated (Table 1, Entries 1 & 2). Both amido derivatives act as efficient initiators for the 

ROP of lactide under mild conditions. For instance, polymerization initiated by 4 in toluene at 

room temperature proceeded with turnover frequencies of ca. 66 h-1 (Table 1, Entry 1). The 

in-situ generated alkoxide complexes proved much better initiators than the amido precursors 

(Table 1, Entries 3-4). Addition of isopropanol to the polymerization reaction resulted in 

better initiation efficiency and affected the activity of the metal complexes. All the polymers 

produced with these isopropoxide derivatives have narrow molecular weight distributions and 

number-average molecular masses (Mn) values close to the theoretical ones, assuming that 

each isopropoxy group initiates the polymerization. Also, using an alkoxy initiator highly 

affects the rate of polymerization reaction, with TOFs (up to 492 h-1) approximately an order 

of magnitude higher than the corresponding amido initiator. Reducing or increasing the 

reaction temperature resulted in no significant change of the polymerization control (Table 1, 

Entries 5 & 6).  
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To study the influence of the ligand substituents on the catalytic activity, the lactide 

polymerization ability of complexes having various substituents was then examined. Bulky 

groups were chosen as the phenolate substituent R3 in order to favor mononuclear complex 

formation.7 The factors investigated include steric and possible electronic effects derived from 

the substituents on the aromatic rings, as well as on the (potentially) pendant pyridine 

arm.7,8,16 Complexes 6 and 7, which bear ortho-isopropyl groups at the phenolate rings, gave 

much higher catalytic activity for the polymerization of rac-LA (Table 1, Entries 7 & 8). In 

particular, the Zn derivative shows turnover frequency values up to 19440 h-1. This increasing 

activity trend may be logically accounted for by the decreasing bulkiness of the ortho 

substituents, going from CPh3 to iPr. As already reported by Gibson for a series of metal 

complexes stabilized by monoanionic phenoxyamine ligands, the denticity of the ligands can 

vary from tridentate for zinc complexes to tetradentate for cobalt derivatives, depending on 

the coordination requirement of the metal centers.17 As a zinc center therefore requires a 

lower electron count (and a lower coordination number) than a cobalt center, a zinc-based 

complex will be more accessible (e.g., to lactide) than its cobalt counterpart, thereby allowing 

to achieve higher catalytic activities. By substituting a tetradentate ligand with a tridentate 

ligand (Table 1, Entries 3 & 9), we evidenced an increase of the polymerization activity. The 

trityl-substituted system 8 was very active, with a TOF of 5340 h-1, but less active than its 

isopropyl analogue.  

In terms of stereoselectivity, all zinc-based systems led to isotactic-rich PLAs, while cobalt 

complexes enabled the production of isotactically enriched or heterotactic-rich PLAs, 

depending on the nature of the ligand used.  

 

Table 1. Polymerization of rac-lactide.[a] 

Entry Complex [M]/[I]/[iPrOH] Time 
[min] 

Yield[b] 

[%] 
Mn

[c] 

[kDa] 
PDI[c] Pm

[d] TOF 

[h-1] 
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1 4 200/1/0 60 33 43.2 1.35 0.65 66 

2 5 200/1/0 60 28 13.3 1.69 0.39 56 

3 4 200/1/1 20 40 10.0 1.04 0.64 240 

4 5 200/1/1 20 82 25.1 1.06 0.39 492 

5[e] 4 200/1/1 5 79 20.8 1.07 0.64 1896 

6[f] 4 100/1/1 180 90 13.3 1.06 0.65 30 

7 6 400/1/1 1 81 47.8 1.33 0.65 19440 

8 7 100/1/1 2 81 23.6 1.09 0.74 2430 

9 8 200/1/1 2 89 27.0 1.09 0.72 5340 

[a] Reactions performed at RT in toluene at [lactide] = 1 M, unless otherwise stated. [b] As determined by the 
integration of 1H NMR methine resonances of lactide and PLA. [c] Mn and Mw/Mn of polymer determined by 
SEC-RI in THF at RT using polystyrene standards and Mn corrected by the Mark-Houwink parameter (0.58). [d] 
Pm is the probability of forming a new m-triad. [e] Reaction performed at 50°C. [f] Reaction performed at 0°C. 

 

The reaction mechanism of the ROP of LA was then investigated by DFT calculations 

(B3PW91). The structure of the starting complex was constructed starting from the solid-state 

structure of 4, in which the amido group coordinated to the Zn metal center was replaced by 

an isopropoxy initiating group. As shown in Figure 3, the ring-opening of LA proceeds via 

two major transition states. The first of these, B, involves nucleophilic attack of the zinc-

alkoxide at the coordinated Ccarbonyl of LA. DFT calculations demonstrated that the most 

favorable pathway for the first ring-opening of lactide occurs with a complex adopting a 

distorted trigonal bipyramidal geometry of the Zn atom. We also optimized the geometry of 

the first insertion product, G, arising from the ring-opening of a single lactide unit at the 

(L)ZnOiPr center (Figure 4). The resulting five-coordinate zinc center of G exhibits a highly 

distorted trigonal bipyramidal geometry. The most favorable conformation was found to be a 

five-membered Zn-lactate, with a dative bond between the zinc center and the carbonyl 

oxygen of the ring-opened LA unit. 
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Fig. 3. Computed free enthalpy reaction pathway of the first ROP of LA mediated by a 

pentacoordinated zinc species A. 
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Fig. 4. Optimized structure of zinc alkoxo intermediate complex G potentially involved after 

LA ring-opening. Hydrogen atoms are omitted for clarity. Orange zinc, blue N, red O. 

Selected bond lengths [Å]: Zn-N(1) 2.223, Zn-N(2) 2.163, Zn-O(1) 1.880, Zn-O(2) 1.936, Zn-

O(3) 2.487. 

 

Conclusion. 

We have reported a new series of zinc and cobalt complexes supported by readily available 

tripodal ligands. These organometallic catalysts, and particularly the zinc derivatives, are 

highly active in mild conditions for the ring-opening polymerization of lactide, affording high 

molecular weight poly(lactic acid). These results suggest a number of new avenues for 

biodegradable polymers.  
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