
HAL Id: hal-02302609
https://univ-rennes.hal.science/hal-02302609v1

Submitted on 7 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PAPIFY: Automatic Instrumentation and Monitoring of
Dynamic Dataflow Applications Based on PAPI

Daniel Madronal, Florian Arrestier, Jaime Sancho, Antoine Morvan, Raquel
Lazcano, Karol Desnos, Ruben Salvador, Daniel Menard, Eduardo Juarez,

Cesar Sanz

To cite this version:
Daniel Madronal, Florian Arrestier, Jaime Sancho, Antoine Morvan, Raquel Lazcano, et al.. PAPIFY:
Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI. IEEE
Access, 2019, 7, pp.111801-111812. �10.1109/ACCESS.2019.2934223�. �hal-02302609�

https://univ-rennes.hal.science/hal-02302609v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Received June 26, 2019, accepted July 23, 2019, date of publication August 9, 2019, date of current version August 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934223

PAPIFY: Automatic Instrumentation and
Monitoring of Dynamic Dataflow
Applications Based on PAPI
DANIEL MADROÑAL 1, FLORIAN ARRESTIER2, JAIME SANCHO 1, ANTOINE MORVAN2,
RAQUEL LAZCANO 1, KAROL DESNOS2, RUBEN SALVADOR 1, (Member, IEEE),
DANIEL MENARD2, (Member, IEEE), EDUARDO JUAREZ1, (Member, IEEE),
AND CESAR SANZ 1, (Member, IEEE)
1Research Center on Software Technologies and Multimedia Systems—CITSEM, Universidad Politécnica de Madrid, 28031 Madrid, Spain
2Univ Rennes, INSA Rennes, CNRS, IETR—UMR 6164, 35708 Rennes, France

Corresponding author: Daniel Madroñal (daniel.madronal@upm.es)

This work was supported in part by the European Union’s Horizon 2020 Programme through the CERBERO under Grant 732105, in part
by the Ministry of Economy and Competitiveness (MINECO) of the Spanish Government through the PLATINO under Project
TEC2017-86722-C4-2-R, and in part by the Universidad Politécnica de Madrid through the Programa Propio Predoctoral under Contract
RR01/2016 and Contract RR01/2015.

ABSTRACT The widening of the complexity-productivity gap in application development witnessed in the
last years is becoming an important issue for the developers. New design methods try to automate most
designers tasks to bridge this gap. In addition, new Model of Computations (MoCs), as those dataflow-
based, ease the expression of parallelism within applications, leading to higher designer productivity.
Rapid prototyping design tools offer fast estimations of the soundness of design choices. A key step when
prototyping an application is to have representative performance indicators to estimate the validity of those
design choices. Such indicators can be obtained using hardware information, while new libraries, e.g.,
Performance Application Programming Interface (PAPI), ease the access to such hardware information.
In this work, PAPIFY toolbox is presented as a tool to perform automatic PAPI-based instrumentation
of dynamic dataflow applications. It combines PAPIFY with a dataflow Y-chart based design framework,
which is called PREESM, and its companion run-time reconfiguration manager, which is called Synchronous
Parameterized and Interfaced Dataflow Embedded Runtime (SPiDER). PAPIFY toolbox accounts for an
automatic code generator for static and dynamic applications, a dedicated library to manage the monitoring
at run-time and two User Interfaces (UIs) to ease both the configuration and the analysis of the captured
run-time information. Additionally, its main advantages are 1) its capability of adapting the monitoring
according to the system status and 2) adaptation of the monitoring accordingly to application workload
redistribution in run-time. A thorough overhead characterization using Sobel-morpho and Stereo-matching
dataflow applications shows that PAPIFY run-time monitoring overhead is up to 10%.

INDEX TERMS Performance monitoring, PMCs, PAPI, automatic code generation, dataflow, models of
computation, code instrumentation.

I. INTRODUCTION
During the last few decades there has been an ever increas-
ing widening of the gap between platform complexity and
application development productivity, as shown, for instance,
in the case of modern heterogeneous embedded System-on-
Chips (SoCs) used in Cyber-Physical Systems (CPSs) [1].

The associate editor coordinating the review of this article and approving
it for publication was Yucong Duan.

On the one hand, modern architectures constantly grow in
heterogeneity and number of Processing Elements (PEs).
On the other hand, autonomous and multimedia applications
also have a constant increase in both algorithmic complexity
and computational power requirements while demanding low
energy consumption.

In this context, and under the pressure of stringent times to
market, evaluating the best architecture for each application
and devising an efficient implementation for it becomes

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 111801

https://orcid.org/0000-0001-5994-7440
https://orcid.org/0000-0001-8767-6596
https://orcid.org/0000-0002-2645-6749
https://orcid.org/0000-0002-0021-5808
https://orcid.org/0000-0002-2411-9132


D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

a really challenging task. Among others, this is due to
the peculiarities associated with each platform, e.g., effi-
cient workload distribution, parallelization strategies, bottle-
necks, memory accesses, etc. With current state-of-the-art
approaches, achieving well-balanced implementations that
fulfill functional and non-functional requirements, incurs in
ever increasing (experienced) developer times, who struggle
to meet all these often opposing criteria; this situation is
reaching the frontiers of what can currently be obtained. As an
approach to solve this issue, the Y-chart design strategy [2]
tries to bridge this productivity gap by isolating application
and architecture concerns and merging them under a set of
developer-defined constraints.

Combined with the Y-chart design methodology, dataflow
MoCs, Model of Architectures (MoAs), programming
methodologies and associated design tools bring the possibil-
ity to explore new, improved design flows. This way, Design
Space Exploration (DSE) by rapid prototyping of applica-
tions on these complex architectures is being tackled through
a set of different design automation tools like compiler par-
allelization techniques, code generation, task scheduling, etc.
However, tools based on Y-chart design and dataflow MoCs,
such as ORCC [3], PREESM [4] or SCADE [5], usually provide
a generic solution following a predefined methodology for
any application, which could imply that the proposed solution
does not fulfill the system specifications.

In order to evaluate the quality of automatic deployments,
it is necessary to analyze the application execution on the
target platform. Properly doing so requires having a deep
understanding of the specific characteristics of the architec-
ture and its available profiling tools. Thankfully, there is an
abstraction layer that exposes a uniform interface to access
hardware Performance Monitoring Counters (PMCs). PAPI
library [6] offers a common architecture-independent layer
coupled with an architecture-specific layer to cope with the
individual characteristics of each architecture. Using PAPI,
the PMCs can be accessed to profile low level events from a
processor execution. This information can, in turn, be used to
infer information of a higher level, such as memory usage,
code parallelization, workload distribution, I/O utilization,
etc. Additionally, other parameters, from an even higher level
of abstraction, can be estimated combining this information,
e.g., power or energy [7], [8]. The availability of these perfor-
mance indicators contributes not only to increase designers’
productivity, but also enables iterative design flows.

In this regard, SPiDER [9], a run-time manager based
on PREESM, deals with another current challenge: run-time
reconfiguration and refinement of (dataflow) applications.
As mentioned in [10], providing a run-time manager with
performance monitoring information would enhance the effi-
cient application workload redistribution among the platform
resources.

Even though a preliminary version of PAPIFY was already
presented in [11], the application monitoring only supported
static executions (without any kind of reconfiguration).
On the contrary, this paper contains not only a deeper insight

of the tool, but also presents a new internal structure of
PAPIFY, which is now capable of supporting dynamic moni-
toring. This new functionality makes PAPIFY detect the work-
load redistribution performed by SPiDER and, consequently,
it is able to modify the monitored data accordingly. Further-
more, transparently to the user, PAPIFY now adapts different
strategies according to the monitoring status to minimize
its overhead. To sum up, this paper presents the following
contributions:

• Design time: Y-chart based monitoring configuration.
Application monitoring configuration and platform sup-
ported monitors are completely isolated from each other

• Run-time: dynamic monitoring of application perfor-
mance execution that feeds a run-time manager like
SPiDER. The user-defined monitoring follows the actor
even after application reconfigurations

• PAPIFY-VIEWER: a graphical display showing collected
hardware information for improved data analysis

• Thorough overhead toolbox characterization. Analysis
for both static and dynamic scenarios when monitoring
applications with different complexity levels

The rest of the paper is organized as follows: PAPI, PREESM
and SPiDER are detailed in Section II; then, PAPIFY toolbox
is introduced in Section III, while, in Section IV, the toolbox
is characterized in terms of execution time overhead. Finally,
PAPIFY tool is compared with other state-of-the-art profiling
tools in Section V and the main conclusions are outlined in
Section VI.

II. RELATED TOOLS
In this section, the different composing tools involved in the
development of the automatic instrumentation and refine-
ment tool of dataflow applications, PAPIFY, are introduced.
The section is divided into three main parts: (i) presentation
and description of PAPI; (ii) brief introduction to PREESM
framework; and (iii) outline of the SPiDER run-time manager
for dynamic execution of dataflow applications.

A. PAPI
PAPI aims at providing a standard API focused on easing the
access to hardware monitoring information [6] through a set
of PMCs. Even though PAPI can be used as a standalone
tool for system and application analysis, it has been widely
employed as a middleware component in profiling, tracing
and sampling toolkits such as HPCToolkit [12], Vampir [13]
and Score-P [14].

Due to the arrival and expansion of multi/many-core pro-
cessors and heterogeneous platforms, and the associated
increase in complexity, PAPI has been divided into two
layers: on the one hand, an upper layer, which is platform-
independent, providing a standard hardwaremonitoring inter-
face; on the other, a lower, platform-dependent layer, which
is transparent to the user, configured at compile time to
automatically deal with the specific characteristics of the
architecture [6].

111802 VOLUME 7, 2019



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

PAPI has been built as a set of components (e.g., Graphics
Processing Unit (GPU), x86 processor, etc.) and allows the
user to define which ones are included when compiling the
library. That is, at compile time, the user can include the dif-
ferent components associated to the resources of the platform.
Consequently, even when a heterogeneous platform is taken
into account, the different hardware resources can be accessed
through the same interface. Consequently, the PMC informa-
tion can be obtained from a set of hardware resources such
as Central Processing Units (CPUs), GPUs, memory or user
defined components [15].

B. PREESM

PREESM1 is an open-source rapid prototyping tool [4] that
works with three inputs: (i) a dataflow graph defining
the application; (ii) a System-Level Architecture Model
(S-LAM) describing the target architecture; and (iii) a sce-
nario including a set of parameters and constraints to link
both of them. To deploy the algorithm over the target architec-
ture, PREESM automatically maps and schedules the dataflow
specification over the available PEs, e.g., over the available
CPU cores in a multi-core environment, as the one used in
this work.

Applications in PREESM are specified using the Param-
eterized and Interfaced Synchronous DataFlow (PiSDF)
MoC [4], an extension of the Synchronous DataFlow (SDF)
MoC [16], where computations are represented by nodes,
called actors, and communications occur through FIFOS.
PiSDF extends SDF by introducing consistent graph hierar-
chy using interfaces, parameterized FIFO sizes and run-time
reconfiguration [9].

Likewise, S-LAM [4] describes parallel architectures as a
set of PEs transmitting data through a set of communication
nodes and data links. By doing so, it supports the defini-
tion of SW, HW or heterogeneous platforms [17] connected
through different levels of granularity (i.e., Ethernet, shared
memory, etc).

The joint node of the Y-chart design flow is the scenario.
It relates both the application (PiSDF) and the architecture
(S-LAM). Additionally, it provides user defined information
to drive the automatic steps of the flow, e.g., actor timing
information or actor ↔ PE affinity. Using this information,
PREESM schedules, maps and simulates the execution of the
application and generates a compilable code in a language
supported by the architecture, thus providing both metrics for
system design and a prototype for testing.

It should be noted that there are two main characteris-
tics that make PREESM a suitable tool for an architecture-
independent DSE strategy compared to other frameworks
like, for example, ORCC [3]: (i) the decoupling between
application and architecture design and (ii) the static nature
and deadlock-freeness of the generated code execution.

1Documentation and tutorials available in: https://preesm.github.io/

FIGURE 1. SPiDER run-time structure.

C. SPiDER
SPiDER [9] serves as a supporting tool for run-time
adaptation. SPiDER is a run-time manager designed for
the execution of reconfigurable PiSDF [18] applications on
heterogeneous Multi-Processor System on Chips (MPSoCs)
platforms.

Figure 1 presents the internal structure and behavior of
SPiDER, which is composed of two types of run-times: one
Global Runtime (GRT) and multiple Local Runtimes (LRTs).
In Figure 1, the GRT is displayed as the Master process and
the LRTs are the Slave processes. The former is responsible
for handling the PiSDF graph and for performing themapping
and scheduling of the dataflow actors onto the different PEs of
the platform on which the application is executed. Although
the main purpose of the GRT is to distribute the work among
LRTs, it can also execute actors. On the other hand, LRTs
are lightweight processes whose only purpose is to execute
actors. LRTs can be implemented over heterogeneous types
of PEs, such as general purpose or specialized processors and
accelerators.

The steps of the execution scheme of SPiDER are also
depicted in Figure 1. First, the GRT analyzes the PiSDF graph
and performs the mapping and scheduling of the different
actors composing the graph Ê. From the resulting mapping
and scheduling, the GRT creates jobs that are sent to the
dedicated job queues of each LRT Ë, which are, in turn,
associated with each PE. Specifically, a job is a message
that embeds all data required to execute one instance of an
actor: a job ID, location of actor data and code, and the
preceding actors in the graph execution. When an LRT starts
the execution of an actor Ì, it waits for the necessary data
tokens to be available in the input FIFO specified by the job
message, among a pool of FIFOS Í. On actor completion, data
tokens are written to output FIFOS.
As the PiSDFMoC can work dynamically, parameters may

depend on the execution of some actors. In that case, LRTs
send the new values of the parameters to the GRT in order
to continue the execution of the graph. LRTs also send back
execution trace information to the GRT for monitoring and
debugging purposes Î.

III. PAPIFY TOOLBOX
In this section, the PAPIFY toolbox and its different composing
resources are described. Specifically, this section is divided

VOLUME 7, 2019 111803



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

FIGURE 2. PAPIFY diagram.

into four parts: first, a general overview of PAPIFY toolbox
is outlined, stressing the main architectural changes with
respect to [11]; secondly, the PAPIFY role in design time
to configure application monitoring is detailed; afterwards,
the use of PAPIFY at run-time is explained; finally, the PAPIFY-
VIEWER tool aimed at graphically representing the monitoring
information is described.

A. OVERVIEW
The objective of PAPIFY toolbox is twofold: (i) to ease the
instrumentation of dataflow applications to access hardware
PMC information at execution time (PAPIFY in design time,
hereafter, PAPIFY-DT); (ii) to provide sufficient information
to refine workloads distribution at both design and execution
times (PAPIFY in run-time, hereafter, PAPIFY-RT).

As shown in Fig. 2, PAPIFY toolbox is built on top of three
layers: application, library and hardware. Hardware, where
the PMCs are found, is accessed using PAPI components.
To ease its use from the application layer, a new library
called eventLib has been implemented. As a result, PAPIFY
toolbox has been built on top of PAPI as a new abstraction
layer which provides architecture and application isolated
monitoring configuration. This new layer is able to recon-
figure automatically the monitoring after application recon-
figurations and, additionally, to select a suitable user-defined
monitoring when resources of different nature are employed
(i.e., when using either a SW core or an FPGA). Likewise,
based on this new library, PAPIFY has been integrated with
both PREESM and SPiDER to provide themwith (i) application
monitoring configuration, (ii) automatic inclusion of eventLib
function calls, and (iii) performance monitoring of static and
(iv) dynamic scheduling executions, as detailed further down
in this section.

In comparison with the version of PAPIFY presented in [11],
the integration of both PAPIFY and SPiDER has led to the
support of dynamic monitoring. That is, the application
workload can be redistributed among the available PEs in
execution time and the monitoring configuration will follow
the reconfiguration.

FIGURE 3. PAPIFY-PREESM User Interface.

B. PAPIFY IN DESIGN TIME - PAPIFY-DT
The role of PAPIFY in design time is to provide the devel-
oper with a straightforward methodology to (i) configure
PMC-based application monitoring and (ii) automatically
instrument dataflow applications independently from the tar-
get platform. Regarding the new approach for the design time,
two main improvements have been carried out:
• Support of heterogeneous architectures has been
included, e.g., a system in which both SW cores and an
FPGA work together can be instrumented

• Instead of configuring the monitoring of the PEs, now
the performance monitoring is attached to each actor.
This new approach allows the monitoring to follow the
actor during application reconfigurations transparently
to the developer (or the systemmanager). This capability
will be explained in Section III-C

In order to allow the developer to configure the PAPIFY
monitoring, a UI has been developed and included within
the PREESM framework (see Fig. 3). In this interface, three
different sections are required: (1) PAPIFY file path, (2) PAPIFY
PE configuration and (3) PAPIFY actor configuration.
In the first section, the PAPI monitoring information is

uploaded to PAPIFY tab in PREESM using the xml file gen-
erated by executing papi_xml_event_info command
in the target platform. By doing so, the application can be
easily developed in a workstation and, later, launched on the
target platform taking into account its specific monitoring
information.

Secondly, in the PAPIFY PE configuration section,
the developer can associate each type of PE (in Fig. 3, x86 and
ARM) to its PAPI component (in this example the PAPI
components are the standard CPU component perf_event
and one example component that could be replaced by any
standard/custom component, e.g., an FPGA component).
With this strategy, any type of architecture defined in PREESM
using the S-LAM model can be also customized in terms of
supported PAPI monitoring.

111804 VOLUME 7, 2019



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

Finally, as mentioned before, the monitoring of dataflow
applications is now performed following an actor-wise
approach. Specifically, in the PAPIFY actor configuration
section, the developer can easily associate the available PAPI
events to each actor existing within the application.

As a link between design and run-time, application instru-
mentation has been included within PREESM code generation.
In this process, the user-defined monitoring configurations of
PEs and actors are analyzed and the corresponding code is
generated. This extra code is based on a set of function calls
to a new library called eventLib that will be detailed during
the next section.

C. PAPIFY IN RUN-TIME - PAPIFY-RT
After describing PAPIFY-DT objective, PAPIFY in run-time,
i.e., PAPIFY-RT, is detailed in this section. The role of this
part of the tool is to transparently apply andmanage the previ-
ously user-defined monitoring configuration of the dataflow
application.

The new approach proposed during this work (perform-
ing actor-wise monitoring) implies, at run-time, a complete
restructure of the internal behavior of eventLib compared
to the previous version of PAPIFY [11]. Currently, PAPIFY is
able to select, at run-time, the specific subset of PAPI events
supported by the PE executing one actor of the application
from the global monitoring configuration defined by the user.

To provide these capabilities, eventLib is divided into
three stages: configuration, start-stop and store. This scheme
allows the users to divide the problem and to efficiently
organize/refine the instrumentation to fit their requirements
(even when the automatic code generation is not employed).

Similarly, each element composing the architecture and
the application is characterized with a set of parameters.
Specifically, (i) each actor is associated with an actorName;
(ii) each PE is linked to a PEName, a PEId and the PAPICom-
ponentName, which is the PAPI component associated with
the PE; (iii) each eventSet is characterized by the number of
events included (numEvents), their names (eventNames) and
a generated eventSetId. It should be noted that all the IDs are
unique for the PEs and eventSets so as to distinguish them at
run-time.

During the configuration step, the library needs to be
initialized through the use of event_init() or event_
init_multiplex(), depending on whether the user
wants to enable multiplexing2 or not. Additionally, not only
the configuration of the monitoring is summarized in two
eventLib calls, but also the configuration of application func-
tions and architecture PEs are isolated from each other:

• configure_papify_PE(): using as input parame-
ters PEName, PAPIComponentName and PEId, it sets
up the PE and associates an id to the corresponding
resource and PAPI component.

2Please, refer to [19], [20] for more information about event multiplexing
within PAPI

• configure_papify_actor(): the input parame-
ters arePAPIComponentNames, actorName, numEvents,
eventNames, numConfigs (informing eventLib about the
number of PAPI components with a valid monitoring
configuration for this actor) and eventSetIds, which
will be used to know the eventSets to be monitored
for the associated actor in each PE type. Additionally,
a PapifyInfo variable where all the monitoring infor-
mation will be stored needs to be defined. During the
execution of this function call, the eventSets will be
analyzed, associating each event with its corresponding
PAPI component, and they will be linked to the actor
being monitored.

It should be noted that several actors could have the same
monitoring configuration and, hence, they will share the same
eventSetId to simplify the monitoring.

Once system monitoring has been configured, the code
instrumentation follows a start-stop strategy. By doing so,
the relevant parts of the application can be independently
analyzed. Although having a local start-stop monitoring strat-
egy increases the flexibility of what can be monitored, it also
could introduce a larger overhead compared to sampling
monitoring strategies.

Furthermore, the library has been built taking into account
the possibility to just monitor the execution time of the
application, to retrieve only hardware PMC information, or to
profile the system based on both data sources. Consequently,
this stage is based on four different function calls, all of
them sharing the same input parameters, i.e., the PapifyInfo
associated with the actor and the PEId which will execute the
actor:

• event_start_papify_timing(): stores the
starting time of the actor being monitored.

• event_stop_papify_timing(): stores the fin-
ishing time of the actor being monitored.

• event_start(): in order to support dynamic mon-
itoring, this function follows Algorithm 1. As can be
seen, first, it checks if the PE is currently monitoring
the same eventSet and, if so (KeepCounting state),
it only reads the value of the counters; if not, it stops
the counting of the currently running eventSet. After
that, the algorithm checks if the new eventSet has been
ever monitored in this PE. In this situation, if it is the
first time (FirstConfig state), it configures and launches
the new eventSet but, if not, eventLib enters on the
FastSwitching state and uses a previously configured
eventSet, hence speeding up the process of changing
monitoring configurations.

• event_stop(): reads the current values of the
eventSet PMCs and computes the differences of corre-
sponding event values.

It should be highlighted that, compared to the previous
version of PAPIFY, the monitoring is now performed by dif-
ferences instead of starting-stopping the PMCs every time,

VOLUME 7, 2019 111805



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

Algorithm 1: eventLib Heterogeneous and Dynamic
Monitoring Selection
Data: executingPE actorId

1 currentEventSetPE =
getEventSet(executingPE);

2 eventSetActor =
getEventSet(eventSetActor, typePE);

3 if currentEventSetPE != eventSetActor then
4 //Need to change eventSet;
5 stop_events();
6 if peEventSets[eventSetActor] != -1 then
7 //FastSwitching state;
8 currentEventSetPE =

peEventSets[eventSetActor];
9 else
10 //FirstConfig state;
11 currentEventSetPE =

eventSet_config(eventSetActor);
12 peEventSets[eventSetActor] =

currentEventSetPE;

13 start_events(currentEventSetPE);
14 read_events();
15 else
16 //KeepCounting state;
17 read_events();

Code template 1. Instrumented code using eventLib.

reducing the number of kernel interruptions and, thus, reduc-
ing the overhead.

Finally, the store stage is composed of only one function,
event_write_file(), which has as input parameter the
PapifyInfo structure. Currently, the performance information
is written into a .csv file. However, this isolation allows the
user to define its own store function to, for example, send the
data directly to a resourcemanager (e.g., to be used for further
processing and decision making towards self-adaptation).

To sum up, the code instrumentation using eventLib is
shown in Code template 1. This example shows that the
instrumentation of the code is based on eight function calls:

FIGURE 4. PAPIFY-SPiDER run-time structure.

one to initialize PAPI and eventLib libraries (line 2), two to
configure the system monitoring (lines 4-5), four to control
the actual monitoring (lines 7-8 and lines 12-13) and one to
save the PMC data (line 15).

Once the run-time behavior has been described, it can be
easily understood that, currently, PAPIFY is able tomonitor not
only static (PREESM) dataflow applications, but also dynamic
(SPiDER) ones, where a resource manager is redistribut-
ing the application workload among the available PEs at
run-time. On the one hand, for the static applications, all the
required eventSetswill be configured during the first iteration
of the application and, after that, only KeepCounting and
FastSwitching states will be reached, reducing considerably
the impact of the monitoring overhead. On the other hand,
in the dynamic case, in one of the redistribution decisions
taken by the resource manager, one actor can be associated
for the very first time to a PE at any iteration, and PAPIFY will
react by switching to the FirstConfig state.

Additionally, including PAPIFY in the SPiDER workflow
(see Fig. 4) enables self-awareness of the current system
status in SPiDER. Specifically, PAPIFY has been embedded
within the slave processes and all the PMC information is
retrieved by the master process, together with the previous
data.

Once this information is available in the GRT, its mapping
and scheduling decisions can be improved by including hard-
ware resource utilization within the workload distribution
loop. However, the details behind this idea are out-of-scope
of this work.

D. PAPIFY-VIEWER

Regarding the analysis of the monitoring information, to help
developers in reviewing all the retrieved hardware PMC data,
a visualization tool called PAPIFY-VIEWER has been included
in the toolbox.

PAPIFY-VIEWER displays performance data at both execu-
tion and post-execution times. It has two different views:
one represents actor-PE workload distribution and the other
displays actor hardware utilization.

Fig. 5 depicts an example of the workload distribution.
As can be seen, on the right side of the image there is a
legend in which each actor is associated with a different color.

111806 VOLUME 7, 2019



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

FIGURE 5. PAPIFY-VIEWER workload distribution view.

FIGURE 6. PAPIFY-VIEWER hardware utilization for PAPI_L1_DCM event
view.

Likewise, the horizontal axis represents the timeline of the
application execution. In the vertical axis, each core is rep-
resented. Finally, actors execution is displayed as a set of
rectangles, whose left and right limits are the starting and
finishing times of each actor execution, respectively.

On the other hand, Fig. 6 displays the hardware utilization
view, i.e., the amount of events associated with each actor
being monitored. On the right side, the available events are
shown, and, on the bottom side, all the actors are associ-
ated with a column, offering this way the event information
in a histogram-like view. Specifically, the average amount
of events associated with each actor is graphically shown,
together with a representation of their standard deviation.
It should be highlighted that, if actors are configured using
different eventSets, only the ones in which the selected event
is being monitored will have a value. Please note that, for
each view, a dynamic vertical (workload view) and horizontal
(event view) line has been included to accurately check the
displayed values.

IV. RESULTS: TOOL OVERHEAD CHARACTERIZATION
Relying on PAPI monitoring correctness [21], this section
gathers the performance results of the monitoring of static
(PREESM) and dynamic (SPiDER) dataflow applications.
Specifically, the overhead associated with the use of PAPIFY
to monitor each type of application is addressed to understand
the real-time monitoring drawbacks. The results presented
here have been obtained with a quad-core Intel Core
i5-4440 processor running at 3.10 GHz with 8 GB of
DDR3 RAM memory, under a Ubuntu 14.04 OS. It should

be noted that, in this paper, only a homogeneous architecture
has been employed. The overhead of using Hw accelerators
with PAPIFY is characterized in [17].

In the experiments, to study the monitoring overhead for
different actor granularities, two applications widely used by
PREESM developers are tested, Sobel-morpho filter [22] and
Stereo matching [4]. The former features simple actors (in
terms of computational complexity) while the latter presents
complex ones.

In order to profile the overhead associated to the use of
PAPIFY, three sections are defined: (1) static dataflow appli-
cations using PREESM, (2) dynamic dataflow applications
managed by SPiDER and (3) PAPIFY-VIEWER monitoring
overhead.

Finally, in order to analyze a wide range of possible sce-
narios, three different monitoring environments compose the
testbench:

1) The first one compares the application throughput
(i.e., images processed per second) with and without
Timing monitoring using PAPIFY. This test is launched
for 1-Core and 4-Core configurations and compared
with the experiment without instrumentation, hereafter
No Monitoring (NM).

2) Secondly, the 4-Core workload and its overhead are
analyzed using the events provided by PAPI. In this
case, equivalent eventSets are set up for every actor
within each application. Specifically, these eventSets
are configured with 1, 2, 4 and 8 events each for the
1-,2-, 4- and 8-EvEq experiments, respectively, to lin-
early increase the monitoring complexity.

3) Finally, as the third monitoring environment, the
8-EvEq experiment, which is considered the worst-
case scenario, is compared to the 8-EvDiff configura-
tion, in which the 7 first events composing each actor
eventSet match, while the 8th event is randomly cho-
sen, ensuring that every eventSet is different. With this
last experiment, non-uniform monitoring of dataflow
applications is characterized.

To generate the eventSets, 8 PAPI events related with tim-
ing and data movements have been selected. These events
are the ones directly linked to the use of dataflow applica-
tions, as the data communication among actors is explicitly
described. These events are:

• PAPI_TOT_INS and PAPI_TOT_CYC to profile the
workload distribution

• PAPI_L1_DCM, PAPI_L1_ICM and PAPI_L1_TCM to
analyze the L1 cache memory usage

• PAPI_L2_DCM, PAPI_L2_ICM and PAPI_L2_TCM to
evaluate the L2 cache memory usage

Every test has been run 50 times and, to compute the
throughput average, the same conditions have been consid-
ered to retrieve meaningful results. To do so, the warm-up
of cache memories have been excluded by removing the
10% of the highest and the 10% of the lowest throughput
values.

VOLUME 7, 2019 111807



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

TABLE 1. Throughput (images processed per second) of Sobel-morpho
and Stereo-matching static PREESM applications using 1 and 4 cores. NM
tests measure the throughput without instrumentation. Timing column
gathers the throughput when profiling the application in terms of
execution time. OH column represents (in %) the overhead computed as
Timing divided by NM.

FIGURE 7. Overhead (in %) monitoring static PREESM applications,
compared to the no monitoring (NM) experiment. Sobel-morpho is
represented in blue and Stereo-matching in red. Timing monitors only
time; 1-/2-/4-/8-EvEq monitor from 1 to 8 PAPI events, considering the
same events for every actor. 8-EvDiff monitors different events for each
actor.

A. MONITORING STATIC DATAFLOW APPLICATIONS
This part of the analysis is aimed at addressing the impact of
PAPIFY-RT usage in static applications in terms of execution
time overhead. Specifically, this evaluation is divided into two
parts.

First, the standard C version (NM experiment) of both
Sobel-morpho and Stereo-matching applications is compared
to their Timing versions, where PAPIFY is used to profile
them in terms of actor execution time. This test is run for
configurations using 1 and 4 cores.

Secondly, the overhead of PAPIFY-RT when accomplishing
a deeper profile is evaluated. Using 4 cores, the NM version
is compared to: (i) timing profiling (Timing); (ii) 1-/2-/4-/
8-EvEq experiments; and (iii) 8-EvDiff, where non-uniform
monitoring is considered.

In Table 1, the results of the first part of the analy-
sis are gathered. As can be seen, the complexity of the
Stereo-matching application is higher than the Sobel-morpho,
as their NM throughput using one core are 2.67 and 168.36,
respectively. Additionally, the overhead (column OH ) asso-
ciated with the timing profile is around 5% for the simple
application, while it is almost negligible for the complex
one. This low overhead is also observed when comparing the
speedup achieved for each test, as these values are almost
equivalent for experiments with and without time profiling.

As a second part of the analysis, the 4-Core experiment
is deeply profiled for both applications. In Fig 7, the over-
head (when compared to the NM configuration) associated
with each type of monitoring is depicted. As can be seen,
the Sobel-morpho application, which is represented as a blue
line with circular markers, presents a higher impact in terms

TABLE 2. Throughput (images processed per second) of Sobel-morpho
and Stereo-matching dynamic SPiDER applications using 1 and 3 LRTs,
together with 1 GRT. NM measures the throughput without
instrumentation. Timing represents the throughput when profiling the
application in terms of execution time. OH represents (in %) the
overhead computed as Timing divided by NM.

of performance overhead than the Stereo-matching applica-
tion (represented in red with triangular markers).

Specifically, Sobel-morpho, which is an application with
simple actors, presents an overhead of around 5%when a tim-
ing profiling (Timing experiment) is performed. Furthermore,
the overhead is fixed to around 10% when monitoring the
same events for every actor (1-/2-/4-/8-EvEq tests). Likewise,
the 8-EvDiff, which is the worst-case scenario in which
every actor has a different monitoring configuration, reaches
the maximum overhead: 33%. On the other hand, monitor-
ing Stereo-matching, which is an application with complex
actors, presents almost no impact on the system performance
and the overhead is always below 1%.

Comparing these results with the results obtained in [11],
it can be easily observed that the overhead has been drasti-
cally reduced. In [11], theworst-case scenariowas the 8-EvEq
for the Sobel-morpho application with an average overhead
of 67% using 4 cores. In this work, the same experiment has
an overhead 6 times lower (10.34%). Likewise, the new inter-
nal structure of PAPIFY-RT allows the developer to have a non-
uniform application monitoring, which was not supported in
the work presented in [11].

It should be noted that, considering the values retrieved
from the performancemonitoring, there is no difference when
compared to the previous work.

B. MONITORING DYNAMIC DATAFLOW APPLICATIONS
MANAGED BY SPiDER
Similarly to the analysis of static dataflow applications,
this section gathers the results obtained when monitoring
dynamic dataflow applications managed by SPiDER. These
results are organized as in the previous section: 1) sequential
and parallelized timing profiling comparison and 2) deep
monitoring analysis of the parallel version. In this case,
the Sobel-morpho application is exactly the same than in the
PREESM case but, on the contrary, a Stereo-matching applica-
tion version compliant with SPiDER has been employed [23].
This new version has exactly the same functionality but the
dataflow specification is slightly different to fit with the new
SPiDER semantics.

Concerning the first part of the study, Table 2 gathers
the throughput of both applications using 1 LRT and 3
LRTs together with the GRT. Specifically, experiments with

111808 VOLUME 7, 2019



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

FIGURE 8. Overhead (in %) monitoring dynamic SPiDER applications
using 3 LRTs, compared to the no monitoring (NM) experiment.
Sobel-morpho is represented in blue and Stereo-matching in red. Timing
monitors only time; 1-, 2-, 4-, 8-EvEq monitor from 1 to 8 PAPI events,
considering the same events for every actor. 8-EvDiff monitors different
events for each actor.

(Timing) and without (NM) timing profile are compared.
Due to the use of a GRT to control the application mapping
and scheduling, there are only 3 available cores to execute
the application. In this case, the Sobel-morpho application
configured to use 3 LRTs is the case in which the system
presents the highest overhead (2.87%). Additionally, it can
be observed that the speedup reached when parallelizing the
application is almost unaffected by the use of PAPIFY.
Fig 8 depicts the results obtained when SPiDER applica-

tions are monitored using different configurations. As seen,
the Stereo-matching application (represented in red with
triangular markers) is not affected, in terms of performance,
by PAPIFY monitoring, being the maximum overhead below
1%. On the other hand, the overhead of Sobel-morpho appli-
cation (represented in blue with circular markers) presents
an equivalent behavior to the PREESM case. In this case,
monitoring timing and equivalent eventSets for every actor
have an overhead of up to 5%, while monitoring different
events for each actor reaches a 17%.

C. REAL-TIME MONITORING WITH PAPIFY-VIEWER

As a final part of the analysis of PAPIFY toolbox, PAPIFY-
VIEWER is characterized in terms of overhead. This viewer,
implemented using Python, can be employed for both static
and dynamic application analysis. Additionally, it can be not
only used to analyze the data after the application execution,
but also to study the system behavior at run-time. However,
its use at run-time implies an additional overhead.

As the offline usage has no impact on the application
performance and both PAPIFY-VIEWER views have already
been described in Section III-D, this study will be focused
on the overhead at run-time.

Table 3 and Table 4 present the performance and over-
heads associated with the use of PAPIFY-VIEWER to monitor
Sobel-morpho and Stereo-matching applications at run-time,
respectively. In this case, the experiments have been carried
out for the simplest monitoring (Timing) and the most com-
plex one (8-EvDiff ).

As shown, the overhead associated with the use of PAPIFY-
VIEWER at run-time is high, reaching in some cases values
over 50%. The rationale behind this fact is that, to perform
these experiments, PAPIFY-VIEWER runs on the same platform
executing the application. That is, as PAPIFY-VIEWER has to

TABLE 3. Throughput (executions per second) and overhead (%) of
Sobel-morpho and Stereo-matching static dataflow applications using
1 and 4 cores. NM measures the throughput without instrumentation.
Timing represents the throughput when monitoring time. 8-EvDiff
measures the throughput when monitoring 8 different events for each
actor. OH represents (in %) the overhead computed as Timing or 8-EvDiff
divided by NM values when PAPIFY -VIEWER is used at run-time.

TABLE 4. Throughput (images processed per second) and overhead (%)
of Sobel-morpho and Stereo-matching dynamic dataflow applications
using 1 and 3 LRT, together with the GRT. NM measures the throughput
without instrumentation. Timing represents the throughput when
monitoring time. 8-EvDiff measures the throughput when monitoring
8 different events for each actor. OH represents (in %) the overhead
computed as Timing or 8-EvDiff divided by NM values when PAPIFY
-VIEWER is used in run-time.

be executed using the cores of the architecture, both the
viewer and the application itself need to share the resources.
Consequently, the system performance is reduced, especially
when the level of parallelism is large, e.g., PREESM execution
of Sobel-morpho using 4 cores. On top of that, as the system
resources are shared, the impact of PAPIFY-VIEWER on the
PMCs themselves can not be considered negligible.

For all these reasons, the use of PAPIFY-VIEWER at run-
time is only recommended to analyze the workload distribu-
tion and the specific timing of each actor.

V. DISCUSSION: OVERVIEW OF RELATED TOOLS
Once PAPIFY toolbox has been introduced and characterized
in terms of overhead, this section compares the obtained
results with similar State-of-the-Art (SoA) monitoring tools.
Table 5 summarizes the comparison with tools based on

VOLUME 7, 2019 111809



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

TABLE 5. State-of-the-art PAPI-based monitoring tools.

PAPI according to four aspects: Transparent Configuration,
Automatic Instrumentation, Graphical Viewer and Dataflow
Oriented Monitoring. These characteristics have been con-
sidered indispensable by the authors to increase application
development productivity. It should be highlighted that, con-
sidering the overhead of the tools, the one obtained during the
study presented in this work is equivalent to the one obtained
using these other tools.

Regarding Transparent Configuration, every tool based on
PAPI has provided a solution to it. To ease PAPI usage, all
the tools automatically configure the application monitoring
based on a set of predefined events or, as in the case of PAPIFY,
using the events defined by the user.

Secondly, the Automatic Instrumentation of the application
is only available in four of the tools compared. In these cases,
the code required to monitor the system is included within
the application while, in the rest of tools, the monitoring is
performed by a standalone application running in parallel.

Considering the large amount of information that is
retrieved by accessing the PMCs, the use of a graphical
interface to analyze the data seems to be advisable. This char-
acteristic is only addressed by four of the tools considered in
this comparison.

With regard to Dataflow Oriented Monitoring, to asso-
ciate the resource utilization with each part of the system
execution, PAPIFY has been integrated with both PREESM and
SPiDER tools. By doing so, the analysis is performed using a
dataflow oriented perspective. This methodology allows the
developer to define a different type of monitoring for each
part of the application. Among the tools based on PAPI, this
kind of analysis is only covered by the toolbox presented in
this paper.

Among the tools not based on PAPI, Turnus [24], [25]
can be considered a firm competitor. This tool also covers
the whole list of characteristics exposed in Table 5, but the
information retrieved by Turnus is related to higher levels
of abstraction. That is, it bases its analysis in actor firings,
data transfers and data dependencies. On the contrary, PAPIFY
not only provides an overview of the high-level in execution
time (e.g., actor firings, actor timing, application timing, etc)
that can be easily analyzed with PAPIFY-VIEWER, but also
retrieves low-level information of the real execution of each
actor, which allows the user to locate the resources acting as
bottlenecks on their implementations.

VI. CONCLUSION
In this work, PAPIFY toolbox has been presented as a set of
tools aiming at easing the profiling of dataflow applications

specified using PREESM framework. By using this tool,
developers are able to automatically instrument dataflow
specifications to retrieve hardware information from the
PMCs accessed through PAPI. Additionally, an extra abstrac-
tion layer (eventLib) has been included where the actor per-
formance monitoring continues after application workload
redistribution, hence, supporting monitoring for dynamic
dataflow applications.

Likewise, static and dynamic dataflow applications are
used to characterize PAPIFY in terms of overhead. Moreover,
it has been demonstrated that uniformmonitoring of dataflow
applications has a low impact in terms of execution time
(overhead below 10%) for the static applications and one even
lower (below 5%) when using dynamic applications. This
means that the overhead when compared to previous PAPIFY
approaches has been drastically reduced, while, additionally,
support for both dynamic application monitoring has been
included in this work. Although results for heterogeneous
platform are not included in this work, the monitoring of
this kind of systems is supported now thanks to the actor-
wise monitoring configuration and the run-time monitoring
selection per PE.

Additionally, the information obtained using PAPIFY is
graphically represented by PAPIFY-VIEWER. As a result,
developers are provided with an interpretation of the PMC
information, which allows them to improve their application
development efficiency at design time. Even though the per-
formance loss when all the processing resources are shared
can reach the 50%, its use is encouraged when free proces-
sors are available, as its overhead is below the 20%. This
issue is only found when developing, profiling or debugging
the application. In the near future, based on this run-time
information collected by PAPIFY, an automatic analysis and
its corresponding decision making will be added to SPiDER
to help increasing the self-awareness of the system.

Finally, PAPIFY toolbox has been compared to several state-
of-the-art profiling tools. After this analysis, it has been
demonstrated that PAPIFY is a firm competitor, as the most
important features of a profiling tool are already fulfilled.
Furthermore, theDataflow Oriented Monitoring presented in
this tool is an added value, as it both (i) introduces automatic
monitoring of dynamic dataflow specifications and, conse-
quently, (ii) enables an alternative, competitive approach to
help developers in locating application bottlenecks and their
sources.

REFERENCES
[1] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc. 11th

IEEE Int. Symp. Object Compon.-Oriented Real-Time Distrib. Comput.
(ISORC), May 2008, pp. 363–369.

[2] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vissers, ‘‘A method-
ology to design programmable embedded systems,’’ in Proc. Int. Workshop
Embedded Comput. Syst. Berlin, Germany: Springer, 2001, pp. 18–37.

[3] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and M. Raulet,
‘‘Orcc: Multimedia development made easy,’’ in Proc. 21st ACM Int. Conf.
Multimedia, Oct. 2013, pp. 863–866.

[4] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi,
‘‘Preesm: A dataflow-based rapid prototyping framework for simplifying
multicore DSP programming,’’ in Proc. 6th Eur. Embedded Design Educ.
Res. Conf. (EDERC), Sep. 2014, pp. 36–40.

111810 VOLUME 7, 2019



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

[5] B. Pagano, C. Pasteur, G. Siegel, and R. Knížek, ‘‘A model based safety
critical flow for the aurix multi-core platform,’’ in Proc. Embedded Real-
Time Softw. Syst. (ERTS), 2018, pp. 1–10.

[6] D. Terpstra, H. Jagode, H. You, and J. Dongarra, ‘‘Collecting performance
data with PAPI-C,’’ in Tools for High Performance Computing. Berlin,
Germany: Springer, 2010, pp. 157–173.

[7] R. Ren, E. Juarez, C. Sanz, M. Raulet, and F. Pescador, ‘‘Energy estima-
tion models for video decoders: Reconfigurable video coding-CAL case-
study,’’ IET Comput. Digit. Techn., vol. 9, no. 1, pp. 3–15, Jan. 2014.

[8] R. Ren, J. Wei, E. Juarez, M. Garrido, C. Sanz, and F. Pescador, ‘‘A PMC-
driven methodology for energy estimation in RVC-CAL video codec spec-
ifications,’’ Image Commun., vol. 28, no. 10, pp. 1303–1314, Nov. 2013.

[9] J. Heulot, M. Pelcat, K. Desnos, J.-F. Nezan, and S. Aridhi, ‘‘Spider:
A synchronous parameterized and interfaced dataflow-based RTOS for
multicore DSPS,’’ in Proc. 6th Eur. Embedded Design Educ. Res. Conf.
(EDERC), Sep. 2014, pp. 167–171.

[10] M. Masin, F. Palumbo, H. Myrhaug, J. A. de Oliveira Filho, M. Pastena,
M. Pelcat, L. Raffo, F. Regazzoni, A. A. Sanchez, A. Toffetti,
E. de la Torre, and K. Zedda, ‘‘Cross-layer design of reconfigurable
cyber-physical systems,’’ in Proc. Design, Automat. Test Eur. Conf.
Exhib. (DATE), Mar. 2017, pp. 740–745. [Online]. Available:
https://www.cerbero-h2020.eu/wp-content/uploads/2017/10/date17-
CERBERO-v1.0.pdf

[11] D. Madroñal, A. Morvan, R. Lazcano, R. Salvador, K. Desnos, E. Juáre,
and C. Sanz, ‘‘Automatic instrumentation of dataflow applications
using PAPI,’’ in Proc. 15th ACM Int. Conf. Comput. Frontiers, 2018,
pp. 232–235.

[12] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, ‘‘HPCTOOLKIT: Tools for
performance analysis of optimized parallel programs,’’ Concurrency
Comput., Pract. Exper.-Scalable Tools High-End Comput., vol. 22, no. 6,
pp. 685–701, Apr. 2010.

[13] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, ‘‘The vampir performance analysis tool-
set,’’ in Proc. 11th Int. Workshop Parallel Tools High Perform. Comput.,
2008, pp. 139–155.

[14] M. Schlütter, B. Mohr, L. Morin, P. Philippen, and M. Geimer, ‘‘Profiling
hybrid HMPP applications with score-P on heterogeneous hardware,’’ in
Proc. Int. Conf. Parallel Comput., 2014, pp. 773–782.

[15] A. Haidar, H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra,
‘‘Power-aware computing: Measurement, control, and performance anal-
ysis for Intel Xeon Phi,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2017, pp. 1–7.

[16] E. A. Lee and D. G.Messerschmitt, ‘‘Synchronous data flow,’’ Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[17] L. Suriano, A. Rodriguez, K. Desnos, M. Pelcat, and E. de la Torre, ‘‘Anal-
ysis of a heterogeneous multi-core, multi-hw-accelerator-based system
designed using PREESM and SDSoC,’’ in Proc. 12th Int. Symp. Recon-
figurable Commun.-Centric Syst.-Chip (ReCoSoC), Jul. 2017, pp. 1–7.

[18] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi,
‘‘PiMM: Parameterized and interfaced dataflow meta-model for MPSoCs
runtime reconfiguration,’’ in Proc. Int. Conf. Embedded Comput. Syst.,
Archit., Modeling, Simulation (SAMOS), Jul. 2013, pp. 41–48.

[19] R. V. Lim, D. Carrillo-Cisneros, W. Alkowaileet, and I. Scherson, ‘‘Com-
putationally efficient multiplexing of events on hardware counters,’’ in
Proc. Linux Symp., 2014, pp. 101–110.

[20] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra, ‘‘Using PAPI
for hardware performance monitoring on linux systems,’’ in Proc. Conf.
Linux Clusters, HPC Revolution, vol. 5, 2001, pp. 1–11.

[21] W. Korn, P. J. Teller, and G. Castillo, ‘‘Just how accurate are perfor-
mance counters?’’ in Proc. IEEE Int. Perform., Comput., Commun. Conf.,
Apr. 2001, pp. 303–310.

[22] G. Georgakarakos, S. Kanur, J. Lilius, and K. Desnos, ‘‘Task-based execu-
tion of synchronous dataflow graphs for scalable multicore computing,’’ in
Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS), Oct. 2017, pp. 1–6.

[23] J. Heulot, J. Menant, M. Pelcat, J.-F. Nezan, L. Morin, M. Pressigout,
and S. Aridhi, ‘‘Demonstrating a dataflow-based RTOS for heterogeneous
MPSoC by means of a stereo matching application,’’ in Proc. DASIP,
Oct. 2014, pp. 1–2.

[24] ‘‘Analysis and optimization of dynamic dataflow programs,’’ Ph.D. disser-
tation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
2015.

[25] S. Casale-Brunet, M. Mattavelli, and J. W. Janneck, ‘‘TURNUS: A design
exploration framework for dataflow system design,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2013, p. 654.

[26] P. J. Mucci, ‘‘PapiEx-execute arbitrary application and measure hardware
performance counters with PAPI,’’ Innov. Comput. Lab., Univ. Tennessee,
Knoxville, TN, USA, 2007.

[27] F. G. Tinetti and M. Méndez, ‘‘An automated approach to hardware per-
formance monitoring counters,’’ in Proc. Int. Conf. Comput. Sci. Comput.
Intell. (CSCI), Mar. 2014, pp. 71–76.

DANIEL MADROÑAL received the B.Sc. degree
in communication electronics engineering and
the M.Sc. degree in systems and services engi-
neering for the information society from Uni-
versidad Politécnica de Madrid (UPM), Spain,
in 2014 and 2015, respectively, where he is cur-
rently pursuing the Ph.D. degree in systems and
services engineering for the information society
with the Electronic and Microelectronic Design
Group (GDEM). In 2015, he was with the National

Institute of Applied Sciences (INSA), France, as an Interchange Student
of the M.Sc. degree. He is the author or coauthor of nine indexed jour-
nals and 18 contributions to technical conferences. His research interests
include high-performance multi- and many-core processing systems, real-
time hyperspectral image processing, and the automatic optimization of the
energy consumption in high-performance systems.

FLORIAN ARRESTIER received the Engineering
degree in electronics and computer engineering
from the National Institute of Applied Sciences
in Rennes (INSA), in 2017. He is currently pur-
suing the Ph.D. degree in electrical and computer
engineering with the Institute of Electronics
and Telecommunications of Rennes (IETR)
Laboratory.

JAIME SANCHO received the B.Sc. degree in
telecommunication engineering and the M.Sc.
degree in systems and services engineering for
the information society from Universidad Politéc-
nica de Madrid (UPM), Spain, in 2017 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree in systems and services engineering
for the information society with the Electronic
and Microelectronic Design Group (GDEM).
His research interests include high-performance

graphics processing systems, real-time hyperspectral image processing, and
inmersive computer vision applications.

ANTOINE MORVAN received the M.Sc. degree
in computer science from the University of
Rennes 1, in 2009, and the degree from Ecole Nor-
male Suprieure of Cachan—Antenne de Bretagne,
in 2013. He then worked on his Ph.D. thesis about
Polyhedral Compilation for High-Level Synthesis
in the CAIRN team at IRISA, Rennes, France.
He is currently a full-time Research Engineer on
the Cerbero Project within the VAADER Team
with IETR—INSA, Rennes. His main activities

consist in maintaining the PREESM tool and integrating the tool in the
project toolchain. His interests include program transformation and design
productivity, and ranging from hardware design to software optimisations,
including code quality aspects.

VOLUME 7, 2019 111811



D. Madroñal et al.: PAPIFY: Automatic Instrumentation and Monitoring of Dynamic Dataflow Applications Based on PAPI

RAQUEL LAZCANO received the B.Sc. degree
in communication electronics engineering and the
M.Sc. degree in systems and services engineer-
ing for the information society from the Uni-
versidad Politécnica de Madrid (UPM), Spain,
in 2014 and 2015, respectively, where she is cur-
rently pursuing the Ph.D. degree in systems and
services engineering for the information society
with the Electronic and Microelectronic Design
Group (GDEM). In 2015, she was with the Insti-

tute of Electronics and Telecommunications of Rennes (IETR), National
Institute of Applied Sciences (INSA), France, as an Interchange Student of
the M.Sc. degree. She is the author or coauthor of nine indexed journals
and 17 contributions to technical conferences. Her research interests include
high-performance multicore processing systems, real-time hyperspectral
image processing, and the automatic optimization of the parallelism in real-
time systems.

KAROL DESNOS received the Ph.D. degree
in signal and image processing from the INSA
Rennes, in 2014. Since 2011, he contributes to
the development of the PREESM open-source
rapid prototyping. In fall 2012, he was a Visit-
ing Researcher with the University of Maryland,
DSPCAD Research Group led by Pr. Shuvra
Bhattacharyya. Since 2015, he has given an invited
Lecturers with INSA Euromediterranee (Fés,
Morocco), Universidad Politecnica de Madrid,

Madrid, Spain, and the University of Rennes 1. He is currently an Asso-
ciate Professor with the National Institute of Applied Science (INSA) of
Rennes. He holds a joint appointment with the Institute of Electronics
and Telecommunications of Rennes (IETR). This work was Co-Supervised
by the Pr. Jean-François Nezan and Dr. Maxime Pelcat from the IETR,
and by Dr. Slaheddine Aridhi from Texas Instruments, France. He has
coauthored more than 20 articles in peer-reviewed international journals
and conferences. His research interests include dataflow models of compu-
tation and associated implementation techniques for the rapid prototyping
of applications running on heterogeneous MPSoCs. In particular, his Ph.D.
thesis focuses on the memory characterization and optimization of dataflow
applications on MPSoCs. He has been actively involved in several projects
including H2020 Project (CERBERO), French ANR Projects (COMPA,
ARTEFACT), U.S. NSF Project (COMPACTS-SL-MODELS), and a young
researcher project funded by the French research society ‘‘GdR ISIS’’
(MORDRED), which he leads. He took part in the creation of the MTAPI
standard with the Multicore Association. He has served as a member for
the technical program committee of three international conferences (SiPS,
DASIP, and ASR-MOV).

RUBEN SALVADOR holds a Ph.D. degree in elec-
trical and computer engineering from the Uni-
versidad Politécnica de Madrid (UPM). He was
a Research Assistant with the Center of Indus-
trial Electronics (CEI-UPM), from 2006 to 2011,
and with the Intelligent Vehicle Systems Divi-
sion, University Institute for Automobile Research
(INSIA-UPM), from 2005 to 2006. In 2009, he
was a Visiting Research Student with the Depart-
ment of Computer Systems, Brno University of

Technology. In 2017, he was a Visiting Professor with IETR/INSA Rennes.
He is currently an Assistant Professor with the Department of Telematics
and Electronics Engineering, Universidad Politécnica de Madrid (UPM),
and a Researcher Associated with the Center on Software Technolo-
gies and Multimedia Systems for Sustainability (CITSEM-UPM). He is
the author/coauthor of around 40 peer-reviewed publications in interna-
tional journals/conferences

and one book chapter. He has participated in nine EU/national research
projects and nine industrial projects. His research interests include high
performance and self-adaptive computer systems, with a particular focus
in the design of reconfigurable and parallel heterogeneous accelerators for
embedded systems. Applications of his work have included evolvable hard-
ware for systems self-adaptation in harsh environments and acceleration
of machine learning applied to hyperspectral image processing for cancer
detection. He serves as a TPC member for various international conferences
and acts as a Reviewer in a number of international journals/conferences.

DANIEL MENARD received the Ph.D. and HDR
(habilitation to conduct researches) degrees in
signal processing and telecommunications from
the University of Rennes, in 2002 and 2011,
respectively. He is currently a Professor with
the Electronics and Computer Engineering (ECE)
Department, INSA-Rennes (graduate engineering
school). From 2003 to 2012, he was an Associate
Professor with the ECE Department, University of
Rennes Engineering School, ENSSAT. He is also

the author of more than 80 international papers distributed in the areas of
embedded systems, computer-aided design, and arithmetic and signal pro-
cessing. His research interests include implementation of image and signal
processing applications in embedded systems, approximate computing, fixed
point arithmetic, low power systems, and video compression. He is also a
member of the IETR/CNRS Laboratory and IRISA/INRIA Laboratory.

EDUARDO JUAREZ received the Ph.D. degree
from the École Polytechnique Fédérale de Lau-
sanne (EPFL), in 2003. From 1994 to 1997,
he was a Researcher with the Digital Architec-
ture Group, Universidad Politécnica de Madrid
(UPM), and he was a Visiting Researcher with the
École Nationale Supérieure des Télécommunica-
tions (ENST), Brest, France, and the University of
Pennsylvania, Philadelphia, USA. From 1998 to
2000, he was an Assistant with the Integrated Sys-

tems Laboratory (LSI), EPFL. From 2000 to 2003, he was a Senior Systems
Engineer with the Design Centre of Transwitch Corporation, Switzerland,
while continuing his research toward the Ph.D. at EPFL. He has held a post-
doctoral position with the Grupo de Diseño Electrónico y Microelectrónico
(GDEM), UPM, in December 2004. Since 2007, he has been an Assistant
Professor with UPM. He is the coauthor of one book and author or coau-
thor of more than 50 papers and contributions to technical conferences.
He has participated in 12 competitive research projects and 19 noncom-
petitive industrial projects. His research activity interests include solving,
from a holistic perspective and the power/energy consumption optimization
problem of embedded systems, automatic parallelism extraction in dataflow
specifications, and hyperspectral imaging for health applications. In 2011, he
became a member of the Researcher Center on Software Technologies and
Multimedia Systems (CITSEM) of UPM.

CESAR SANZ received the Ph.D. degree from
the Universidad Politécnica de Madrid (UPM),
Madrid, Spain, in 1998. He was the Director of the
ETSIS de Telecomunicación. Since 2013, he has
been a Researcher with CITSEM. He is currently
a Full Professor with the ETSIS de Telecomu-
nicación, UPM. In addition, he leads the Elec-
tronic and Microelectronic Design Group, UPM,
involved in Research and Development Projects.
His current research interest includes microelec-

tronic design applied to real-time image processing.

111812 VOLUME 7, 2019


	INTRODUCTION
	RELATED TOOLS
	PAPI
	PREESM
	SPiDER

	PAPIFY TOOLBOX
	OVERVIEW
	PAPIFY IN DESIGN TIME - PAPIFY-DT
	PAPIFY IN RUN-TIME - PAPIFY-RT
	PAPIFY-VIEWER

	RESULTS: TOOL OVERHEAD CHARACTERIZATION
	MONITORING STATIC DATAFLOW APPLICATIONS
	MONITORING DYNAMIC DATAFLOW APPLICATIONS MANAGED BY SPiDER
	REAL-TIME MONITORING WITH PAPIFY-VIEWER

	DISCUSSION: OVERVIEW OF RELATED TOOLS
	CONCLUSION
	REFERENCES
	Biographies
	DANIEL MADROÑAL
	FLORIAN ARRESTIER
	JAIME SANCHO
	ANTOINE MORVAN
	RAQUEL LAZCANO
	KAROL DESNOS
	RUBEN SALVADOR
	and
	DANIEL MENARD
	EDUARDO JUAREZ
	CESAR SANZ


