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Abstract: The mononuclear single-molecule magnet (SMM) [Dy(tta)3(L)]·C6H14 (1) (where tta− =

2-thenoyltrifluoroacetonate and L = 4,5-bis(propylthio)-tetrathiafulvalene-2-(2-pyridyl)benzimidazole-
methyl-2-pyridine) was studied by spectro-electrochemistry. The resulting electronic spectra of the three
oxidation states 1, 1+

·, and 12+ were rationalized by time-dependent density functional theory (TD-DFT)
calculations starting from the DFT optimized structures. The modulation of the magnetic anisotropy of
the DyIII center upon oxidation was also inspected at the Complete Active Space Self-Consistent Field
(CASSCF) level of calculation.

Keywords: dysprosium; tetrathiafulvalene; single-molecule magnet; spectro-electrochemistry;
TD-DFT calculations; ab initio calculations

1. Introduction

Tetrathiafulvalene (TTF) is a well-known organic moiety successfully used in the elaboration of
molecular conductors [1–7] and molecular switches [8–11] as well as solar-energy systems [12,13] due
to its ability to be a reversible, strong electron-donating species. To reach the design of multifunctional
materials, the intense effort by chemists to combine the electronic conductivity with other physical
properties is the focus of current research [14–17]. For instance, during the last decade, the “through
bond” strategy, consisting in the functionalization of the TTF core with organic groups suitable for
a coordination reaction with metal precursors [18–24], has been used to combine lanthanide magnetism
and the attractive reversible redox properties of TTF derivatives [25–28]. Indeed, lanthanide ions possess
a strong anisotropy and a large magnetic moment which make them good candidates for obtaining
single-molecule magnets (SMMs) [29–37]. The motivation to design these new molecular objects is
driven by their potential abilities to pave the way for a new generation of quantum devices, such as
high-density data storage, quantum computing, and spintronics [38–43]. Thus, the combination of the
lanthanides and TTF-based ligands led to exciting multiple properties SMMs [44–54]. Nevertheless,
in these SMMs, TTF-based ligands are in their neutral state, and the examples of lanthanide coordination
complexes involving radical cation TTF species are still very scarce [55,56]. In fact, there are only two
examples to date of the direct comparison between two systems in which the TTF-based ligand is in
its neutral and radical cation oxidation states to evaluate the effect of the oxidation on the magnetic
properties [57,58].

In the present article, we focus our attention on a mononuclear complex of formula
[Dy(tta)3(L)]·C6H14 (1) (where tta− = 2-thenoyltrifluoroacetonate and L = 4,5-bis(propylthio)-
tetrathiafulvalene-2-(2-pyridyl)benzimidazole-methyl-2-pyridine) that displays SMM behavior with
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hysteresis at low temperature [59]. During the investigation of 1, its stability in CH2Cl2 solution
was demonstrated by the study of the electronic spectrum and by measuring the hysteresis loop in frozen
solution. Complex 1 was also at the origin of the highlight of isotopic effects on the relaxation time of
the magnetization [60–62]. In spite of the plethora of studies performed on this system, no study was
realized to probe the physical properties as well as the magnetic anisotropy after oxidation of the L ligand.
Thus, to go one step further, we studied, herein, the electronic spectra of the first and second oxidation
states of 1 (i.e., 1+· and 12+, respectively) by spectro-electrochemistry followed by their rationalization upon
TD-DFT (time-dependent density functional theory) calculations on the DFT optimized complexes. Finally,
the influence of the oxidation on the magnetic properties was evaluated using Complete Active Space
Self-Consistent Field/Restricted Active Space State-Interaction - Spin Orbit (CASSCF/RASSI-SO) calculations.

2. Results and Discussion

2.1. X-ray Structures of [Dy(tta)3(L)]·C6H14 (1)·C6H14, and DFT Optimized Structures of [Dy(tta)3(L)] (1opt),
[Dy(tta)3(L+·)] (1+·opt) and [Dy(tta)3(L2+)] (12+

opt)

The X-ray structure of 1 was refined and described in a previous work [60]. Briefly, the experimental
molecular structure was used as starting point for the DFT optimized structures of [Dy(tta)3(L)] (1opt),
[Dy(tta)3(L+·)] (1+·

opt) and [Dy(tta)3(L2+)] (12+
opt) (Figure S2). 1 consists in a mononuclear complex

of DyIII (Figure 1 and Figure S3). The DyIII ion lies in an N2O6 coordination sphere with a square
antiprism symmetry (SAPR-8 at 0.538 using SHAPE program [63]). The six oxygen atoms and two
nitrogen atoms belong to three hfac− anions and the L ligand, respectively. The average Dy-N and
Dy-O distances were 2.530 Å and 2.333 Å, respectively. The central C=C bond length (1.347 Å) and the
non-planar conformation of the TTF core attest the neutrality of L.
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Figure 1. X-ray structure of 1 (yellow) and optimized structures for the different oxidation states 1opt

(red), 1+·opt (blue) and 12+
opt (green).

The DFT optimization of the structure of 1 led to a complete boat conformation for the TTF core
(Figure 1 and Figure S2). While in the crystal structure, the pi-bonding between TTFs of neighboring
molecules maintained the structure flat, in the absence of such interaction, the preferable minima for
the ligand was a boated one. The Dy-N (2.551 Å) and central C=C (1.352 Å) distances were found
slightly longer than for the X-ray structure (Dy-N = 2.530(5) Å and C=C = 1.347(9) Å) while Dy-O
(2.322 Å) was slightly shorter (Dy-O = 2.333(4) Å). The symmetry of the DyIII surrounding remained
D4d with a very similar distortion compare to the ideal square antiprism (0.526). The crystal packing
of 1 was driven by the formation of head-to-tail dimers of complexes. One can remark that the bent
ligand character is more pronounced in 1opt than for 1. It could be due to the fact that the flat ligand
allows an optimal π–π interaction in the head-to-tail dimers of complexes while for the optimized
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structure, the neighboring molecules are not taken into account in the calculations. Thus, the ligand is
free to adopt such pronounced boat conformation in 1opt.

After the mono- (Figure S4) and di-oxidation (Figure S5) of the TTF core, the optimized structures
revealed an elongation of the central C=C bond (1.391 Å for 1+·

opt and 1.419 Å for 12+
opt) due to the

loss of electrons. The latter led to an increase of the aromaticity of L due to the removal of electrons
in the π C=C and π* C=S molecular orbitals (MOs) (see 1opt, 1+·

opt, and 12+
opt), and thus the TTF

moiety became increasingly planar (Figure 1). The two previous observations are in agreement with
the well-known consequences of a TTF core centered oxidation [64–66].

The decrease of the electron density on the TTF core affected the electron density of the
benzoimidazole-pyridine moiety, too, and consequently the Dy-N (2.562 Å for 1+·opt and 2.318 Å for
12+

opt) and Dy-O (2.569 Å for 1+
opt and 2.315 Å for 12+

opt) distances were slightly longer and shorter
than for the neutral species, respectively. The symmetry of the DyIII surrounding remained D4d with a
slightly higher distortion compared to the ideal square antiprism (0.600 for 1+·

opt and 0.590 for 12+
opt).

The X-ray structure of 1 and the three optimized structures demonstrated the integrity of the
coordination complexes for all the oxidation states of the TTF core.

2.2. Electrochemical Properties

The redox properties of the ligand L and complex 1 were investigated by cyclic voltammetry.
The cyclic voltammograms for L and 1 showed two mono-electronic oxidations at 0.504 V (reversible)
and 0.912 V (quasi-reversible) for L and 0.519 V (reversible) and 0.941 V (quasi-reversible) for 1.
They correspond successively to the formation of the TTF fragment radical cation and dication (Figures
S6 and S7). Oxidation potentials were shifted to higher positive values relative to the parent TTF
due to partial electron transfer from the donor (TTF) to the benzoimidazole-pyridine acceptor moiety.
More interesting is the slight shifts to higher oxidation potentials from L to 1 which illustrate the weak
decrease of electron density on the TTF core after coordination. The electrochemical properties attest to
the redox-activity of L and the corresponding complex. Such redox properties are required to perform
spectro-electrochemistry and give crucial information on the potential values which must be applied
(see next section).

2.3. Photo-Physical and Spectro-Plectrochemical Properties

The electronic properties of the complex were investigated in its neutral state (1), in its first
(1+·) and second (12+) oxidized states during electrochemical oxidation in the 9000 to 27,000 cm−1

energy range.
The electronic spectrum of 1 in this energy range was mainly composed of one intense absorption

band centered at 23200 cm−1 (red lines in Figure 2 and red decomposition in Figure 3a) which
has been identified as intra-ligand charge transfer (ILCT) from the TTF fragment to both bzip and
2-thenoyltrifluoroacetonate (tta−) units (Table 1) [59]. The modification of the electronic spectrum was
further studied during electrochemical oxidation in an optically transparent thin-layer electrochemical
(OTTLE) cell. The applied potential of the device was firstly set between the first and second oxidation
potentials of 1 to study the radical cation form 1+·. Under an applied potential of 0–0.7 V (Figure 2a),
several new absorption bands appeared (Figure 2b).
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(dashed red lines), and best fit (full black line, R2 = 0.9965). (d) Experimental positions and intensities of the
Gaussian decompositions for 1 (red sticks), 1+· (blue sticks), and 12+ (green sticks).
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Table 1. Experimental and time-dependent density functional theory (TD-DFT) calculated excitation
energies and main compositions of the low-lying electronic transitions for 1, 1+·, and 12+. In addition,
the charge transfer and the pure intramolecular transitions are reported. ID, IA, H, and L represent
the intramolecular tetrathiafulvalene (TTF) (Donor) or intramolecular bzip (Acceptor) transitions,
and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO),
respectively. Therefore, ILCT stands for intra-ligand charge transfer. The theoretical values are
evaluated at the PCM(CH2Cl2)-PBE0/SVP level of approximation.

Exp. Energy
(cm−1)

Theo Energy
(cm−1)

Osc. Type Assignment Transition

1 23,200 21,044 0.23
ILCT

πTTF→π*bzip H→L (91%)
21,356 0.04 πTTF→π*tta H→L + 1 (72%)

1+·

12,300 12,475 0.35 ID ILCT πTTF→π*TTF
πtta→π*TTF

H-3β→Lβ (75%)
H-2β→Lβ (21%)

15,800 18,491 0.02 ID πTTF→π*TTF
H−12β→Lβ (30%)
H-8β→Lβ (54%)

18,900 19,844 0.02 ID πTTF→π*TTF
H−12β→Lβ (49%)
H-8β→Lβ (25%)

21,500 22,325 0.20 ILCT πTTF→π*bzip Hα→Lα (49%)

22,900 23,823 0.06 ID πTTF→π*TTF
Hα→L + 5α (37%)
Hα→L + 6α (23%)

24,200 24,449 0.22 IA ID ILCT
πbzip→π*bzip
πTTF→π*TTF
πTTF→π*bzip

H-6α→Lα (12%)
H-4α→L+1α (15%)
Hα→L+6α (21%)

Hα→Lα (20%)

25,400 25,732 0.12 ID πTTF→π*TTF
Hα→L+5α (25%)
Hα→L+6α (21%)

12+

12,000 * 12,475 0.35 ID ILCT πTTF→π*TTF
πtta→π*TTF

H-3β→Lβ (75%)
H-2β→Lβ (21%)

13,400 13,620 0.66 ID ILCT πL→π*TTF H-4→L (69%)

14,100 14,085 0.19 ILCT πtta→π*TTF
πL→π*TTF

H-5/-6→L (65%)
H-4→L (69%)

14,900 14,689 0.11 ILCT πtta→π*TTF H-5/-8→L (65%)
16,200 15,063 0.05 ILCT πtta→π*TTF H-5/-6/-9/−10→L (66%)

18,600 * 19,844 0.02 ID πTTF→π*TTF
H−12β→Lβ (49%)
H-2β→Lβ (25%)

21,500 * 22,325 23,823 0.20
0.06 ILCT ID πTTF→π*bzip

πTTF→π*TTF

Hα→Lα (49%)
Hα→L + 5α (37%)
Hα→L + 6α (23%)

23,500 23,769 0.02 ID πTTF→π*TTF H-20→L (95%)

24,700 * 24,449 25,732 0.220.12 IA ID ILCT
πbzip→π*bzip
πTTF→π*TTF
πTTF→π*bzip

H-6α→Lα (12%)
H-4α→L + 1α (15%)

Hα→L + 5/ + 6α (42%)
Hα→Lα (20%)

* These absorption contributions come from the 1+·.

The resulting electronic spectrum of 1+· is depicted in Figure 3b, and it was decomposed in seven
contributions. The three lowest-energy bands are identified as intra-donor (ID) excitations involving
the radical cation TTF+ core. At this point, it is worth noting that the lowest-energy band centered at
12,300 cm−1 (calculated at 12,475 cm−1, Figure 4) is also composed of an intra-ligand charge transfer
(ILCT) excitation (HOMO-2β→LUMOβ, Figure 5 and Table 1) starting from the tta− ancillary ligand
to the TTF+·. Such ILCT excitations are allowed because of (i) the strong decrease of the donating
character of the radical-cation TTF+· core compared to the neutral TTF core [67,68] and (ii) the stronger
accepting character of the tta− anions than bzip moiety as attested by the nature of the ILCT in 1 and as
already observed in other TTF-based systems involving tta− anions [59]. Then four new additional
absorption bands appeared after oxidation of the complex at 21,500, 22,900, 24,200, and 25,400 cm−1

(Figures 2–4) which are attributed to π → π* intra-TTF+· (ID) excitations (HOMOα → LUMO + 5/

+ 6α, Figure 5 and Table 1) and to the HOMOα → LUMOα ILCT. The HOMOα and LUMOα are
respectively centered TTF+· and bzip orbitals (Figure 5), and consequently the HOMOα→ LUMOα

ILCT of 1+· (21500 cm−1, Table 1) is analogous to the HOMO→ LUMO ILCT of 1 (23,200 cm−1, Table 1).
Both experimental (Figures 2d and 3a,b) and calculated (Figure 3) absorption spectra are in perfect
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agreement. The reversibility of the first electrochemical oxidation of 1 was checked showing an almost
complete reversible process (Figure S8).Magnetochemistry 2019, 5, x FOR PEER REVIEW 7 of 14 
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Spectroscopic changes under an applied potential of 0.75 to 1.10 V are depicted in Figure 2a,c.
Comparison of the experimental (Figure 3c) and calculated absorption spectra (Figure 4) leads to the
conclusion that even at 1.10 V a mixture of the 1+· (blue decompositions) and 12+ (green decompositions)
species is observed. Unfortunately, in our experimental conditions, the application of higher potentials
led to irreversible decomposition of the species. Nevertheless, the absorption contributions attributing
to 12+ could be determined. Thus, in the energy range of 9000 to 27,000 cm−1, five decompositions
have been identified (Figure 3c,d). The four absorption bands centered at 13,400, 14,100, 14,900,
and 16,200 cm−1 and calculated at 13620, 14085, 14689, and 15063 cm−1 (Table 1) are attributed to
ILCT between the highest occupied molecular orbital (HOMO)-4 (fully delocalized orbital on the
whole ligand) and the lowest unoccupied molecular orbital (LUMO) (centered on the dicationic TTF2+
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core) and ILCT between tta− centered orbital and the LUMO. At higher energy, an ID HOMO-20→
LUMO (23,500 cm−1) excitation was also identified. The electronic spectrum of 12+ was composed of
excitations involving the LUMO as the accepting orbital because of the drastic decrease of the donating
character of the dicationic TTF2+ core compared to the neutral TTF and radical cationic TTF+ cores.
In the fully oxidized 12+ compound, the tta− ancillary ligands can be seen as the best accepting groups
of the system. Finally, the HOMO-4 for 12+ is the equivalent of the HOMO for 1 and 1+·.

Interestingly, the delocalization of these highest-energy TTF-centered orbitals is proportional
to the aromaticity of the ligand. Thus, the HOMO is totally centered on the TTF core (Figure 5),
which adopts a boat conformation (Figure 1), in 1; the HOMO is mainly centered on the TTF+· core,
which is almost planar (Figure 1), in 1+· and the HOMO is totally delocalized on the whole L ligand,
which is totally flat (Figure 1), in 12+.

The second oxidation of 1 is badly reversible (Figure S9) in agreement with the electrochemical
properties, which show only a quasi-reversible second oxidation at 0.94 V (Figure S7).

2.4. Magnetic Properties

SA-CASSCF/RASSI-SO calculations were performed for each oxidation state of 1 to tentatively
evaluate the potential impact of the oxidation of the TTF core on the magnetic anisotropy of the
DyIII center. Calculations demonstrated that the axial character of the magnetic anisotropy tensor of
the almost pure ground Kramers doublet MJ = ±15/2 is conserved after the TTF-centered oxidation
(Table S1). The calculated gzz components are equal to 19.52 for 1, 19.56 for 1opt, 19.57 for 1+·opt,
and 19.45 for 12+

opt (Table S1). Whatever the oxidation state, the main component of the magnetic
anisotropy (gzz) remains oriented perpendicular to the plane formed by the nitrogen atoms of the
benzo-imidazole-2-pyridine moiety as expected for an oblate ion (Figure S10). Finally, the energy
splitting of the 6H15/2 ground state is almost not affected by the oxidation process (Figure S11). In other
words, the oxidation of the TTF core has presumably no influence on the magnetic anisotropy from
a molecular perspective. However, from a computational perspective, these calculations cannot
completely exclude an influence of the oxidation on the magnetism. Taking the 1+·opt as an example,
to affirm this, it would be necessary to perform a calculation on an active space that includes at least the
metal ion, the electron on the TTF, and all its correlated orbitals. However, such calculations demand
is, for now, prohibitive. In any case, the observations made from our state-of-the-art calculations
are in agreement with what has been observed in previously studied systems highlighting that to
obtain a redox-magnetic switching, the organic radical should be directly connected to the lanthanide
ion [69–71].

3. Materials and Methods

3.1. Synthesis. General Procedures and Materials

All solvents were dried using standard procedures. 4,5-bis(propylthio)-tetrathiafulvalene-2-(2-
pyridyl)benzimidazole-methyl-2-pyridine ligand (L) [72], Dy(tta)3·2H2O [73] precursor and
[Dy(tta)3(L)]·C6H14 (1) [59] compound were prepared according to the literature procedure. All the
reagents were purchased from Aldrich and Alfa Aesar Co. Ltd. and were used without
further purification.

3.2. Physical Measurements

Cyclic voltammetry was carried out in CH2Cl2 solution, containing 0.1 M (C4H9)4NPF6 as
supporting electrolyte. Voltammograms were recorded at 100 mV s−1 at a platinum disk electrode.
The potentials were measured versus a saturated calomel electrode (SCE). Optical spectra were
measured using the KBr disk method on Perkin-Elmer 1600 Series FT-IR (resolution 4 cm−1) for
infrared (IR). Absorption spectra were recorded on a Varian Cary 5000 UV-Visible-NIR spectrometer.
Electrochemical studies were carried out under argon using an Eco Chemie Autolab PGSTAT
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30 potentiostat (CH2Cl2, 0.2 M Bu4NPF6), the working electrode was a Pt disk, and ferrocene
was the internal reference. Visible spectro-electrochemistry (SEC) experiments were performed at
20 ◦C, under argon, with a homemade optically transparent thin-layer electrochemical (OTTLE) cell,
path length = 1mm, using a Varian CARY 5000 spectrometer and an EG & G PAR Model 362 potentiostat.
A Pt mesh was used as the working electrode, a Pt wire was used as the counter electrode, and an Ag
wire was used as a pseudo reference electrode. The electrodes were arranged in the cell such that
the Pt mesh was in the optical path of the quartz cell. The anhydrous freeze−pump−thaw degassed
sample-electrolyte solution (0.2 M n-Bu4NPF6) was cannula-transferred under argon into the cell
previously thoroughly deoxygenated.

3.3. Computational Details

DFT geometry optimizations and TD-DFT excitation energy calculations of the YIII analogs of
the corresponding complexes 1opt, 1+·opt, and 12+

opt were carried out with the Gaussian 09 (revision
A.02) package [74] employing the PBE0 hybrid functional [75,76]. The “Stuttgart/Dresden” basis sets
and effective core potentials were used to describe the yttrium atom [77], whereas all other atoms
were described with the SVP basis sets [78]. The first 50 monoelectronic excitations were calculated.
In all steps, a modeling of bulk solvent effects (solvent = dichloromethane) was included through
the Polarisable Continuum Model (PCM) [79], using a linear-response non-equilibrium approach for
the TD-DFT step [80,81]. Molecular orbitals were sketched using the Gabedit graphical interface [82].
Wavefunction-based calculations were carried out on the experimental molecular structure of 1 and on
the DFT optimized structures 1opt, 1+·opt, and 12+

opt by using the SA-CASSCF/RASSI-SO approach,
as implemented in the MOLCAS quantum chemistry package (versions 8.0) [83]. In this approach,
the relativistic effects are treated in two steps based on the Douglas–Kroll Hamiltonian. First, the scalar
terms were included in the basis-set generation and were used to determine the spin-free wavefunctions
and energies in the complete active space self-consistent field (CASSCF) method [84]. Next, spin-orbit
coupling was added within the restricted-active-space-state-interaction (RASSI-SO) method, which uses
the spin-free wavefunctions as basis states [85,86]. The resulting wavefunctions and energies are used
to compute the magnetic properties and g-tensors of the lowest states from the energy spectrum by
using the pseudo-spin S = 1

2 formalism in the SINGLE-ANISO routine [87,88]. Cholesky decomposition
of the bielectronic integrals was employed to save disk space and speed-up the calculations [89]. In all
calculations, the active space of the self-consistent-field (CASSCF) method consisted of the nine 4f
electrons of the DyIII ion spanning the seven 4f orbitals, i.e., CAS(9,7)SCF. State-averaged (SA-)CASSCF
calculations were performed for all of the sextets (21 roots), all of the quadruplets (224 roots), and 300 out
of the 490 doublets (due to hardware limitations) of the DyIII ion. Twenty-one sextets, 128 quadruplets,
and 107 doublets were mixed through spin–orbit coupling in RASSI-SO. All atoms were described
using the Relativistic (semi-)Core Correlation - Atomic Natural Orbital (ANO-RCC) basis sets [90–92].
The following contractions were used: [8s7p4d3f2g1h] for Dy, [4s3p2d1f] for the O and N atoms,
[3s2p1d] for the C and F atoms, [4s3p1d] for the S atoms, and [2s1p] for the H atoms.

4. Conclusions

To conclude, we have shown by spectro-electrochemistry that it is possible to form reversibly the
radical cation and the dicationic species of a well-known redox-active SMM. The electronic spectra of
the three compounds 1, 1+·, and 12+ were experimentally decomposed and rationalized by TD-DFT
calculations. Upon oxidation, the donating character of the TTF core decreased, playing the double
role of electron donator and acceptor in 1+·, until becoming an electron-acceptor in 12+. Consequently,
the lowest-energy electronic transitions were identified as TTF → bzip ILCT for 1, TTF → TTF ID
for 1+·, and tta→ TTF ILCT for 12+. Finally, ab initio calculations demonstrated that the magnetic
anisotropy of the DyIII is kept under the oxidation process in at the molecular level paving the route to
design conducting SMM with these systems. Efforts to obtain single crystals of the oxidized systems
and measurements of electronic conductivity are still in progress in our laboratory.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/3/46/s1,
Figure S1. X-ray structure of 1 and optimized structures for the different oxidation states (1opt, 1+·

opt, and 12+
opt);

Figure S2. Experimental X-ray structure of 1. n-hexane molecule of crystallization and hydrogen atoms are
omitted for clarity; Figure S3. Optimized structure of 1; Figure S4. Optimized structure of 1+·. Figure S5.
Optimized structure of 12+; Figure S6. Cyclic voltammograms of L (gray line) and 1 (black line) in CH2Cl2 at
a scan rate of 100 mV·s−1. The potentials were measured vs. a saturated calomel electrode (SCE) with Pt wires as
working and counter electrodes; Figure S7. Cyclic voltammograms of 1 (black line, ten first cycles) in CH2Cl2 at
a scan rate of 100 mV·s−1. The potentials were measured vs. a saturated calomel electrode (SCE) with Pt wires as
working and counter electrodes; Figure S8. Initial absorption spectra of 1 (red line), after oxidation under a 0.7 V
applied currant 1+· (blue line), and after switching off the applied current for 20 min (dashed red line). The full
red line is recovered after 35 minutes; Figure S9. Initial absorption spectra of 1 (red line), after oxidation under
a 1.1 V applied currant 12+ (green line) and after switching off the applied current for 20 min (dashed red line);
Figure S10. Representation of the calculated local ground state magnetic anisotropy axes for the complexes 1,
1opt, 1+·opt, and 12+

opt; Figure S11. Energy splitting of the 6H15/2 ground state for the complexes 1, 1opt, 1+·opt,
and 12+

opt; Table S1. Main components of the magnetic anisotropy g-tensor (gXX, gYY and gZZ) and wavefunction
composition of the ground state of 1, 1opt, 1+·opt, and 12+

opt.
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Abbreviations

The following abbreviations are used in this manuscript:

SMM Single Molecule Magnet
CH2Cl2 dichloromethane
tta− 2-thenoyltrifluoroacetonate
TTF Tetrathiafulvalene
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
ILCT Intra-Ligand Charge Transfer
DFT Density Functional Theory
TD-DFT Time-Dependent Density Functional Theory
CASSCF Complete Active Space Self-Consistent Field
RASSI-SO Restricted Active Space State Interaction—Spin-Orbit
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