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Abstract 

 

Purpose 

Deep learning methods (DLMs) have recently been proposed to generate pseudo-CT (pCT) for 

MRI-based dose planning. This study aims to evaluate and compare DLMs (U-Net and 

generative adversarial network (GAN)) using various loss functions (L2, single-scale 

perceptual loss (PL), multiscale PL, weighted multiscale PL), and a patch-based method (PBM).  

 

Materials and Methods 

Thirty-nine patients received a VMAT for prostate cancer (78 Gy). T2-weighted MRIs were 

acquired in addition to planning CTs. The pCTs were generated from the MRIs using seven 

configurations: four GANs (L2, single-scale PL, multiscale PL, weighted multiscale PL), two 

U-Net (L2 and single-scale PL), and the PBM. The imaging endpoints were mean absolute error 

(MAE) and mean error (ME), in Hounsfield units (HU), between the reference CT (CTref) and 

the pCT. Dose uncertainties were quantified as mean absolute differences between the DVHs 

calculated from the CTref and pCT obtained by each method. 3D gamma indexes were analyzed.  

 

Results 

Considering the image uncertainties in the whole pelvis, GAN L2 and U-Net L2 showed the 

lowest MAE (≤34.4 HU). The ME were not different than 0 (p≤0.05). The PBM provided the 

highest uncertainties. Very few DVH points differed when comparing GAN L2 or U-Net L2 

DVHs and CTref DVHs (p≤0.05). Their dose uncertainties were: ≤0.6% for the prostate PTV 

V95%, ≤0.5% for the rectum V70Gy, and ≤0.1% for the bladder V50Gy. The PBM, U-Net PL and 

GAN PL presented the highest systematic dose uncertainties. The gamma passrates were >99% 

for all DLMs. The mean calculation time to generate one pCT was 15 s for the DLMs and 62 

min for the PBM. 

 

Conclusion 

Generating pCT for MRI dose planning with DLMs and PBM provided low dose uncertainties. 

In particular, the GAN L2 and U-Net L2 provided the lowest dose uncertainties together with 

a low computation time. 

 

Keywords: pseudo-CT generation; MRI-only radiotherapy; deep learning; dose calculation; 

prostate cancer  



INTRODUCTION  

 

MRI is clearly superior to CT for organ delineation and could therefore improve tumor targeting 

in dose planning (1). However, MRI does not provide electron density information that is 

necessary for dose calculation. To overcome this issue, several methods have been developed 

to generate pseudo-CTs (pCTs) for MRI-based dose planning (2, 3). These methods can be 

divided into four categories: bulk density methods (BDM) (4–8), probabilistic methods (9), 

atlas-based methods (ABM) (10–17), and more recently machine learning methods such as 

patch-based methods (PBM) including random forest modeling (18–22) and deep learning 

methods (DLM) (23–29). The BDMs assign homogeneous densities to the volumes of interest 

(VOIs) that are manually delineated from the patient’s MRI. Probabilistic methods use the 

probability density function to determine the Hounsfield Unit (HU) in each voxel. The ABMs 

involve complex non-rigid registrations of CT-MRI atlases with the patient’s MRI, followed 

by a CT fusion step to obtain the pCT. The PBMs select the k closest CT patches from a training 

cohort for a given MRI patch from the patient. The selected CT patches are then fused to 

generate the corresponding pCT. 

Deep learning methods (DLMs) enable the computational models that are composed of multiple 

processing layers to learn representations of data with multiple levels of abstraction (30). Deep 

learning has recently been introduced in radiotherapy for multiple applications, such as image 

segmentation, image processing and reconstruction, image registration, treatment planning, and 

radiomics (31–37). DLMs have been more recently proposed for pCT generation from MRI 

(38–43). They are particularly appealing owing to their fast computation time. These methods 

model relations between the HU values of the CTs and the intensities of the MRIs by training 

neural networks. Once the optimal network parameters are estimated, the model can be finally 

applied to a test patient MRI to generate its corresponding pCT. One of the first DLMs for pCT 

generation from MRI was based on the U-Net architecture (U-Net DLM) (23). More recently, 

DLMs that use a generative adversarial network (GAN DLM) architecture have also been 

proposed (24, 25, 27, 29, 44) (Fig. 1), with the theoretical advantage of GAN compared to U-

Net to provide more realistic pCTs by obtaining an adversarial feedback from a discriminator 

network. While GAN and U-Net DLMs provide promising preliminary results, they use most 

often a standard loss function (L2 and L1 norms) which may also produce blurring and loss of 

details (29). Perceptual loss could overcome this issue by mimicking human visual perception 

using similar features (such as multiscale features) but it has never been investigated in this 

pCT generation application (45–47). Network hyperparameters such as layer level, the number 



and weight associated to each level (for perceptual loss), and the discriminator weight compared 

to the generator weight can also affect the image accuracy. Overall, all these DLM 

configurations lack a thorough dose evaluation for pCT generation from MRI. 

 

We previously showed that PBM provided lower imaging and dose uncertainties in the pelvis 

compared with ABM and BDM (20). PBM was found to be faster than ABM. In another study, 

the U-Net DLM with L2 loss function has been shown to provide better imaging results than 

the ABM, similar dosimetric results as the ABM, and fewer uncertainties than BDM (48). 

However, even though the PBMs and DLMs can be considered the most suitable methods for 

MRI-based dose planning, they have never been compared. Finally, U-Net and GAN DLMs 

have never been dosimetrically compared in the literature. 

This study aims to evaluate and compare the U-Net and GAN DLMs using various 

hyperparameters and loss functions (L2, single-scale PL, multiscale PL, weighted multiscale 

PL) as well as PBM, for prostate cancer MRI-only dose planning.  

 

MATERIALS AND METHODS 

 

Thirty-nine patients received a volumetric modulated arc therapy (VMAT) for localized 

prostate cancer. The ethics approval for the study protocol was provided by the local area health 

ethics committee and informed consent was obtained from all patients (10). The study follows 

the same workflow described in our previous study (20). 

 

Image acquisition  

 

Patients had both an initial CT (CTinitial) and 3T MR imaging (MRI) in the treatment position 

(Appendix 1) (20). The CT scans were acquired with a GE LightSpeedRT large-bore scanner 

or a Toshiba Aquilion. The MRI was acquired with a 3T Siemens Skyra MRI scanner. For MRI 

acquisition, 3D T2-weighted SPACE sequences were considered with the following parameters: 

TE = 102 ms, TR = 1200 ms, flip angle = 35°, field-of-view = 430 × 430 × 200 mm3, and voxel 

size = 1.6 mm3.  

 

MRI preprocessing and intra-patient CT to MRI registration 

 



The T2-weighted images were preprocessed for normalization and correction of image 

nonuniformity (Appendix 2) (10, 12). Even if the delay between the acquisition of CTinitial and 

MRI was kept as short as possible, the patient’s anatomy could still be different between 

acquisitions. To minimize these pelvic anatomy variations between CT and MRI (10), each 

CTinitial was registered to its corresponding MRI by using a rigid registration (49) followed by 

a non-rigid registration (50). This registered CT was considered as the reference (CTref). 

 

For all pCT generation methods, the entire cohort (39 patients) was randomly split three times 

with non-repeated patients between training (N = 25) and validation cohorts. For validation, the 

model was trained independently on each of the three different training cohorts. The patients in 

the validation cohorts were all different (14 + 14 + 11 patients, respectively). Thus, the number 

of patients in the training/validation cohorts were: 25/14, 25/14 and 25/11.  

 

Patch-based method for pseudo-CT generation 

 

The PBM is detailed in (20) and Appendix 3. To summarize, this method can be divided into 

the four following steps. 

 (1) An inter-patient rigid and affine group-wise registration was performed to match all pre-

processed MR images into the same coordinate system. Then, the obtained transformations 

were applied to the corresponding CT images to propagate them into the same coordinate 

system.  

(2) A feature extraction step was performed to obtain spatial, textural, and gradient 

information from the registered MRI, followed by patch partitioning with overlap (51). The 

selected features were the multi-scale MR intensities, Shannon entropy, and the norm of the 

gradient (51). The patch partitioning was conducted on each feature image and the related CT 

image. The Cartesian coordinates of the centered location of the patches were used as the spatial 

information. 

(3) An approximate nearest neighbor (ANN) search model (52) was generated to select the 

training patches closest to the target MRI patches. Several randomized KD-trees were trained 

on the full training feature patch set. These KD-trees aimed to organize the feature patches in a 

data structure, thereby performing the nearest neighbor search more efficiently. The feature 

patches from the target MRI were iteratively given as the input of the randomized KD-trees. 



Ten feature patches (from the training cohort) closest to the target feature patches were then 

successively selected. After each iteration, only the CT patches related to the ten closest feature 

patches were stored. 

(4) A multipoint-wise aggregation scheme was conducted to generate the pCT patches. For each 

target feature patch centered at a location v, only the closest related CT patches near v were 

fused by weighted means. The weights were obtained by computing the normalized Euclidian 

distances between the target feature patch and the closest feature patches. The weighted mean 

was used to estimate the pCT HU value at location v.  

 

The PBM was implemented in C++ using the Insight ToolKit library (53). The training 

computation time was approximately 24 h (without GPU and cluster architecture).  

 

Deep learning methods for pseudo-CT generation 

 

Fig. 1 depicts the overall workflow of the compared deep learning methods with distinct 

implemented loss functions. As illustrated, two different networks (U-NET and GAN) trained 

with different loss functions constituted a set of six training strategies: i) U-Net with L2 loss 

(U-Net L2), ii) U-Net with single-scale perceptual loss (U-Net PL), iii) GAN with L2 loss 

(GAN L2), iv) GAN with single-scale perceptual loss (GAN PL), v) GAN with multi-scale 

perceptual loss (GAN MPL), and vi) GAN with weighted multi-scale perceptual loss (GAN 

WMPL). 

 

U-Net deep learning method 

 

The U-Net DLM was implemented based upon a 2D architecture similar to the one proposed 

by Han (23). This architecture was composed of two networks called encoding and decoding 

parts. The encoding part aimed to extract the multi-scale features from the target MRI. This 

network was composed of 12 convolutional layers, followed by batch normalization and ReLu 

activation functions (54). The filter numbers of these layers were 64, 64, 128, 128, 256, 256, 

256, 512, 512, 512, 512, and 512, and the filter size was 3 × 3 (stride = 1). To obtained multi-

scale information, some of the features were downsampled using convolutional layers with a 

filter size of 2 × 2 and stride = 2. 



The decoding part aimed to gradually reconstruct the pCT using the features computed in the 

encoding part. This network was a mirror version of the encoding part. For feature up-sampling, 

transposed 2D convolutional layers were used with a filter size of 2 × 2 and stride = 2. To obtain 

the pCT, the last layer of the decoding part was a convolution layer with one filter (size = 1×1).  

One of the differences between our U-Net DLM and the one proposed by Han (23) is for feature 

map down-sampling and up-sampling. We used 2D convolutional filters (with stride = 2x2) and 

2D transpose convolutional filters, instead of max pooling and up pooling. The advantage of 

using these convolutional filters is that their related weights can be optimized during the training 

process, allowing computation of new features for better data representation. The max pooling 

is a fixed operation where no new feature is computed. Additionally, we added batch 

normalization after some convolutional layers to improve the convergence of the loss function 

during the gradient descent. Finally, the number of convolutional layers linking the encoding 

and decoding parts was decreased. The aim of this change was to reduce the blur effect in pCTs, 

arising when applying too many convolution filters to the low resolution feature maps. 

As shown in Fig. 1, to train our U-Net DLM, two different loss functions were implemented: 

L2 loss (23, 29) and single-scale perceptual loss (45). The L1 loss function was not considered 

because it was used as an evaluation metric (see imaging endpoints section below). The L2 loss 

aimed to minimize the differences between the CT and pCT voxels. This loss function was 

defined as: 

��-�����, 	
 = ‖	 − �-�����
‖�� 

Where � is the MRI, 	 is the corresponding CT, �-�����
 is the pCT generated by the U-Net, 

and ‖ ‖�� is the L2 norm. 

The single-scale perceptual loss mimics the human visual system to compare CT and pCT 

images using similar features as opposed to only the intensities (24, 45). The VGG16 network 

was pretrained from the ImageNet data set, available in Keras (55), and used to compute the 

features inside the CT and pCT images.. The choice of VGG16 was justified because this 

network is often used for perceptual loss computation in the literature and appears relevant for 

different tasks (image deblurring, super-resolution, etc.) (45, 55). The perceptual loss function 

was defined as:  

��-�����, 	
 = �����	
 − �����-�����
���
�  

where ��� is the output of the 7th VGG16 convolutional layer. The choice 7th VGG layer is 

justified in Appendix 4.1. 



 

Generative Adversarial Network (GAN) deep learning method 

 

The GAN DLM architecture was composed of two networks: a generator (G) and a 

discriminator (D), which were trained in competition with each other and illustrated in Fig. 1.  

 

Generator network 

The generator network aimed to provide pCTs from the patient MRIs. The generator network 

used a 2D architecture identical to the previously described U-Net DLM. Besides the previously 

defined L2 (56) and single-scale perceptual loss functions, two multi-scale versions of 

perceptual losses were implemented, including a weighted multi-scale implementation. 

The evenly weighted multi-scale perceptual loss aimed to first compute the L2 norm between 

the CT and pCTs feature for some VGG layers. These layers correspond to each scale change 

in the VGG architecture. Then, the obtained L2 norms integrated in the perceptual loss were 

averaged considering the multi-scale information of each layer (Appendix 4.2). This multi-scale 

perceptual loss was described as:  

����, 	
 = 1
������
  ‖���!�	
 − ���!����

‖��

! ∈ #
 

Where � = {2, 5, 7, 10, 13}, � is the MRI, 	 is the corresponding CT, ���
 is the pCT produced 

by the generator, ���! is the +�, VGG16 convolutional layer, and ‖ ‖�� is the L2 norm. 

The weighted version of multi-scale perceptual loss follows the same principle as the loss 

described previously. However, the L2 norms obtained from the VGG layers were weighted to 

give more importance to the layers yielding the lowest MAE (Appendix 4.2). The weighted 

multi-scale perceptual loss was described as follows: 

����, 	
 = 1
������
  -!‖���!�	
 − ���!����

‖��

! ∈ #
 

Where -! =  �.  /0123�4,��5
�6 
  with 789! is the mean absolute error between CTs and pCTs 

generated by the GAN using the +�, VGG16 convolutional layer for perceptual loss 

computation. The considered MAEs were computed inside the whole pelvis. 

 

Discriminator network 



The discriminator network aimed to classify the generated pCT image as real or fake CT. Thus, 

the output of this network is a probability value ranging between 0 and 1 depending on whether 

the generated pCT seems to be fake or real, respectively. The architecture was composed of six 

convolutional layers and one fully connected layer. Each convolutional layer was followed by 

batch normalization and Leaky-ReLu activation functions. The number of filters for these layers 

were 8, 16, 32, 64, 64 and 64. The filter size was 3 × 3 (stride = 2) for the first four layers and 

1 × 1 (stride = 1) for the remaining layers. The fully connected layer had one filter followed by 

a sigmoid activation function. 

The loss function of the discriminator was a binary cross entropy (29, 45, 57) defined as: 

�:����
, 	
 = − ∑ 	!<=>����
!
 +  �1 − 	!
@!AB log �1 − ���
!
 , where ���
 is the pCT 

computed by the generator from the target MRI �, 	 is the corresponding CT, and F is the 

number of voxels inside the 	  and � images.  

 

The generator and discriminator losses were combined to form the following adversarial loss: 

�GHI�JKGJ!GL��, 	
 =  MB�:��, 	
 +  M�����, 	
,  where � is the MRI, 	 is the corresponding CT, 

�:��, 	
 is the discriminator loss, ����, 	
 is the generator loss, and MB and M� are the weights 

for the discriminator and generator losses, respectively. The discriminator was first trained 

using the discriminator loss, followed by, the generator training using the fully adversarial loss. 

These training steps were performed iteratively and stopped when the discriminator could not 

accurately determine if the pCTs provided by the generator looked like true or false CTs.  

 

Training of the U-Net and GAN methods 

 

The U-Net and GAN DLMs were trained using anatomically paired data: axial 2D slices of the 

training CT and MR images (3600 slices). Data augmentation was performed to increase the 

size of the training cohort. It was conducted by randomly applying affine registrations on the 

slices (translated by -5% to 5% per axis, rotated by -10° to +10°, sheared by -10° to 10°). A 

mini-batch size of 5 slices and 300 epochs was considered. The choice of mini-batch size is 

detailed in Appendix 4.3. The network parameters were optimized using the Adam algorithm 

(58). The parameters of this algorithm parameters were: N = 1 × 10.P, QB = 0.9, and Q� =
0.9. For the GAN, the weights of the discriminator and generator loss functions were: MB = 5 

and M� = 1, respectively. The convergence of GAN with perceptual loss (generator and 

discriminator) is presented in Appendix 4.4. 



 

The U-Net and GAN DLMs were implemented in Python using Keras (59). The training 

computation time for the networks was approximately 24 h each with a GPU Nvidia GTX 1070 

TI 8 GB.  

 

The stochastic effect on the training of each pCT generation method (U-Net, GAN, and PBM) 

was assessed by repeating three pCT generations (training and validation) for each group 

(25/14, 25/14 and 25/11) and for each method (Appendix 5). 

 

 

Delineation and dose calculation on reference CT and pseudo-CT 

 

Organ delineation was performed on CTref, by a senior oncologist, in agreement with the 

GETUG/RECORAD group recommendation (Appendix 6) (60). The contours were rigidly 

propagated from CTref to pCT. 

A VMAT was planned on the CTref images with the Pinnacle v.9.10 (Philips) treatment planning 

system for prostate and seminal vesicles. The collapsed cone convolution algorithm was used 

for dose calculation. A sequential treatment was delivered with a total dose of 50 Gy to the 

prostate and seminal vesicles, followed by a boost of 28 Gy in the prostate (at 2 Gy per fraction). 

GETUG dose–volume constraints were applied to the organs-at-risk (OARs) (Appendix 6) (60). 

The beam parameters used to compute the dose from CTref were used to calculate the dose from 

pCT.  

 

Endpoints and statistical analyses 

 

Imaging and dosimetric endpoints were considered for the 39 patients in a cross validation, 

using the seven pCT generation configurations: PBM, U-Net with L2 loss (U-Net L2), U-Net 

with single-scale perceptual loss (U-Net PL), GAN with L2 loss (GAN L2), GAN with single-

scale perceptual loss (GAN PL), GAN with multi-scale perceptual loss (GAN MPL), and GAN 

with weighted multi-scale perceptual loss (GAN WMPL). 

 

Imaging endpoints 

 



To compare the imaging accuracy of different pCT generation methods, a voxel-wise 

comparison of the HU between CTref and pCT was performed. To accomplish this, the mean 

absolute error (MAE) and the mean error (ME) were calculated between the CTref and pCT 

obtained from the seven configurations. These endpoints were defined as: 789 =
 B@ ∑ |U�4VJ�W�+
 −  U�X4V�+
|@!AB  and 79 =  B

@ ∑ U�4VJ�W�+
 −  U�X4V�+
@!AB . They were 

calculated in the entire body, soft tissues (prostate, rectum and bladder) and pelvic bones 

(femoral heads). Additional Table 1 lists the mean HU values of the CTref inside each VOI. 

 

Dosimetric endpoints 

 

The accuracy of the methods was first evaluated by computing the dose uncertainty (MAE) and 

systematic dose uncertainty (ME). The dose uncertainty was defined by the differences in mean 

absolute values across dose volume histograms (DVHs) calculated from the dose on the CTref 

and the pCTs. The systematic dose uncertainty was computed as the mean DVH differences 

between the CTref and pCT. These uncertainties were reported for the RTOG/GETUG reference 

DVH points (60, 61) and the entire DVH of the VOI (PTV prostate, bladder, rectum and femoral 

heads). The DVH bin size was 5 cGy. The mean dose (Dmean) was also considered. A spatial 

dose evaluation was finally conducted by performing 3D gamma analyses (local, 1%/1 mm, 

dose thresholds 10% and 30%) using the dose distributions from CTref and pCTs. 

 

Statistical analysis 

 

Wilcoxon signed-rank tests were performed to compare the endpoints. For the MAE (image 

and dose), these tests were used to compare the lowest MAE among all the methods to the MAE 

of each other method, and also to compare MAE of the GAN PL method to the MAE of the U-

Net PL. For the ME (image and dose), these tests were used to compare the ME of each method 

to 0 (null distribution). For the DVHs comparisons across the pCT generation methods, a 

nonparametric permutation test was performed (62) to control the presence of false positives in 

case of multiple statistical tests (5 cGy DVH bin-wise). In this case, 1000 permutations were 

performed where for each permutation i, randomly selected DVHs were swapped (CTref <-

>pCT) and the average difference was computed for each dose-bin. For each permuted sample 

and the original sample, the average difference was then normalized to the standard deviation 

computed over all the 1000 permutations and the maximum observed difference was selected 



as test-statistic (TS). A distribution of TS across all the permuted samples (TSi,max) was obtained 

and compared to the one from the observed sample (TSmax). The adjusted p-value was therefore 

computed as the probability of having a TSmax greater than the TSi,max compared with a 

significance level of 5% (p ≤ 0.05). The corresponding percentile over the distribution of all the 

TSi,max gives a threshold value which determines the dose DVH bins where statistically 

significant dose difference arises. Unlike bin-wise tests, permutation test gives a single number 

that summarizes the discrepancy of the DVHs between the two groups, rather than the 

discrepancy of a particular bin and, therefore, accounts for multiple comparisons. The 

mathematical formulation of the permutation test can be found in Chen et al. (63). The test 

allowed thus to report a robust bin-wise comparison across DVH value of each method, but also 

to compare the lowest MAE among all the methods to the MAE of each method and the ME of 

each method to 0. 

 

The Friedman test was used to compare the MAE or the ME of each pCT method between the 

three different training (1, 2 and 3) (Appendix 5). Results were considered as significant when 

p ≤0.05. 

 

RESULTS 

 

Imaging endpoints and calculation time 

 

Examples of MRI, CTref, and pCTs generated by each method are illustrated in Additional Fig. 

1. 

Table 1 lists the imaging endpoints corresponding to each pCT generation method for the VOIs. 

The GAN L2 and U-Net L2 showed the lowest MAE and ME (in absolute value) for soft tissue 

and bone. The GAN PL showed significant lower MAE for the whole pelvis and the soft tissue, 

than the U-Net PL. The PBM provided the highest corresponding values. Except for the bone, 

the MEs of GAN L2 and U-Net L2 were not significantly different from a null distribution. 

Assessing the stochastic effect, the three measurements by method confirmed that GAN L2 and 

U-Net L2 provided the lowest image uncertainties (Appendix 5).  



The mean calculation time to generate one pCT was 15 s for the DLMs and 62 min for the PBM 

(without using cluster architecture or GPU parallelization). 

 

Dosimetric endpoints 

 

Fig. 2 shows the mean DVHs for the CTref and each method, by VOI. No DVH points 

significantly differed when comparing GAN L2 or U-Net L2 DVHs and CTref DVHs. Most of 

the points with significant differences were observed for the PBM, GAN PL, and U-Net PL.  

Fig. 3 displays the dose uncertainties (MAE) of each method along the DVHs by VOI. GAN L2 

provided the lowest dose uncertainties, compared with the other methods. The PBM presented 

the highest dose uncertainties. Additional Fig. 2 displays the systematic dose uncertainties (ME) 

of each method along the DVHs, by VOI. The GAN L2 and U-Net L2 presented the lowest ME 

(in absolute value). The ME of these methods were not significantly different from a null 

distribution, along the DVH. The PBM, GAN PL, and U-Net PL provided the highest ME (in 

absolute value). Table 2 lists the mean doses to target volume and OARs and dose uncertainties 

(MAE) and systematic dose uncertainties (ME) for specific DVH points. The GAN L2 and U-

Net L2 showed the lowest MAE and ME. No statistically significant differences were found 

between MAE of GAN PL and U-Net PL. 

Table 3 displays the mean gamma and gamma passrate values calculated from the CTref and pCT 

dose distributions for each method. The highest mean gamma values were found for the U-Net 

L2 and GAN L2. The lowest gamma-pass rate and highest mean gamma values were found for 

the PBM.  

Additional Fig. 3 illustrates the pCTs, dose distributions and gamma maps obtained from a 

patient.  

 

DISCUSSION 

 

A total of six DLMs for pelvis pCT generation from MRI were investigated and compared with 

a PBM. Several hyperparameters of the DLMs were optimized according to imaging endpoints 

(Appendix 4). Compared to the CTref, the pCTs generated by DLMs and PBM provided overall 

low dose uncertainties, thereby making them clinically acceptable for MRI-based prostate dose 

planning (Fig. 2). Regarding dose accuracy and calculation time, in comparison with PBM, 



DLMs appear particularly promising for clinical use. Among DLMs, the most accurate methods 

are GAN L2 and U-Net L2 (Table 2, Fig. 2, Fig. 3 and Additional Fig. 2).  

 

Deep learning has been used for pCT generation from MRI exclusively in the brain (23, 25, 26, 

57) and pelvis (27, 29, 48, 64–66). In the pelvis, four deep learning architectures have used: fully 

convolutional network (FCN) (65), deep embedding convolutional neural network (DECNN) 

(66), U-Net (48, 64), and GAN architecture without perceptual loss (27, 29). Imaging and dose 

endpoints have been considered to evaluate these methods within the scope of radiotherapy. All 

six studies evaluated the imaging endpoints in cohorts ranging from 15 to 39 patients, among 

which this of Arabi et al. (48) used the same cohort of patient than used in the present study. In 

the entire pelvis, the MAEs were 42.4 HU (65) and 42.5 HU (66) when FCN and DECNN 

architectures were used, respectively. Using a U-Net architecture, the MAEs were 30 HU (64) 

and 32.7 HU (48). Using a GAN architecture, the MAEs were 60 HU (27) and 39.0 HU (29). 

Although, the comparison can only be indirect, our proposed GAN L2 and U-Net L2 DLM 

compared favorably with a MAE value of 34.1 HU and 34.4 HU, respectively.  

Only four studies in the literature evaluated the dose uncertainties, three in the pelvis (27, 48, 

64) and one in the brain (26), considering various dosimetric endpoints. In the pelvis, the mean 

dose uncertainties reported using U-Net and GAN DLMs were lower than 0.2% and 0.5% in 

all the VOIs (27, 48, 64). Our mean dose uncertainties with GAN DLMs appears comparable 

(Table 2). In the literature, the reported mean gamma pass-rates were 98% (64) and 95% (48) 

with a 1%/1 mm criteria (in 2D), and 95% with a 2%/2 mm criteria (in 3D) (27). In comparison, 

we obtained a higher gamma pass-rate (99%) with our GAN and U-Net DLMs (Table 3).  

 

In our study, compared to the PBM, our GAN and U-Net DLMs provided lower imaging 

uncertainties, with the lowest for GAN L2 and U-Net L2 (Table 1). The perceptual loss in U-

Net and GAN did not decrease the HU uncertainty. This may be explained by the choice of our 

evaluation metric (HU difference, required within a dose calculation perspective), and not 

considering the image quality metrics (Universal image Quality Index (UQI) (67)) such as Peak 

Signal-to-Noise Ratio (PSNR), Normalized Mutual Information (NMI) (68), Structural 

SIMilarity (SSIM) (69), Visual Information Fidelity (VIF) (70) and Learned Perceptual Image 

Patch Similarity (LPIPS) (47, 71) used in computer vision applications. We did not consider 

any other image quality metrics than MAE and ME in this study, since not impacting dose 

calculation.  



While the perceptual loss does not seem to provide any advantage for dose calculation, this loss 

function may be relevant for other image processing task like segmentation and registration 

within a CBCT-based IGRT. Moreover, for the bone, the addition of adversarial term tends to 

decrease the imaging uncertainty in the GAN.  

Considering all the methods, the largest uncertainties were observed for the bone (up to 144 HU 

for MAE), which are related to the highest HU values in the bone (345 HU, additional Table 1). 

For the rectum, large uncertainties were also observed (up to 78 HU for MAE, Table 1), 

potentially related to the difference in gas pocket between the MRI and CTref. However, all these 

methods seemed to incorrectly reproduce the real air pockets (when they were present both on 

CT and MRI), as illustrated in Additional Fig. 1 (sagittal views). This issue could be explained 

by the complex detection of air pocket with the T2 MRI and lack of variability of air pockets in 

the training cohort.  

 

GAN PL and GAN L2 provided significant lower imaging uncertainties (MAE) than U-Net PL 

and U-Net L2, respectively. GAN L2 and U-Net L2 presented the lowest dose uncertainties 

(MAE) (Table 2 and Fig. 3) without any systematic dose uncertainties (ME) (Table 2 and 

additional Fig. 2). Nevertheless, these results appeared more robust with the adversarial term of 

the GAN discriminator loss function (Appendix 5). In our previous study that compared the bulk 

density method (BDM), atlas-based method (ABM) and PBM, PBM was found to be the most 

accurate pCT generation method. Additional Fig. 4 compares the nine strategies in the whole 

series of patients (BDM, ABM, PBM, and the six DLMs). This figure confirms that GAN L2 

and U-Net L2 are the most accurate methods and ABM and BDM are the least accurate. Overall, 

the dose uncertainties of the pCTs of each method are small, unlikely to be clinically relevant in 

terms of local control and toxicity.  

 

 

Our study presents some limitations. First, before the learning process, non-rigid registration 

was used to align pelvic anatomies between MRI and CTref, with the intrinsic uncertainties 

linked to the deformable image registration algorithm. However, we previously quantified these 

geometrical uncertainties in (20) by calculating the Dice scores before registration (CTinitial vs 

MRI) and after registration (CTref vs MRI) for the prostate, seminal vesicles, bladder, and 

rectum volumes. We found that all Dice scores were significantly improved by the non-rigid 

registration (p ≤0.05). Furthermore, these registrations did not correct the gas volatility in the 



digestive structures. The dose uncertainties related to rectal variations were quantified in our 

previous study using the PBM (20). The gas correction (gas inside the pCT was deleted and 

replaced by the gas from the CTref) yielded a significant lowest dose uncertainty for the rectum 

between V15 Gy and V25 Gy. Second, we investigated only the T2-weighted MRI sequences. 

DLMs may be sensitive to variations in MRI and other MR sequences could have been used. 

Because of the relative low number of patients, the optimization was performed with only one 

of the three draws. No test set was therefore used, potentially exposing our optimization to a 

bias. Even if the pCTs generated by DLMs and PBM provided overall low dose uncertainties, 

an outlier analysis should be however performed on an independent and large enough dataset. 

The GAN DLM was trained with 2D axial slices and not in with 3D images due to the GPU 

memory limitations. To overcome this issue, 3D patches could have been used during the 

training however at the expense of the contextual information inclusion. Indeed, small 3D 

patches (32x32x32 or 64x64x64) ignore the global anatomical information, as opposed to a 2D 

slice. In addition, 3D architectures are often shallow compared to 2D architectures (29).  

Another solution could be brought by the generation of pCTs from individual 2D axial, sagittal, 

and coronal slices fused together, adding 30 more seconds once the networks are trained. 

Finally, other emerging deep learning architectures such as the cycle-GAN, which may have 

allowed to overcome some intra-individual co-registration issues, could have been investigated.  

 

 

CONCLUSION 

 

To generate pCT for MRI-based prostate dose planning, deep learning methods appear to be 

particularly promising for clinical practice owing to the low dose uncertainty and fast 

calculation time. The U-Net and GAN DLMs with L2 loss function provide the lowest dose 

uncertainties. These MRI approaches in prostate cancer radiotherapy, which do not require any 

CT, could thereby improve the accuracy of VOI delineation and can also be used for 

(re)planning in the MRI-LINAC workflow (72). 
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Tables and figures 

 

Table 1. Imaging endpoints comparing the reference CT to the pseudo-CTs obtained by 

each method for the entire pelvis, soft tissue, and bone  

MAE: mean absolute error of HU values defined as the mean difference (in absolute value) of 

HU values per voxel between the reference CT and the pseudo-CT and; ME: mean error, 

defined as the mean difference of HU values per voxel between the reference CT and the 

pseudo-CT of each method.  

The imaging endpoint values are expressed as mean ± standard deviation. The Wilcoxon test 

was used to: firstly, compare the MAE of the GAN with L2 loss to those of the other methods; 

and to secondly, compare the ME of the methods to a null distribution. Significant differences 

(p ≤0.05) are displayed using the symbol *. The Wilcoxon test was also used to compare the 

gamma values of the GAN with perceptual loss to those of the U-Net with perceptual loss. 

Significant differences (p ≤0.05) are displayed using the symbol °. 

 

Table 2. Reference dose values, dose uncertainties (MAE) and systematic dose 

uncertainties (ME) for each pseudo-CT generation method for each volume of interest 

The mean values of DVH points are reported for the reference CT. The dose uncertainty is 

defined as the mean absolute DVH differences between the DVH calculated from the reference 

CT and those obtained from the pCTs. The systematic dose uncertainty is defined as the mean 

DVH differences between the DVH calculated from the reference CT and those obtained from 

the pCTs. The Wilcoxon test was used to: firstly, compare the dose uncertainty (MAE) of the 

GAN with L2 loss to those of the other methods; and secondly, to compare the systematic dose 

uncertainty (ME) of the methods to a null distribution. Significant differences (p ≤0.05) are 

displayed using the symbol *. The Wilcoxon test was also used to compare the gamma values 

of the GAN with perceptual loss to those of the U-Net with perceptual loss. Significant 

differences (p ≤0.05) are displayed using the symbol °.  



 

Table 3. Mean gamma and gamma pass-rate calculated from the reference CT and 

pseudo-CT dose distributions according to each method 

Values are mean ± standard deviation. 

The Wilcoxon test was used to compare the gamma values of the GAN with L2 loss to those of 

the other methods. Significant differences (p ≤0.05) are displayed using the symbol *. 

The Wilcoxon test was also used to compare the gamma values of the GAN with perceptual 

loss to those of the U-Net with perceptual loss. Significant differences (p ≤0.05) are displayed 

using the symbol °. 

 

Fig. 1. U-Net and GAN deep learning trained architectures with different implemented 

loss functions 

"I" corresponds to the training MRI and "C" to the corresponding training CT.  

Two deep learning neural networks (U-Net and GAN) were trained with four loss functions (L2 

loss, single-scale perceptual loss, multi-scale perceptual (MP) loss and weighted multi-scale 

perceptual (WMP) loss) yielding six different deep learning training strategies: U-Net with L2 

loss (U-Net L2), U-Net with single-scale perceptual loss (U-Net PL), GAN with L2 loss (GAN 

L2), GAN with single-scale perceptual loss (GAN PL), GAN with multi-scale perceptual loss 

(GAN MPL), and GAN with weighted multi-scale perceptual loss (GAN WMPL). For each 

patient from the training database, the CT and MRI training images were first non-rigidly co-

registered. The DLM architecture of the U-Net was symmetric, with N encoding and decoding 

units each. The contracting path consisted of 12 3 × 3 convolution layers with stride 2 for down-

sampling, each followed by batch normalization and ReLU activation function. To train the U-

Net DLM two different loss functions were implemented: L2 loss and single-scale perceptual 

loss. The VGG16 network was used to compute the features inside the CT and pCT images.  

The training of the GAN consists of two competing multilayer networks: the generator and the 

discriminator. The generator is used as a regression model to provide pCTs from MRIs. The 

generator employed in this study has the same architecture than the previous described U-Net. 

The discriminator aims to distinguish the real image (ground truth) from the realistic fake image 

(pCT) produced by the generator. The GANs are formulated mathematically as a minimax game 

between these two networks, which is solved by alternating gradient optimization. The input 

data of the generator are MRI and registered CT images that provide pCTs. Then, the 

discriminator classifies these pCTs as real or fake CTs until the discriminator cannot determine 



whether the pCT looks like a real CT or not. In the testing step, for a new given test patient, the 

MRI goes through the trained network to obtain the corresponding pCT. 

 

Fig. 2. Mean DVHs for prostate PTV, bladder, rectum, and femoral heads from the 

reference CT and pseudo-CTs generated by each method 

PBM: patch-based method; U-Net L2: U-Net using a L2 loss method; U-Net PL: U-Net using 

a single-scale perceptual loss (layer 7) method; GAN L2: Generative Adversarial Network 

using a L2 loss method; GAN PL: Generative Adversarial Network using a single-scale 

perceptual loss (layer 7) method; GAN MPL: Generative Adversarial Network using an multi-

scale perceptual loss method; GAN WMPL: Generative Adversarial Network using a weighted 

multi-scale perceptual loss method; 

Permutation tests were used to compare the DVHs from the reference CT to those of the pseudo-

CT generation methods. Significant differences (p ≤0.05) between the DVHs are displayed at 

the top of each figure using the symbol *.  

 

Fig. 3. Dose uncertainties (MAE) for all pseudo-CT generation methods along the entire 

DVH for the prostate PTV, bladder, rectum and femoral heads 

PBM: patch-based method; U-Net L2: U-Net using a L2 loss method; U-Net PL: U-Net using 

a single-scale perceptual loss (layer 7) method; GAN L2: Generative Adversarial Network 

using a L2 loss method; GAN PL: Generative Adversarial Network using a single-scale 

perceptual loss (layer 7) method; GAN MPL: Generative Adversarial Network using an multi-

scale perceptual loss method; GAN WMPL: Generative Adversarial Network using a weighted 

multi-scale perceptual loss method; 

The dose uncertainty is defined as the mean absolute DVH differences between the reference 

CT and the pCT corresponding to each method. Permutation tests were used to compare the 

absolute DVH differences of the GAN L2 method to those of the other methods. Significant 

differences (p ≤ 0.05) are displayed at the top of each figure with *.  
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29.2 

± 5.2* ° 

26.5 

± 

6.4 

27.1 

± 5.3* 

27.8 

± 5.0* 

27.4 

± 5.6* 

ME 

 

6.0 

± 19.0 

-2.6 

± 

14.7 

0.9 

± 14.0 

-2.8 

± 

14.3 

1.3 

± 14.8 

-0.6 

± 

14.1 

-1.2 

± 14.8 

Prosta

te 

(CTV) 

MAE  
20.6 

± 6.0* 

18.1 

± 

5.2 

22.2 

± 4.9* ° 

17.7 

± 

4.49 

23.3 

± 5.9* 

21.6 

± 3.7* 

22.9 

± 5.8* 

ME 

 

8.2 

± 

15.0* 

0.8 

± 

12.9 

14.4 

± 11.5* 

0.3 

± 

12.0 

16.8 

± 11.5* 

12.3 

± 11.2* 

13.9 

± 13.8* 

Bladd

er 

MAE  
21.1 ± 

9.0* 

18.6 

± 

7.4 

19.3 

± 10.0 

18.8 

± 

8.9 

19.6 

± 9.3 

20.2 

± 10.0 

19.9 

± 9.3* 

ME 

 

10.7 ± 

14.0* 

3.4 

± 

13.6 

5.3 ± 

16.6* 

3.7 

± 

14.6 

7.7 

± 15.5* 

3.4 

± 16.4 

5.7 

± 16.4* 

Rectu

m 

MAE  
78.0 ± 

60.5* 

65.0 

± 

65.7 

68.6 

± 66.1° 

68.3 

± 

64.4 

72.9 

± 68.6 

69.2 

± 65.5 

71.3 

± 68.5 

ME 

 

7.0 

± 

73.2* 

-

24.0 

± 

72.5 

-17.5 

± 74.1 

-

20.5 

± 

73.6 

-11.3 

± 78.9 

-16.6 

± 76.3 

-16.0 

± 77.2 

Bon

e 

only 

Whole 

pelvic 

bone 

MAE  

143.6 

± 

27.8* 

125.

3 

126.3 

± 22.1* 

123.

9 

± 

20.6 

127.9 

± 22.3* 

127.1 

± 21.1* 

126.7 

± 21.2* 



 

Table 1. Imaging endpoints comparing the reference CT to the pseudo-CTs obtained by 

each method for the entire pelvis, soft tissue, and bone  

MAE: mean absolute error of HU values defined as the mean difference (in absolute value) of 

HU values per voxel between the reference CT and the pseudo-CT and; ME: mean error, 

defined as the mean difference of HU values per voxel between the reference CT and the 

pseudo-CT of each method.  

The imaging endpoint values are expressed as mean ± standard deviation. The Wilcoxon test 

was used to: firstly, compare the MAE of the GAN with L2 loss to those of the other methods; 

and to secondly, compare the ME of the methods to a null distribution. Significant differences 

(p ≤0.05) are displayed using the symbol *. The Wilcoxon test was also used to compare the 

gamma values of the GAN with perceptual loss to those of the U-Net with perceptual loss. 

Significant differences (p ≤0.05) are displayed using the symbol °. 

 

± 

22.0

* 

ME 

 

58.3 ± 

45.5* 

20.2 

± 

42.3

* 

32.7 

± 41.8* 

19.4 

± 

41.4

* 

39.7 

± 40.8* 

31.8 

± 41.4* 

28.8 

± 41.3* 

Femor

al 

heads 

MAE  

109.3 

± 

27.0* 

102.

0 

± 

24.4

* 

103.8 

± 22.5* 

100.

2 

± 

20.4 

104.7 

± 21.5* 

104.9 

± 19.2* 

104.6 

± 20.9* 

ME 

 

36.5 ± 

49.9* 

5.0 

± 

49.5 

21.9 ± 

48.8* 

5.1 

± 

47.2 

29.8 

± 48.0* 

16.9 

± 48.1* 

19.6 

± 48.0* 



Volumes of interest 
Prostate 

CTV 

Prostate 

PTV 
Rectum Bladder 

Femoral 

heads 

Dosimetric endpoints 
D99% 

(cGy) 

Dmean 

(cGy) 

V95% 

(%) 

Dmean 

(cGy) 

V70Gy 

(%) 

Dmax 

(cGy) 

Dmean 

(cGy) 

V50Gy 

(%) 

Dmax 

(cGy) 

Dmean 

(cGy) 

V30Gy 

(%) 

Dmean 

(cGy) 

Reference CT values 
7628 

± 50 

7869 

± 52 

97.1 

± 1.4  

7816 

± 47 

7.5 

± 3.0 

7331 

± 166 

3603 

± 277 

22.4 

± 

11.5 

7784 

± 101 

2951 

± 981 

11.8 

± 

6.5 

1992 

± 249 

Dose 

uncertainties 

(MAE) 

Patch-based method 
39 

± 24* 

36 ± 

22* 

0.6 

± 0.6 

35 ± 

20* 

0.5 

± 0.9 

48 

± 58 

19 ± 

15* 

0.2 

± 0.1 

32 

± 22* 

12 ± 

10* 

0.3 ± 

0.3* 
7 ± 6* 

U-Net deep 

learning 

method 

L2 loss 
31 

± 31* 

29 ± 

24* 

0.6 

± 0.5 

28 ± 

23 

0.5 

± 0.5 

45 

± 45 

15 ± 

14 

0.1 

± 0.1 

26 

± 26 
9 ± 10 

0.3 

± 

0.3* 

6 ± 5* 

Single-scale 

perceptual loss 

(layer 7) 

38 

± 23* 

35 ± 

19* 

0.6 

± 0.6 

35 ± 

17* 

0.6 

± 0.8 

53 

± 65* 

18 ± 

14* 

0.2 

± 0.1 

30 

± 19 
10 ± 9 

0.3 

± 0.2 
7 ± 5* 

GAN deep 

learning 

method 

L2 loss 
28 

± 26 

26 ± 

24 

0.6 

± 0.5 

26 ± 

22 

0.5 

± 0.8 

45 

± 

59 

15 ± 

13 

0.1 

± 0.1 

25 

± 23 
9 ± 9 

0.2 

± 0.2 
5 ± 5 

Single-scale 

perceptual loss 

(layer 7) 

38 

± 24* 

36 ± 

21* 

0.6 

± 0.6 

35 ± 

19* 

0.5 

± 0.8 

50 

± 

65 

18 ± 

15* 

0.2 

± 0.1 

31 

± 19 

11 ± 

9* 

0.3 

± 0.2 
7 ± 5 

Multi-scale 

perceptual loss 

34 

± 22* 

32 ± 

19 

0.6 

± 0.6 

32 ± 

17 

0.5 

± 0.8 

48 

 ± 63 

16 ± 

13 

0.1 

± 0.1 

28 

± 19 
10 ± 8 

0.3 

± 0.2 
6 ± 5 

Weighted 

multi-scale 

perceptual loss 

36 

± 22* 

34 ± 

20* 

0.6 

± 0.5 

33 ± 

18* 

0.5 

± 0.8 

50 

± 64 

18 ± 

14* 

0.2 

± 0.1 

29 

± 19 
10 ± 9 

0.3 

± 0.2 
7 ± 5* 



Systematic 

dose 

uncertainty 

(ME) 

Patch-based method 
-16 

± 43* 

-12 ± 

41 

-0.3 

± 

0.8* 

-13 ± 

39* 

-0.3 

± 

0.8* 

-31 

± 

69* 

-12* ± 

21* 

-0.1 

± 0.2 

-11 

± 37 

-5 ± 

15* 

-0.1 

± 0.4 

-2 ± 

9* 

U-Net deep 

learning 

method 

L2 loss 
1 

± 40 
5 ± 38 

-0.1 

± 0.8 
3 ± 36 

-0.2 

± 0.9 

-17 

± 

73.3 

-3 ± 

21 

0.0 

± 0.2 

5.4 

± 36 
1 ± 13 

0.0 

± 0.3 
1 ± 8 

Single-scale 

perceptual loss 

(layer 7) 

-20 

± 40* 

-15 ± 

37* 

-0.3 

± 

0.8* 

-16 ± 

36* 

-0.4 

± 

0.9*  

-36 

± 76* 

-11 ± 

21* 

0.0 

± 

0.2* 

-9.6 

± 34 

-3* ± 

13* 

-0.1 

± 0.3 

-3* ± 

8* 

GAN deep 

learning 

method 

L2 loss 
1 

± 38 
6 ± 35 

-0.1 

± 0.8 
4 ± 34 

-0.2 

± 0.9 

-16 

± 

73 

-3 ± 

20 

0.0 

± 0.2 

6 

± 34 
0 ± 13 

0.0 

± 

0.3 

1 ± 7 

Single-scale 

perceptual loss 

(layer 7) 

-22 

± 40* 

-17 ± 

38* 

-0.3 

± 

0.8* 

-17 ± 

36* 

-0.4 

± 

0.9* 

-36 

± 

74* 

-11 ± 

21* 

-0.1 

± 

0.2* 

-12 

± 34* 

-4 ± 

14* 

-0.2 

± 

0.4* 

-4 ± 

8* 

Multi-scale 

perceptual loss 

-14 

± 

39* 

-10 ± 

36 

-0.3 

± 

0.8* 

-11 ± 

35 

-0.3 

± 

0.9* 

-29 

± 

74* 

-8 ± 

20* 

-0.0 

± 

0.2 

-7 

± 

33 

-2 ± 

13 

-0.1 

± 

0.3 

-2 ± 7 

Weighted 

multi-scale 

perceptual loss 

-13 

± 

40 

-9 ± 

39 

-0.2 

± 

0.8 

-9 ± 

37 

-0.3 

± 

0.9* 

-31 

± 

75* 

-8 ± 

21* 

0.0 

± 

0.2 

-5 

± 

35 

-2 ± 

14 

-0.1 

± 

0.3 

-2 ± 8 



 

Table 2. Reference dose values, dose uncertainties (MAE) and systematic dose uncertainties (ME) for each pseudo-CT generation method 

for each volume of interest 

The mean values of DHV points are reported for the reference CT. The dose uncertainty is defined as the mean absolute DVH differences between 

the DVH calculated from the reference CT and those obtained from the pCTs. The systematic dose uncertainty is defined as the mean DVH 

differences between the DVH calculated from the reference CT and those obtained from the pCTs. The Wilcoxon test was used to: firstly, compare 

the dose uncertainty (MAE) of the GAN with L2 loss to those of the other methods; and secondly, to compare the systematic dose uncertainty 

(ME) of the methods to a null distribution. Significant differences (p ≤0.05) are displayed using the symbol *. The Wilcoxon test was also used to 

compare the gamma values of the GAN with perceptual loss to those of the U-Net with perceptual loss. Significant differences (p ≤0.05) are 

displayed using the symbol °. 



 

 

  Gamma 

pass-rate 

(%) 

Mean 

gamma 

Gamma 

pass-rate 

(%) 

Mean 

gamma 
   

   

 
 

1%/1 mm, 10% low dose 

threshold 

1%/1 mm, 30% low dose 

threshold 

Methods 

used to 

generate 

pseudo-

CT 

Patch-based method 98.7 ± 1.4* 
0.47 ± 

0.20* 
99.5 ± 1.3 

0.40 ± 

0.16* 

U-Net 

methods 

L2 loss 99.2 ± 1.0 0.39 ± 0.17 99.5 ± 1.5 0.33 ± 0.19 

Single-scale 

perceptual 

loss (layer 7) 

99.3 ± 0.8 
0.42 ± 

0.13* ° 
99.8 ± 0.6 

0.37 ± 

0.15* 

GAN 

methods 

L2 loss 99.1 ± 1.0 0.39 ± 0.16 99.6 ± 1.3 0.32 ± 0.18 

Single-scale 

perceptual 

loss (layer 7) 

99.3 ± 0.9* 0.41 ± 0.15 99.7 ± 0.9 
0.38 ± 

0.16* 

Multi-scale 

perceptual 

loss 

99.2 ± 0.8 0.40 ± 0.14 99.7 ± 0.9 0.35 ± 0.15 

Weighted 

multi-scale 

perceptual 

loss 

99.3 ± 0.8* 0.40 ± 0.13 99.6 ± 1.1 
0.36 ± 

0.16* 

 

Table 3. Mean gamma and gamma pass-rate calculated from the reference CT and 

pseudo-CT dose distributions according to each method 

Values are mean ± standard deviation. 

The Wilcoxon test was used to compare the gamma values of the GAN with L2 loss to those of 

the other methods. Significant differences (p ≤0.05) are displayed using the symbol *. 

The Wilcoxon test was also used to compare the gamma values of the GAN with perceptual 

loss to those of the U-Net with perceptual loss. Significant differences (p ≤0.05) are displayed 

using the symbol °. 

 




