
COMPACTIFICATION OF THE GROUP OF RIGID MOTIONS

AND APPLICATIONS TO ROBOTICS

NESTOR DJINTELBE AND MICHEL COSTE

Abstract. We introduce a compactification of the group of rigid motions in
3-space derived from the Study model for this group. We use this compactifi-

cation in robot kinematics, by considering the boundary of the configuration

space of a robot. We study in particular the degeneration of the direct kine-
matic problem for some parallel robots with three degrees of freedom.

1. Introduction

The Lie group of rigid motions in 3-space is a fundamental tool in kinematics.
This is a noncompact group, and therefore it is natural to look for compactifications.
Such a compactification, known for a long time, is given by the Study model, as
a quadric in a projective space of dimension 7. The Study model has proved very
useful for the algebraic modelization of problems in robotics and their resolution in
computer algebra systems. We give a presentation of the Study model in Section 2.
In Section 3, we recall a few examples of the use of the Study model for algebraic
modelization in robotics; this section also serves to introduce the parallel robots
that we shall consider. This material is not new and we give references to the
literature.

In order to give a convenient kinematic interpretation to the boundary points, it
is necessary to modify the compactification by blowing-up the Study quadric along
its exceptional 3-plane, the complement of the image of the group of rigid motions.
This is explained in Section 4, where we also show that this new compactification
is isomorphic to the compactification obtained by taking the projective closure of
the subgroup of translations. We describe geometrically the boundary of configu-
ration space for the robots presented in the preceding section. The purpose of the
introduction of boundary points is to obtain information on the kinematics of the
robots as the lengths of their limbs are large enough.

A prominent problem in the kinematics of parallel robots is the direct kinematic
problem (DKP): what are the possible configurations of the robot for given actuated
joint variables (for given lengths of limbs, in the cases under consideration). We
propose in Section 5 to study a “degenerate” direct kinematic problem on the
boundary of the configuration space of the robot. This degenerate DKP is much
simpler than the full DKP of the robot, and it gives a rather faithful picture of the
behaviour of the robot for sufficiently large limb lengths.

2. Study model

We present in this section the parametrization of the group of rigid motions in
3-space which was invented by E. Study in 1891 [8]. This parametrization is well
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adapted to robot kinematics (see [5]) and has been used in many papers. Our
presentation is a little different from the usual one.

2.1. Rigid motions and rotations over dual numbers. We denote by R[ε] the
algebra of dual numbers a + εb, where a, b are real and ε2 = 0. An element of
SO3(R[ε]) is of the form R + εM, where R and M are real 3× 3 matrices such that

I3 = (R + εM)(R + εM)T = R RT + ε(R MT + M RT) .

So R ∈ SO3(R) and M RT is skew-symmetric. Every skew-symmetric 3× 3 matrix
is the matrix of the cross-product x 7→ t × x for some vector t; we denote this
matrix by

Ωt =

 0 −c b
c 0 −a
−b a 0

 where t =

ab
c

 .

Hence, every element of SO3(R[ε]) can be uniquely written in the form:

(I3 + εΩt)R where R ∈ SO3(R) and t ∈ R3 .

To each element (I3 + εΩt)R ∈ SO3(R[ε]) we associate the rigid motion x 7→
Rx + t in SE3(R). We denote by Φ this bijection.

Theorem 1. Φ : SO3(R[ε])→ SE3(R) is a group isomorphism.

Proof. Let (I3 + εΩt)R and (I3 + εΩv)S be two elements of SO3(R[ε]). On the one
hand we have

R(Sx + u) + t = (RS)x + (Ru + t) ,

and on the other hand

(I3 + εΩt)R(I3 + εΩu)S = RS + ε(ΩtRS + RΩuS)

= RS + ε(ΩtRS + ΩRuRS) = (I3 + εΩRu+t)RS .

This proves that the bijection Φ is indeed a group isomorphism. �

Remark. A point with values in R[ε] is the same as a real point plus a tangent
vector at this point. Moreover, the Lie algebra of SO3(R) may be identified with
R3 equipped with the cross-product and the adjoint action, with this identification,
is the action by rotations. This is what is behind Theorem 1.

2.2. Dual quaternions. It is well-known that the group of unit quaternions (quater-
nions with norm 1) is a double covering of SO3. The rotation matrix image of the
quaternion x0 + x1i + x2j + x3k is

(1)

R(x0, x1, x2, x3) =x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x2

0 − x2
1 + x2

2 − x2
3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3


This is also the case working over R[ε] instead of R. The unit elements in the
algebra H[ε] of dual quaternions are those q + εr with q, r ∈ H such that

1 = (q + εr)(q + εr) = qq + ε(qr + rq) .

With q = x0 + x1i + x2j + x3k and r = y0 + y1i + y2j + y3k, this amounts to

x2
0 + x2

1 + x2
2 + x2

3 = 1 and x0y0 + x1y1 + x2y2 + x3y3 = 0 .

The element of SO3(R[ε]) image of the unit dual quaternion q + εr in the double
covering is (I3 + εΩt)R where R is given by formula (1) and

(2) t(x0, x1, x2, x3, y0, y1, y2, y3) = 2

x0y1 − x1y0 + x2y3 − x3y2

x0y2 − x1y3 − x2y0 + x3y1

x0y3 + x1y2 − x2y1 − x3y0
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This formula (2) is obtained by plugging in the dual quaternion (q+ εr)q = 1+ εrq
in formula (1) and identifying the result with I3 + εΩt; note that rq is a pure
quaternion.

2.3. Study quadric. Formulas (1) and (2) are homogeneous of degree 2 in vari-
ables x, y (we use x for x0, . . . , x3 and y for y0, . . . , y3). So instead of describing
rigid motions by pairs of opposite unit dual quaternions, we can use points in the
7-dimensional real projective space P7(R) with homogeneous coordinates x, y sat-

isfying
∑3

i=0 xiyi = 0 and
∑3

i=0 x
2
i 6= 0. In this way we arrive to the Study model

for rigid motions:

Theorem 2 (Study). Let S ⊂ P7(R) be the 6-dimensional Study quadric with
equation

3∑
i=0

xiyi = 0 ,

and let E ⊂ S be the 3-plane contained in S with equations x0 = x1 = x2 = x3 = 0.
There is a one-to-one correspondance which, to each point with homogeneous

coordinates x, y belonging S \ E, associates the rigid motion

u 7−→ 1

∆(x)

(
R(x)u + t(x, y)

)
,

where ∆(x) =
∑3

i=0 x
2
i , R is given by formula (1) and t by formula (2).

The Study quadric contains 3-planes. There are two 6-dimensional families of
these 3-planes, and these 3-planes have kinematic significance. For instance the
3-plane y0 = y1 = y2 = y3 = 0 (corresponding to rotations with center the origin)
is in one family which also contains the “exceptional” 3-plane E; the 3-plane y0 =
x1 = x2 = x3 = 0 (corresponding to translations) is in the other family. We shall
see others of these 3-planes in the next section. For more details we refer to [7]
p. 246.

3. Operation modes of parallel robots

3.1. Configuration space and modes of operation. We report in this section
a few results concerning the kinematics of mobile platforms with different archi-
tectures which are estabished in the papers [6, 9, 10] We are considering robots
consisting of a mobile platform linked to a fixed base by three limbs with variable
lengths (their lengths are controlled by actuated prismatic (P) joints). Both base
and platform are equilateral triangles, and the limbs are attached to the base and
the platform via joints centered at the vertices Ai and Bi of these triangles. The
mobile platform has restricted degrees of freedom due to the specification of the
joints.

For the algebraic modelization we work in the fixed frame attached to the base:

In this frame the vertices of the base have coordinates

A1 :

 0
k1

0

 A2 :

 0
−k1/2√
3 k1/2

 A3 :

 0
−k1/2

−
√

3 k1/2

 ,
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where k1 is the radius of the circle circumscribed to the base. We have a similar
mobile frame attached to the platform (with k2 the radius of its circumscribed
circle) and we compute the coordinates of the points Bi in the fixed frame using
the Study parametrization with homogeneous coordinates (x, y) for the change of
frame. If we denote by bi the vector of coordinates of Bi in the frame attached to
the platform, we have

Bi =
1

∆(x)
(R(x)bi + t(x, y)) .

We form the homogeneous ideal generated by the constraint equations of the
platform and the equation of the Study quadric S. We saturate this ideal with
respect to ∆(x) =

∑3
i=0 x

2
i in order to remove spurious components contained in

the exceptional 3-plane E. The ideal obtained is the ideal of the configuration space
of the mobile platform, an algebraic subset of the Study quadric.This configuration
space is not irreducible in the examples we shall consider. Its irreducible compo-
nents are the modes of operation of the platform. We obtain these different modes
of operation by computing the primary decomposition of the ideal of the configu-
ration space. In the examples, we shall perform the computations for k1 = 1 and
k2 = 3/2.

3.2. 3-RPS [6]. In the 3-RPS architecture, each limb is attached to the base via
a passive revolute (R) joint whose axis of rotation is tangent to the circle circum-
bscribed to the platform, and attached to the platform via a passive spherical (S)
joint which allows all rotations around its center. The limb (AiBi) is perpendicular
to the axis of rotation at Ai.

The constraint equation for each limb expresses that (AiBi) is orthogonal to the
tangent at Ai to the circumscribe circle. The configuration space is 3-dimensional
and there are two modes of operation whose ideals are:

• I1 = 〈x0, x1y1 + x2y2 + x3y3, 3x2x3 + 2x2y0 − 2x3y1 + 2x1y3, 3x2
2 −

3x2
3 + 4x3y0 + 4x2y1 − 4x1y2, 9x2

3y1 − 6x3y0y1 − 8y2
0y1 − 6x2y

2
1 − 8y3

1 −
8y1y

2
2−18x3y2y3−6x2y

2
3−8y1y

2
3 , 9x3

3−6x2
3y0−8x3y

2
0 +4x2y0y1−12x3y

2
1 +

12x1x3y2 + 8x1y0y2 + 6x1x2y3 − 12x2y2y3 − 12x3y
2
3〉

• I2 = 〈x1, x0y0 + x2y2 + x3y3, 3x2x3 + 2x2y0− 2x3y1− 2x0y2, 3x2
2− 3x2

3 +
4x3y0 + 4x2y1 − 4x0y3, 9x2

3y0 − 6x3y
2
0 − 8y3

0 − 6x2y0y1 − 8y0y
2
1 + 6x3y

2
2 −

8y0y
2
2 +6x2y2y3−12x3y

2
3−8y0y

2
3 , 27x3

3−36x3y
2
0−16y3

0−36x3y
2
1−16y0y

2
1−

18x0x2y2 − 36x0y1y2 + 12x3y
2
2 − 16y0y

2
2 + 36x0x3y3 − 12x2y2y3 − 48x3y

2
3 −

16y0y
2
3〉

The lists of generators of these ideals is not very informative. Nevertheless we
can see that in the first mode, the rotation part is a half-turn (x0 = 0) while
the rotation part in the second mode has an horizontal axis (x1 = 0). One can
also check (although this is not visible on the computed generators) that the two
modes are interchanged by the involution consisting in multiplying on the right
with quaternion i, that is composing on the right with the half-turn with vertical
axis through the origin.
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3.3. SNU 3-UPU [9]. In the 3-UPU architectures, each limb is attached to the
base and to the platform via passive Cardan joints, also called universal joints (U).
Each U joint has two axes of rotation intersecting orhogonally in the center of the
joint. We shall study two different architectures. In the SNU 3-UPU architecture,
the rotation axis of the U-joint which is rigidly fixed on the base (resp. platform)
is pointing towards the center of its circumscribed circle. The two rotation axes
rigidly fixed on the limb are parallel, and both orthogonal to the limb. In the
following picture, the rotation axes are numbered following the kinematice chain
from base to platform.

The constraint equation for each limb expresses that axis 1, axis 4 and (AiBi)
are coplanar. There are seven modes of operation with 3 d.o.f., all 3-planes in the
Study quadric, whose ideals are :

• K0 = 〈y0, y1, y2, y3〉 ; all rotations around the origin.
• K1 = 〈y0, x1, x2, x3〉 : all translations.
• K2 = 〈x0, y1, x2, x3〉 : rigid motions consisting in the half-turn with vertical

axis through origin, followed by a translation.
• K3 = 〈y0, y1, x2, x3〉 : all rigid motions in the base plane.
• K4 = 〈x0, x1, y2, y3〉 : rigid motions consisting in a horizontal flip followed

by motion in the base plane.
• K5 = 〈x0, y1, y2, y3〉 : rigid motions consisting in a half-turn with axis

through origin, followed by a translation in the direction of the axis of
half-turn.
• K6 = 〈y0, x1, y2, y3〉 : rigid motions consisting of the half-turn with vertical

axis through origin, followed by a rigid motion of mode K5. The rotation
part of a rigid motion in this mode is a rotation with horizontal axis.

plus a non-real component K7 whose real points correspond to translations along
the vertical axis through origin, possibly composed with the half-turn around this
axis. These are contained in other modes of operation.

The configuration space is stable by the involution consisting in composing on
the right with the half-turn with vertical axis through the origin. Modes K0,K3,K4

and K7 are stable by this involution which exchanges modes K1,K2 and also modes
K5,K6.

3.4. Tsai 3-UPU [10]. The only thing which makes the Tsai 3-UPU architecture
different from the SNU one is the fact that rotation axes 1 and 4 on each limb are
tangent to the circumscribed circles of base and platform respectively.
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This small change changes drastically the kinematic behaviour of the platform.
The configuration space now contains four modes of operation corresponding to
3-planes in the Study quadric, which are the modes K1,K2,K3,K4 of the SNU, plus
another “mysterious” mode which is a real subvariety of dimension 3 of the Study
quadric whose computed ideal has a long list of generators:

K8 = 〈2x1y1 + x2y2 + x3y3, 2x0y0 + x2y2 + x3y3, . . .

. . . , 15x2
2x3y0 − 5x3

3y0 − x3
2y1 + 3x2x

2
3y1 − x2

2y0y1 − x2
3y0y1〉

The kinematic analysis of this last mode of operation is not easy. We shall see later
how to recover partial information on this mode, via degeneration.

4. Compactification and boundary

We introduce in this section a compactification of the group of rigid motions,
and also compactifications of configuration spaces and modes of operation. The
purpose of these compactifications is to use degeneration to the boundary in order
to obtain some partial information on the kinematic behaviour of the robots. The
usefulness of points in the boundary for kinematic problems is exemplified in [3]
and also, for a different kind of boundary points, in [4].

4.1. Blowing-up of S along E. The 3-plane E with equations x0 = x1 = x2 =
x3 = 0 may be seen as the boundary of SE3(R) in the Study quadric S. This
boundary is composed of limits of rigid motions as the norm of the translation
vector goes to infinity. In this boundary, all information about the rotation part of
the rigid motion is lost.

To avoid this, we blow up S along E in order to replace E with a variety of
dimension 5 while E is of dimension 3 only. The information on rotation part will
not be lost in this new boundary. Blowing-up a variety V gives a new variety that
is birational to V ; some information on blowing-up is given in [1], p. 78.

In order to describe more precisely the blowing-up, we introduce new homoge-
neous variables w = w0, w1, w2, w3. The blowing-up of S along E is BlE(S) with
the projection π : BlE(S)→ S where

(3) BlE(S) =
{([

x, y
]
, [w]

)
∈ P7(R)× P3(R) |

3∑
i=0

xiyi = 0,

3∑
i=0

yiwi = 0

xiwj − xjwi = 0 for 0 6 i < j 6 3
}

and π is the restriction of the projection on the first factor.
BlE(S) is a compact variety of dimension 6. The restriction of π to BlE(S) \

π−1(E) is an isomorphism onto S \ E, so that SE3(R) may be identified with
BlE(S) \ π−1(E) and π−1(E) appears as the boundary of SE3(R) in BlE(S). We
denote by

α : SE3(R) ∼= S \ E −→ BlE(S) \ π−1(E) ↪→ BlE(S)

the compactification of SE3(R) thus obtained.
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The inverse image π−1(E) of E in the blowing-up, i.e. the exceptional divisor,
is the hypersurface in the product of projective spaces P3(R) × P3(R) (with ho-
mogeneous coordinates y for the first factor and w for the second) whose equation
is

w0y0 + w1y1 + w2y2 + w3y3 = 0 .

It looks like the equation for the Study quadric, but here it is an equation of bidegree
(1, 1) which describes a variety of dimension 5. The homogeneous coordinates w
and y give respectively information about the rotation (in the usual way that a
quaternion determines a rotation) and the direction of the translation vector by
the formula (2) by replacing the x with the corresponding w. More precisely this
direction is given by the vector

u(w, y) =

w0y1 − w1y0 + w2y3 − w3y2

w0y2 − w1y3 − w2y0 + w3y1

w0y3 + w1y2 − w2y1 − w3y0

 .

If we normalize the homogeneous coordinates w by
∑3

i=0 w
2
i = 1 and y by

∑3
i=0 y

2
i =

1, then the vector u(w, y) has norm 1.

4.2. Comparison of compactifications. The group SE3(R) is the semi-direct
product SO3(R)nR3. The rotation group SO3(R) is compact, and it is isomorphis
as real variety to P3(R) via the regular mapping [x] 7→ 1

∆(x)R(x) where R is as in

(1). We can compactify R3 to P3(R). Thus we obtain the following compactification
of SE3(R):

β : SE3(R) ∼= SO3(R) nR3 ↪→ P3(R)× P3(R) .

We are going to see that this compactification coincides with the one obtained by
blowing-up the Study quadric. Define the morphism σ

σ : P3(R)× P3(R) −→ P7(R)× P3(R)

([w], [r, s, t, u]) 7−→ ([x, y], [w])

by

(4)


x0 = w0r 2y0 = −w1s− w2t− w3u
x1 = w1r 2y1 = w0s+ w3t− w2u
x2 = w2r 2y2 = −w3s+ w0t+ w1u
x3 = w3r 2y3 = w2s− w1t+ w0u

.

Theorem 3. The two compactifications α and β of SE3(R) are isomorphic. More
precisely, the morphism σ induces a biregular isomorphism of real varieties (in the
sense of [1]) σ : P3(R)× P3(R)→ BlE(S) such that α = σ ◦ β.

Proof. The mapping σ is a well-defined regular mapping. Indeed, the formulas (4)
are homogeneous of bidegree (1, 1) and, since

(5)

(w2
0 + w2

1 + w2
2 + w2

3)r = w0x0 + w1x1 + w2x2 + w3x3

(w2
0 + w2

1 + w2
2 + w2

3)s = 2 (−w1y0 + w0y1 − w3y2 + w2y3)

(w2
0 + w2

1 + w2
2 + w2

3)t = 2 (−w2y0 + w3y1 + w0y2 − w1y3)

(w2
0 + w2

1 + w2
2 + w2

3)u = 2 (−w3y0 − w2y1 + w1y2 + w0y3) ,

if all xi and all yi are zero, then all wi are zero or r = s = t = u = 0, which is
impossible for homogeneous coordinates. It is also clear from formulas (4) and the
description (3) of BlE(S) that the image of σ is contained in BlE(S). In order to
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show that σ is an isomorphism of real algebraic varieties from P3(R)× P3(R) onto
BlE(S), we show that the regular mapping

τ : P7(R)× P3(R) ⊃ BlE(S) −→ P3(R)× P3(R),

([x, y], [w]) 7−→ ([w], [r, s, t, u]),

defined by the homogeneous formulas of bidegree (1, 1)

(6)

r = w0x0 + w1x1 + w2x2 + w3x3

s = 2 (−w1y0 + w0y1 − w3y2 + w2y3)

t = 2 (−w2y0 + w3y1 + w0y2 − w1y3)

u = 2 (−w3y0 − w2y1 + w1y2 + w0y3) ,

is the inverse of σ. The morphism τ is well-defined on BlE(S). Indeed the r, s, t, u
given by formulas (6) cannot vanish simultaneaously on BlE(S). From formulas (6)
and wixj = wjxi, we obtain:

(7) wir = (w2
0 + w2

1 + w2
2 + w2

3)xi for i = 0, . . . , 3

Hence, if r = 0 then xi = 0 for i = 0, . . . , 3.
Also, from formulas (6) and

∑3
i=0 wiyi = 0 we obtain:

(8)

−w1s− w2t− w3u = 2(w2
0 + w2

1 + w2
2 + w2

3)y0

w0s+ w3t− w2u = 2(w2
0 + w2

1 + w2
2 + w2

3)y1

−w3s+ w0t+ w1u = 2(w2
0 + w2

1 + w2
2 + w2

3)y2

w2s− w1t+ w0u = 2(w2
0 + w2

1 + w2
2 + w2

3)y3

Hence, if s = t = u = 0, then xi = 0 for i = 0, . . . , 3. As xi and yi cannot all be 0,
this show that τ is well-defined.

Furthermore, from equations (5) we see that τ ◦σ is the identity of P3(R)×P3(R),
while equations (7) and (8) show that σ ◦ τ is the identity of BlE(S).

It remains to show that α = σ ◦ β, which is equivalent to β = τ ◦ α ; the latter
equality is clear by comparing formulas (2) for the translation vector in terms of
Study parameters and formulas (6) for τ , taking into account the fact that the x
and the w are proportional on α(SE3(R)). This concludes the proof of Theorem 3.
�

In the following we shall use the compactification α, since it is the one which is
well adapted to Study parameters, and Study parameters are very convenient for
computations in kinematics.

4.3. Boundary of configuration space. Let C be a configuration space or a
mode of operation of a mechanism, identified with an algebraic subset of the Study

quadric S. We can take its strict transform C̃ in the blowing up π : BlE(S) → S:
this is the inverse image π−1(C) with all components contained in π−1(E) removed.

Equations for C̃ can be computed by adding to the ideal of C the equations of
BlE(S) and saturating with respect to

∑3
i=0 x

2
i . The boundary of C is then C̃ ∩

π−1(E). Setting x = 0 in the equations for C̃, we obtain bihomogeneous equations
in w, y for the boundary of C in P3(R)× P3(R). We give now two examples of this
computation of boundary

4.3.1. Boundaries of the modes of operation of the 3-RPS. The boundary of the
mode of operation I1 is the algebraic subset J1 of P3(R)× P3(R) with equations

w0 = y1 = w2y2 + w3y3 = w1y3 + w2y0 = w1y2 − w3y0 = 0 .

This algebraic subset is a projective 2-plane, we can choose w1, w2, w3 as homoge-
neous coordinates for this 2-plane. We can then take y0 = w1, y2 = w3, y3 = −w2.
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The points in this boundary may be seen as rigid motions whose rotation part is a
half-turn and translation part infinite translation in the vertical direction.

The boundary of the mode of operation I2 is the algebraic subset J2 of P3(R)×
P3(R) with equations

w1 = y0 = w2y2 + w3y3 = w0y3 − w2y1 = w0y2 + w3y1 = 0 .

This is also a projective 2-plane, we can choose here w0, w2, w3 as homogeneous
coordinates for this 2-plane. We can then take y1 = w0, y2 = −w3, y3 = w2. The
points of J2 may be seen as rigid motions whose rotation part is a rotation with
horizontal axis and translation part infinite translation in the vertical direction.

4.3.2. Boundary of the mysterious mode of operation of the Tsai 3-UPU. The
boundary of the mode of operation K8 is not an irreducible algebraic subset of
P3(R)× P3(R), but it decomposes into three components.

• The algebraic subset L5 with equations w0 = y1 = y2 = y3 = 0. This
projective 2-plane is actually also the boundary of the mode of operation K5

of the SNU 3-UPU. Its elements may be seen as rigid motions whose rotation
part is a half-turn and translation part an infinite translation parallel to
the axis of the half-turn
• The algebraic subset L6 with equations y0 = w1 = y2 = y3 = 0, which is

another 2-plane and the boundary of the mode of operation K6 of the SNU
3-UPU. Its elements may be seen as half-turn with vertical axis followed by
a “rigid motion” of L6

• A non-real component L7 with equations

w2
2 + w2

3 = y3w2 + y2w3 = y2w2 − y3w3 =

= y1w1 + y3w3 = y0w0 + y3w3 = y2
2 + y2

3 = 0,

which is the boundary of the component K7 for the SNU 3-UPU and whose
real points are only two singular points, one in L5 and the other in L6

We see in this example how the degeneration to the boundary may give some
information on the kinematic behavior of a mode of operation which is hard to
analyze: we know how rigid motions in this mode of operation look like, when the
lengths of the limbs become larger and larger.

5. Degeneration of the direct kinematic problem

The direct kinematic problem (DKP) for the platforms we consider is the follow-
ing: given the lengths r1, r2, r3 of the limbs, what are the possible configurations
for the platform? The lengths ri of the limbs are controlled by the actuated pris-
matic joints: they are the actuated joint variables. They can be easily computed
from the homogeneous variables x, y of points of the Study quadric. The mapping
which associates to a point of the configuration space of the platform the triple
(r1, r2, r3) ∈ R3 is called the inverse kinematic mapping (IKM). The number of
solutions to the DKP can change at the critical values of the IKM, the images of
the singular points of the IKM. These singularities play a prominent role in the
kinematics of parallel robots.

5.1. Degeneration of the DKP. We consider a degeneration of the DKP when
the lengths of the limbs (r1, r2, r3) tend to infinity. We have already the boundary
of the configuration space in P3(R) × P3(R). We need also to choose a boundary
for the space of actuated joint variables. We cannot simply take P3(R) as compact-
ification for the space of actuated joint variables since all points with homogeneous
coordinates (r1, r2, r3, 1) corresponding to configurations of the platform would tend
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to the point with homogeneous coordinates (1, 1, 1, 0) as the lengths of the limbs
tend to infinity. Instead we make the change of variables d1 = r1− r3, d2 = r2− r3;
we then let r3 tend to infinity. More precisely, we embed R2 × R with variables
(d1, d2, r3) into R2 × P1(R) and we take the plane R2 × {∞} as boundary for the
space of actuated variables.

We have now to describe the degenerate IKM from the boundary of configuration
space (with bihomogeneous variables w, y) to the boundary of the space of actuated
variables (with variables d1, d2). As the limbs become parallel to the the translation
vector as their lengths tend to infinity, the limit of the differences of lengths of limbs
are, up to sign, differences of scalar products of the R(w)bi−Ai with the unit vector
u(w, y) giving the direction of the infinite translation:

(9)
d1 = (R(w)b1 −A1) · u(w, y)− (R(w)b3 −A3) · u(w, y)

d2 = (R(w)b2 −A2) · u(w, y)− (R(w)b3 −A3) · u(w, y)

We have to take into account in the discussion of the degenerate DKP that the
signs of both d1 and d2 in (9) depend on the orientation pf u.

The degenerate DKP for a planar parallel robot with three degrees of freedom
(3-RPR) has been considered in [2].

5.2. Degenerate DKP for a mode of operation of the 3-RPS. We study
here the degenerate DKP for the first operation mode I1 of the 3-RPS (where
rotation part is a half-turn). The analysis for the second mode of operation would
be analogous.

The boundary J1 of the mode of operation has been described in section 3.2 as
a projective 2-plane with homogeneous coordinates, (w1, w2, w3). The direction of
translation is given by:

u =

w2
1 + w2

2 + w2
3

0
0


and we normalize the homogeneous coordinates so that w2

1 + w2
2 + w2

3 = 1. The
degenerate DKP is to solve the system

d1 = 3k2w1w3 +
√

3k2w1w2

d2 = 2
√

3k2w1w2

w2
1 + w2

2 + w2
3 = 1 .

for w1, w2, w3; actually opposite solutions to the system give the same solution of
the degenerate DKP.

The picture above illustrates that there are two solutions to the degenerate DKP
inside the ellipse (whose equation is d2

1+d2
2−d1d2 = 81/16) except for the origin, and

no solution outside the ellipse. The set of critical values is the ellipse plus the origin.
At the origin, the degenerate DKP has infinitely many real solutions, actually one
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solution with w2 = w3 = 0 (half-turn with vertical axis) and a projective line
of solutions w1 = 0 (all half-turns with horizontal axes). The latter projective
line is the intersection of J1 with the other boundary J2, and this intersection of
boundaries of modes of operation is indeed a degenerate self-motion of the platform.

We compare now the degenerate DKP with the DKP for larger and larger fixed
values of r3. We have used the Maple library SIROPA to represent the number
of real solutions in function of r1, r2, and also the critical values of the IKM. The
pictures below represent the computed set of critical values of the IKM and the
number of real solutions to the DKP for r3 = 5, 10, 50. These pictures of slices can
be compared with Figures 5 and 8 in [6].

There are 4 solutions to the DKP in the yellow region (inside the small oval and out-
side the deltoid) and 8 in the red one (inside the deltoid). The deltoid is shrinking
to a point as r3 tends to infinity, giving in the limit the picture of the degenerate
DKP. There is also an oval of the curves of critical values which is not relevant
for the analysis of the number of real solutions to the DKP; it disappears for the
degenerate DKP.

It remains to explain the discrepancy between the number of solutions (4 for the
DKP and 2 for the degenerate DKP in the yellow region). Take for instance the
solutions for d1 = 2, d2 = 1 in the degenerate DKP:

w1 = 0.90.., w2 = 0.21.., w3 = 0.36..

w1 = 0.42.., w2 = 0.45.., w3 = 0.78..

and the solutions for r1 = 52, r2 = 51, r3 = 50 in the DKP:

x1 = 0.90.., x2 = 0.20.., x3 = 0.37.., z = 50.9..

x1 = −0.90.., x2 = 0.20.., x3 = 0.37.., z = −50.9..

x1 = 0.42.., x2 = 0.45.., x3 = 0.78.., z = 50.9..

x1 = −0.42.., x2 = 0.45.., x3 = 0.78.., z = −50.9..

where z is the height of the center of the platform. In the solutions to the DKP,
there are two pairs of configurations symmetric with respect to the base plane. But
since the vector u is always pointing upwards, the solutions to the DKP where the
platform is under the base plane give in the limit opposite d1 and d2 in the formulas
9.

5.3. Degenerate DKP for the mysterious mode of operation of the Tsai
3-UPU. We now turn to the mode of operation K8 of the Tsai 3-UPU. Very few
is known about the kinematic analysis of this mode. It is explained in [10] that the
DKP for this mode is of degree 64, and that there are values for ri with 24 real
solutions. We show how to obtain some more information concerning the DKP by
degenerating it.

We have seen in section 4.3 that the boundary of this mode decomposes into
L5∪L6∪L7. We study separately the degenerate DKP for each of these components.

For L5, we use homogeneous coordinates (w1, w2, w3) that we normalize with
w2

1 +w2
2 +w2

3 = 1, we take y0 = 1 and all other coordinates w0, y1, y2, y3 are 0. The
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rotation part is the half-turn with axis directed by (w1, w2, w3) and the direction
of translation is given by

u =

w1

w2

w3

 .

The equations for the degenerate DKP are then simply:

4d1 =
√

3w2 − 3w3

2d2 =
√

3w2

w2
1 + w2

2 + w2
3 = 1.

For L6, we use homogeneous coordinates (w0, w2, w3) that we normalize with
w2

0 +w2
2 +w2

3 = 1, we take y1 = 1 and all other coordinates y0, w1, y2, y3 are 0. The
rotation part is a rotation with horizontal axis, and the direction of translation is
given by

u =

−w0

−w3

w2

 .

The equations for the degenerate DKP are:

4d1 = −15w2 + 5
√

3w3

2d2 = 5
√

3w3

w2
0 + w2

2 + w2
3 = 1.

Finally, L7 has only two real points for which d1 = d2 = 0. Hence, we obtain the
following picture for the degenerate DKP:

One has to take a little care in the interpretation of this picture. Indeed, the
two systems of coordinates (w1, w2, w3) and (−w1,−w2,−w3) represent the same
point in L5, but the corresponding (d1, d2) have opposite signs. The same applies
to L6.

The comparison with the DKP of this mode of operation with its degenerate
version can only be performed partially due to the complexity of the DKP. We
compare what happens for d2 = 0 and d1 variable and what happens for r2 = r3 =
100 and r1 variable. For the degenerate DKP, the (rather heavy) computation made
with SIROPA shows that there are 0 solution for |d1| > 15/4, 2 solutions for 3/4 <
|d1| < 15/4 and 4 solutions for 0 < |d1| < 3/4. For the DKP, there are 0 solution for
r1− 100 < −3.75.. or r1− 100 > 3.74.., 2 solutions for −3.75.. < r1− 100 < −0.77..
or 0.72.. < r1 − 100 < 3.74.., 4 solutions for −0.77.. < r1 − 100 < −0.18.. or
0.48.. < r1 − 100 < 0.72..; for r1 closer to 100, there are up to 12 solutions.

The separation inside the mode K8 between the two degenerate modes L5 and
L6 can be well seen for r1 = 100.6, r2 = r3 = 100. The rotation part of the four
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solutions to the DKP are given by x0 = ±0.98.., x1 = 0., x2 = 0.15.., x3 = 0. and
x0 = 0., x1 = ±0.73.., x2 = 0., x3 = 0.68...

In conclusion, the degenerate DKP is very easy and provides some relevant in-
formation on the very difficult DKP, for sufficiently large lengths of limbs.
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