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Voxel-based identification of local
recurrence sub-regions from pre-treatment
PET/CT for locally advanced head and neck
cancers
J. Beaumont1, O. Acosta1, A. Devillers1,2, X. Palard-Novello1,2, E. Chajon2, R. de Crevoisier1,2 and J. Castelli1,2*

Abstract

Background: Overall, 40% of patients with a locally advanced head and neck cancer (LAHNC) treated by
chemoradiotherapy (CRT) present local recurrence within 2 years after the treatment. The aims of this study were to
characterize voxel-wise the sub-regions where tumor recurrence appear and to predict their location from pre-treatment
18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images.

Materials and methods: Twenty-six patients with local failure after treatment were included in this study. Local
recurrence volume was identified by co-registering pre-treatment and recurrent PET/CT images using a customized rigid
registration algorithm. A large set of voxel-wise features were extracted from pre-treatment PET to train a random forest
model allowing to predict local recurrence at the voxel level.

Results: Out of 26 expert-assessed registrations, 15 provided enough accuracy to identify recurrence volumes and were
included for further analysis. Recurrence volume represented on average 23% of the initial tumor volume. The MTV with a
threshold of 50% of SUVmax plus a 3D margin of 10 mm covered on average 89.8% of the recurrence and 96.9% of the
initial tumor. SUV and MTV alone were not sufficient to identify the area of recurrence. Using a random forest model, 15
parameters, combining radiomics and spatial location, were identified, allowing to predict the recurrence sub-regions
with a median area under the receiver operating curve of 0.71 (range 0.14–0.91).

Conclusion: As opposed to regional comparisons which do not bring enough evidence for accurate prediction of
recurrence volume, a voxel-wise analysis of FDG-uptake features suggested a potential to predict recurrence with enough
accuracy to consider tailoring CRT by dose escalation within likely radioresistant regions.

Keywords: Radiotherapy, Locally advanced head and neck cancers, Recurrence prediction, Radiomics, Voxel-based
analysis

Introduction
Chemoradiotherapy (CRT) is a standard treatment for
non-resected or unresectable locally advanced head and
neck cancers (LAHNC) [1–3]. Radiotherapy (RT) com-
bined with cetuximab has been established as a potential
alternative standard treatment, especially useful when
concomitant chemotherapy cannot be applied [4]. Overall

survival of these patients is highly correlated with the
loco-regional recurrence, which arises in 20% to 40% of
cases [5–9].
Dose escalation within the tumor may increase local

control, although limited by the risk of toxicities [10,
11]. Positron emission tomography (PET) with 18F-fluor-
odeoxyglucose (FDG) can play a major role in guiding
local dose escalation allowing to determine regions
prone to be radioresistant and thus can be likely at the
origin of the recurrence [12, 13]. Thus, the prescribed
dose can be homogeneously delivered within the 18-
FDG-subvolume (dose painting by contour) [14] or
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heterogeneously planned thereby appearing as a function
of the signal intensity at each voxel in the biologic image
(dose painting by numbers) [15]. However, recent stud-
ies which assessed the outcomes of dose painting in
head and neck cancers suggested that there is no strong
evidence of a correlation between recurrence and the
standard uptake value (SUV) [14–21]. Other volumetric
PET parameters such as metabolic tumor volume
(MTV) and total lesion glycolysis (TLG) have been cor-
related with overall survival and local control [22, 23].
Particularly, the MTV may be useful in the identification
of a global recurrence volume.
A recent study, based on 42 patients with a local

failure after a radiotherapy treatment, showed that the
MTV computed with a threshold of 50% of the max-
imum SUV of the tumor plus a margin of 10 mm
(MTV50 + 10) covers the majority of the recurrence
[24]. This volume closely corresponds to the gross
tumor volume (GTV), limiting the use of dose escal-
ation strategies. Chaput et al. and Legot et al. [25, 26]
also investigated the location based on a spatial align-
ment of the MTV with the recurrence region suggest-
ing that hypermetabolic sub-regions are likely within
the relapse volume. Nevertheless, MTV is a rather
global feature which does not allow to individually
identify voxels or local sub-regions likely responsible
for the relapse. There is nowadays a lack of fine
characterization of local recurrence at a voxel level
able to accurately predict the sub-regions likely re-
sponsible of recurrence thus enabling the tailoring of
the prescribed dose. This problem is not solved partly
because in head and neck, the identification of com-
mon regions in both pre- and post-treatment images
via registration is not an easy task. Indeed, important
anatomical modifications may arise between both time
points due not only to weight loss and tumor regres-
sion but also to the different anatomic position and
the presence of image artifacts. Characterization of
PET images may go beyond simple voxel-wise SUV
values, but rather including other radiomics-like [27–
29] features, which may capture both global and local
FDG-PET uptake characteristics. Radiomics features
may help unraveling the underlying structure of the
tumor and therefore add fundamental quantitative in-
formation to the characterization of those voxels. The
advantage is that each voxel is characterized by a set
of hand-crafted features encompassing multiscale
information.
In this context, the aims of this study were (i) to iden-

tify the volume of tumor recurrence, (ii) to characterize
it in terms of global and local features, and (iii) to build
a voxel-wise machine learning model able to predict,
from pre-treatment PET images, sub-regions where re-
currence is likely to occur.

Materials and Methods
Inclusion criteria
All consecutive patients treated in our center with de-
finitive concurrent CRT or RT and cetuximab for
LAHNC between January 2012 and December 2015 were
retrospectively reviewed. Inclusion criteria were an age
between 18 and 75 years, T3-4 or N+ stage, no surgery
before RT, no history of cancer, a PET/CT performed
within 8 weeks prior to the start of RT, no metastasis at
diagnosis, a minimal follow up of 6 months, and a local
recurrence confirmed by PET/CT as primary event.

Patients and treatment characteristics
This retrospective study enrolled 26 patients. All patients
underwent intensity modulated radiotherapy (IMRT)
using a total dose of 70 Gy (2 Gy/fraction/day, 35 frac-
tions), with simultaneous integrated boost technique [30]
and concomitant chemotherapy or cetuximab [20] if the
patients were not fit for chemotherapy. The protocol for
planning and treatment was the same as previously de-
scribed [21].
Physical evaluation and laryngoscopy were performed

after RT every 3 months for the first 2 years and then
every 6 months thereafter. A PET/CT was systematically
performed between 3 and 6 months after treatment. Dur-
ing follow up, a PET/CT was also performed for patients
with clinical recurrence.
Median time to recurrence after treatment was 4

months (ranging from 3 to 22 months).

PET/CT acquisition
All patients underwent FDG PET/CT for staging before
treatment. The patient lasted at least 4 h prior to the in-
jection of 4 MBq/kg of 18F-FDG. If not contraindicated,
intravenous contrast agents were administered before
CT scanning. After a 60-min uptake period of rest, pa-
tients were imaged with a PET/CT imaging system Dis-
covery ST (General Electric Medical Systems; General
Electric Healthcare, Milwaukee, Wis). First, a CT (120
kV, 80 mA, 0.8-s rotation time, slice thickness 3.75 mm)
was acquired. A PET scan was performed immediately
after the acquisition of the CT. Images were acquired
from the base of the skull to the midthigh (3 min/bed
position). PET images were reconstructed by using an
ordered-subset expectation maximization iterative re-
construction (two iterations, 28 subsets) and an iterative
fully three-dimensional image. CT data were used for at-
tenuation calculation. The same protocol was used for
follow-up. The study was approved by the institutional
review board.

Recurrence volume identification
The primary tumor was segmented on both pre-treatment
and recurrence PET/CT. A rigid co-registration step was
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then performed between pre-treatment and recurrence
PET/CT (Fig. 1) using a customized method based on
common structures. After co-registration, two different
sub-regions were labeled: (i) the recurrence volume
(GTVfailure), defined as the anatomical region where the
pre-treatment and the recurrent primary tumors inter-
sected; (ii) the responder volume (GTVresponder), defined
as the anatomical region where no overlap existed be-
tween the pre-treatment tumor and the recurrent tumor.
The customized rigid registration method was based

on a block matching algorithm [31, 32] devised to ad-
dress the issues arising when registering head and neck
anatomies between two endpoints after radiotherapy.

Specifically, the weight loss and tumor regression in-
duced by the chemo-radiotherapy treatment may lead to
important changes in patients’ anatomies, as shown in
Fig. 2. Patient positions and differences in contrast
agents can also hamper the registration process. To ac-
count for these anatomical changes, the registration was
performed on distance maps computed from bony struc-
tures [31]. Thus, bone segmentations were firstly ob-
tained by thresholding CT images with a value of 200
HU followed by an Euclidean distance map computation
[33]. This step was followed by a finer registration of
bony structures within manually selected ROIs encom-
passing the pre-treatment tumor.

Fig. 1 Workflow of the study. (i) Intra-individual registration of post-treatment data to the pre-treatment space allows the definition of both the
region of recurrence volume (GTVfailure) and the responder volume (GTVresponder). This step is followed by (ii) a regional analysis allowing to
characterize the recurrence and (iii) a voxel-wise analysis (feature extraction and classification) which yields a probability map of recurrence

Beaumont et al. EJNMMI Research            (2019) 9:90 Page 3 of 11



The matching of the bony structures was first quanti-
tatively assessed using the dice score but eventually the
registrations were qualitatively assessed by a senior radi-
ation oncologist. Patients with inaccurate visual registra-
tion of the tumor area were excluded from the study. In
a second time, four physicians also reviewed the registra-
tions. Inter-rater reliability was evaluated using Fleiss’s
Kappa method.

Features extraction
FDG-uptake features were extracted from pre-treatment
PET images at different spatial scales. A first regional
approach was used to globally characterize both GTVfai-
lure and GTVresponder with different thresholds, while
a voxel-wise analysis was performed to characterize local
properties of these regions. These features were then
used to train a model able to predict the GTVfailure vol-
ume as depicted in Fig. 1.

Features from recurrence and responder volumes
Histogram features were extracted from pre-treatment
PET images for both GTVresponder and GTVfailure re-
gions as presented in Table 1.
Based on pre-treatment PET, the MTV of the primary

tumor was computed with thresholds ranging from 0 to
100% (step − size = 1 % ) of the maximum SUV (SUVmax).
The coverage of both GTVfailure and GTVresponder by
the MTV was then computed for each threshold.

Voxel-wise analysis
The primary tumor was characterized at the voxel level
by different geometric and image features [34]. Thus, for
each voxel v, the features extracted were the relative

SUV value of v; the Euclidean distance [33] between v
and vMax, with vMax the voxel with the highest aver-
aged SUV value (computed within the 26 neighborhood);
the Euclidean distance between v and vMin, with vMin
the voxel with the lowest averaged SUV value (computed
within the 26 neighborhood); the Euclidean distance be-
tween v and vSurf, with vSurf the closest voxel within
the primary tumor surface; Haralick texture features
[35], computed within a neighborhood of two voxels; the
Laplacian of Gaussian (LoG) value of v; the location of
the voxel v within the pre-treatment tumor; the inclu-
sion of the voxel v within the MTV50+10 volume; and the
overall tumor characteristics: 3D shape descriptors,
MTV50, TLG50, and tumor location (oropharynx, hypo-
pharynx, …). In order to deal with rotation invariant tex-
ture features, PET images were resampled to isotropic
voxel size. Haralick texture features were computed on
normalized grey level co-occurrence matrix with 64 bins.
Those features were implemented as presented Table 1,
thereby obtaining 22 features per voxel in total.

Statistical analysis
Recurrence and responder volume characterization
Wilcoxon signed-rank test [36] was used to assess whether
global histogram features computed within GTVfailure
were significantly different (p value ≤ 0.05) from those
computed within GTVresponder.

Voxel-wise prediction of the recurrence volume
A random forest (RF) model [37, 38] was trained with
voxel-wise features. The probability of belonging to the
GTVfailure for each voxel was computed as the super-
vised output by dividing the number of trees which pre-
dicted that a voxel belonged to GTVfailure by the total
number of trees of the model.
The RF was trained using ranger [39], a C++ software

tool that implements the probability random forest algo-
rithm [38]. The training was performed using a leave-
one-out cross-validation framework with ranger default
parameters, excepted for the number of trees, which was
set to 10,000.
The mean out-of-bag (OOB) prediction error [40] was

computed to assess the performance of the model on
the training data set, while the area under the receiver
operating curve (AUC) was used to assess these perfor-
mances on the testing data. It should be noted that the
relation between the OOB prediction error and the AUC
is OOB = 1 − AUC.
The Mean Decrease Gini Index (MDGI), yielded by

ranger, allowed to assess the importance of each feature
within the RF. To improve the performance of the
model, the variables with the lower MDGI were recur-
sively removed until the value of the OOB prediction

Fig. 2 Intra-individual differences that can be found in CT images
acquired at different time points. Left: pre-treatment CT. Right: post-
treatment CT. a Red arrow: changes of patient anatomy after the
treatment. Blue arrow: intensity differences due to the injection of a
contrast agent in the post-treatment CT (right). b Differences in the
position of the patient between pre- and post-treatment CT. Here,
the inclination of the head has changed
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Table 1 Equations of radiomics features used to characterize the recurrence volume (grey background) and to train the random
forest
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error measured on the training dataset reached its lowest
value [41].

Results
Recurrence volume identification
The mean dice score measured on bones segmentations
in the ROI used to perform the registration was 0.70 ±
0.14. After a qualitative assessment, 15 pairwise registra-
tions out of 26 proved to be anatomically accurate
enough to identify and characterize recurrence volume.
Among these patients, tumor localization was distrib-
uted as oropharynx for six patients, hypopharynx for
four patients, oral cavity for three patients, and larynx
for two patients. Examples of accurate and inaccurate
structures matching are presented in Fig. 3. The Fleiss’s
Kappa for inter-observer agreement was 0.66.
The inter-rater reliability, computed using the Fleiss's

Kappa for inter-observer agreement was 0.66. Within the
15 accurate identifications, recurrence volume represented
on average 23% of the GTV (standard deviation =12%).

Recurrence and responder volume characterization
Table 2 presents the histogram-based features computed
within both GTVresponder and GTVfailure. The mini-
mum SUV (SUVmin) and the mean SUV (SUVmean)
were significantly different between GTVfailure and
GTVresponder.
The MTV covers a higher percentage of GTVfailure

than GTVresponder (Fig. 4). The MTV50+10 covered on

average 89.8% (range 48.6–100) of the recurrence volume
and 96.9% (range 82.1–100) of the pre-treatment GTV.

Voxel-wise prediction of the recurrence volume
Figure 5 presents the mean importance of features within
the leave-one-out RF models, according to the MDGI.
Fifteen features out of 22 were kept as relevant to train

the RF after recursive suppression of the less important
features. Mean OOB prediction error on the training
dataset was 0.041 (median = 0.040, range 0.039–0.045),
and the mean AUC on the testing dataset was 0.68 (me-
dian = 0.71, range 0.14–0.91). Fig. 6 shows that a strong
correlation (r = 0.64) exists between the value of the
voxel with the maximum probability of belonging to
GTVfailure and the AUC of the corresponding probabil-
ity map. Fig. 7 presents an example of probability map
generated by the model trained with the 15 retained
features.

Discussion
To our knowledge, our study is the first to locally com-
pute the probability of a voxel to belong to a recurrence
region within the GTV. This study was based on voxel-
wise features extracted from pre-treatment PET/CT.
The prediction model was validated using a leave-one-
out scheme. A spatial characterization allowed to de-
scribe sub-regions likely responsible of recurrence origin
which may be then used to guide dose tumor painting.
In this manner, the obtained model provides a way for-
ward to predict recurrence regions by only using the
pre-treatment PET/CT.
A customized rigid co-registration method was imple-

mented to identify recurrence volume. 3D Euclidean dis-
tances were computed on bone segmentations helping
to steer the registration algorithm and allowing to ac-
count for changes in soft tissues anatomies due to the
CRT treatment. The performance of the block-matching
algorithm was increased compared to CT intensity based
registration of regions with similar intensities [31].

Fig. 3 Examples of both inaccurate and accurate structures
matching. Left: pre-treatment CT. Right: post-treatment CT. a
Inaccurate structures matching. Although the skull, the jaw, and the
top of the spinal cord are aligned, the tongue of the patient appears
in a different position between the two scans, leading to a
misalignment of pertinent structures for tumor recurrence analysis. b
Accurate structures matching. The skull, jaw and spinal cord are
aligned and no anatomical differences between the soft tissues
were found nearby the tumor. Blue: pre-treatment tumor. Red:
post-treatment tumor

Table 2 Mean histogram feature comparison between
GTVfailure and GTVresponder, with associated Wilcoxon signed-
rank test p values

Histogram Features GTVfailure GTVresponder p values

Minimum 2.79 ± 2.23 1.21 ± 0.38 0.031*

Maximum 14.53 ± 5.87 14.93 ± 6.68 0.747

Mean 7.37 ± 3.47 5.40 ± 1.90 0.007*

Variance 11.57 ± 11.28 13.71 ± 14.84 0.459

Skewness 0.13 ± 0.32 0.07 ± 0.10 0.517

Kurtosis 0.46 ± 0.95 0.28 ± 0.51 0.517

GTVfailure: recurrence volume within the primary tumor, GTVresponder:
responder volume within the primary tumor
* Significant difference (p ≤ 0.05) between GTVfailure and GTVresponder
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Fig. 4 Percentage of GTVfailure (red line) and GTVresponder (blue line) covered by the MTV as a function of % SUVmax. The MTV covers a higher
percentage of GTVfailure than GTVresponder for threshold values ranging from 15% to 80%. However, no threshold value allowed to cover most
of GTVfailure without covering most of GTVresponder. GTVfailure recurrence volume within the primary tumor, GTVresponder responder volume
within the primary tumor, MTV metabolic tumor volume, SUVmax maximum standard uptake value

Fig. 5 Mean Decreasing Gini Index (MDGI) of features used to train the random forest (RF). The most important variables in the RF have the
higher MDGI value, here, the cluster shade, the distance to vmax, the spatial position (x,y), Haralick Correlation. etc. The red box indicates the
features kept to train the RF after the recursive suppression of the less important features
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The average dice score obtained on bone segmenta-
tions after registration was low. This may be explained
by the changes in patients’ position between two image
acquisitions. The dice score is sensitive to the size of the
defined ROI, which is different for every patient in the
current study and might be too small in certain cases to
obtain high dice score values. However, the aim of the
registration was to identify the origin of recurrence in
pre-treatment scans. Thus, the quality of this identifica-
tion cannot be measured using similarity metrics and
the value of the dice score could not be used to validate
registration results in the current study.
Currently, the gold standard method to identify head

and neck cancer recurrence origin is to propagate the

center of mass of the post-treatment tumor to the pre-
treatment scan using non-rigid registration methods.
GTVfailure has been defined by adding a 4 mm radius
margin to this center of mass, to account for registration
and delineation uncertainties. Although, this procedure
allows the identification of a global recurrence origin
even in the case of important anatomy changes between
scans, the identification of GTVfailure is not accurate
enough to perform a voxel-wise analysis.
Thus, we privileged the use of a rigid registration

method for preserving anatomical correspondences des-
pite intra-patient changes and to select patients with ac-
curate identification of GTVfailure. The accuracy of
recurrence volume identification was manually assessed
by a senior radiation oncologist. Eleven patients were
therefore excluded from the study considering that rigid
registration did not allow to identify the recurrence vol-
ume with enough accuracy, in the cases where the anat-
omy of the subject was different between the pre- and
post-treatment PET/CT.
A regional characterization of FDG-uptake features

showed that the mean FDG-uptake (SUVmean) was signifi-
cantly higher in GTVfailure than in GTVresponder.
However, the recurrence volume was not entirely covered
by MTV50 and the SUVmax was not a predictor of recur-
rence volume location, suggesting that histogram-based
FDG-uptake features are not the best suited to guide dose-
escalation strategies. These results are in line with
Mohamed et al. [24], who suggested to add a margin of 10
mm to the MTV50 to cover the majority of recurrences.
Nonetheless, the MTV50+10 also covers most of the GTV.
Thus, this feature also limits the use of dose escalation
strategies as it is not able to provide a precise identification
of the radio-resistant regions likely to trigger recurrence.

Fig. 6 Area under the curve (AUC) of probability maps plotted against their corresponding maximum probability value of belonging to
GTVfailure. A strong correlation between the AUC and the value of the voxel with the maximum probability of belonging to GTVfailure was
found across the predictions performed in this study, suggesting that the reliability of the prediction can be assessed using the maximum
probability value of belonging to GTVfailure

Fig. 7 Example of probability map of recurrence, generated with
random forest, overlaid on the pre-treatment CT. Black contour: pre-
treatment GTV. Red contour: GTVfailure
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Regional FDG-uptake features appear as inaccurate
predictors of recurrence volume. As opposed to re-
gional approaches, we performed voxel-wise analysis
of FDG-uptake using radiomics features via a random
forest machine learning strategy. Thus, each voxel be-
comes informative and relevant to build a relapse re-
gion by its progressive aggregation when they are
likely recurrent. The use of radiomics features was of
particular interest as it allowed to extract both global
and local information on the spatial relations between
FDG-uptakes computed on small volumes, in addition
to the FDG-uptake information itself [27, 42]. More-
over, textural analysis provides prognostic information
on pre-treatment FDG PET/CT in HNSCC [43]. It
should be noted that the parameters used to compute
radiomics in this study were chosen in agreement with the
Image Biomarker Standardization Initiative [34].
The predictive capability of each feature was assessed

using a leave-one-out cross-validation RF, with MDGI
computation. The ranking of features using the MDGI
showed that radiomics and voxel location features were
the most predictive features of recurrence volume. The
first feature directly linked with histogram-based FDG-
uptake is the relative SUV, ranked as 13th according to
the MDGI. The feature importance ranking also showed
that the inclusion of voxels within the MTV50+10 volume
is not relevant for recurrence volume prediction at the
voxel level. This was expected as the MTV50+10 covers a
large area of the GTV and is rather a global characteristic.
A backward feature selection strategy was used to im-

prove the prediction of the model. However, the model
obtained did not provide acceptable results for a clinical
use. A strong correlation was found between the value
of the voxel with the maximal probability of belonging
to GTVfailure and the AUC of the corresponding prob-
ability map, suggesting that the maximal probability of
belonging to GTVfailure can be used to assess the pre-
diction reliability of the model.
Our study exhibits some limitations. The accuracy of

the registration was qualitatively assessed by a single
expert. Inter-observer variability can however arise,
impacting the reproducibility of the experiments. A po-
tential weakness of this approach is the risk of selection
of a particular sub-tumor type (i.e., without major ana-
tomical variations), or particular radioresistant tumor
(as suggested by the median time to recurrence). Further
validation of our methodology may require multiple
readers at different centers, and an evaluation of the
agreement between different experts to identify adequate
registrations.
After the registration step, a significant number of pa-

tients were excluded from the study to ensure an accur-
ate identification of the recurrence volume. Therefore,
the prediction of recurrence volume was performed on

15 patients only. However, the training of the RF model
was performed at the scale of the voxel, which means
that a very high number of samples was used to generate
a robust model. Each voxel is a different entity so inde-
pendently considered, allowing their aggregation in re-
gions which are predictive for the risk of recurrence
even with a small number of patients. All patients were
scanned using the same PET machine. Then, the model
should be also customized for other PET/CT protocol
acquisitions.
Due to the limited number of patients, no external val-

idation was performed. Internal validation by leave-one-
out already showed a reliable performance, suggesting
that a voxel-wise machine learning approach, trained
with the appropriate features and number of patients,
may help identifying the location of radio-resistant re-
gions within the pre-treatment GTV to guide dose escal-
ation strategies. FDG PET has a poor resolution at the
voxel level, which can complicate the analysis. However,
the correlation between the maximal probability of be-
longing to GTVfailure and the reliability of the predic-
tion provided by the model would help to determine a
sub-region of high risk of recurrence.
Textural analysis was extracted from GTV, which was

manually defined by a radiation oncologist. Due to the
impact of the segmentation method on the textural ana-
lysis [43], there is a risk of variability in applying the
model in another center. However, several studies did
not find significant difference in inter-observer GTV de-
lineation of head and neck cancers [44, 45].
The algorithm was not obviously evaluated on tumors

that do not fail therapy. However, our model aims to
identify tumor sub-regions where recurrence is likely to
occur, rather than predicting the risk of recurrence. It is
possible that the algorithm might identify regions at risk
for recurrence in tumors that would be adequately
treated with standard therapy. We therefore propose
that a prognostic model [23, 43] be used first to identify
tumors at risk for local recurrence prior to applying our
methodology.

Conclusion
Voxel-wise analysis based on both radiomics and spatial
location within the tumor seems to be very promising to
identify recurrence origin. The recurrence was not cor-
related with FDG-uptake alone, which raises concern on
the suitability of using dose tumor painting by numbers.
However, a voxel-based prediction of recurrence volume
may be of interest to develop instead a new approach of
dose tumor painting by recurrence risk. Supplementary
data are nevertheless required to confirm the potential
of the approach presented in this study to predict the re-
currence volume.
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