Thierry Guergueb 
  
F Roisnel 
  
H Loiseau 
  
Nasri 
  
Chadlia Mchiri 
  
Selma Dhifaoui 
  
Khaireddine Ezzayani 
  
Mouhieddinne Guergueb 
  
Thierry Roisnel 
  
Fredérique Loiseau 
  
Habib Nasri 
  
Insights into the New Cadmium(II) Metalloporphyrin: Synthesis, X-ray Crystal Structure, Hirshfeld surface analysis, Photophysical and Cyclic voltammetry Characterization of the (Morpholine){(meso-tetra(parachloro-phenyl)porphyrinato}cadmium(II)

Keywords: Cadmium(II) porphyrin coordination compound, X-ray crystal structure, Hirshfeld surfaces, Fluorescence, Singlet Oxygen

   

Insights into the new cadmium(II) metalloporphyrin

Synthesis, X-ray crystal structure, Hirshfeld surface analysis, photophysical and cyclic voltammetry characterization of the (morpholine)(meso-tetra(parachloro-phenyl)porphyrinatocadmium(II) C. Mchiri, S. Dhifaoui, K. Ezzayani, M.

Introduction

The chemistry of porphyrins and related compounds dates back to the late nineteen century.

The porphyrin species and metalloporphyrins complexes are currently used in a variety of applications such as photodynamic therapy, [1-3] optoelectronics, [4-5] chemical sensors, [START_REF] Paolesse | Porphyrinoids for Chemical Sensor Applications[END_REF] catalysis, [START_REF] Maeda | Bifunctional Catalysts Based on m-Phenylene-Bridged Porphyrin Dimer and Trimer Platforms: Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides[END_REF] and photovoltaic systems [START_REF] Lee | Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical and Photovoltaic Properties[END_REF]. Much of the excitement in porphyrin research lies in their modular and relatively facile synthesis, large size, ready dissolution in organic solvents, characteristic colors, rigidity, thermal stability, and affinity for metallation [START_REF] Collini | Strong enhancement of the two photon absorption cross section of porphyrin J-aggregates in water[END_REF].

Since the middle of the last century, cadmium porphyrins have been studied and the physical and chemical properties of Cd-porphyrin derivatives have been of general interest. Cadmium(II) ion is too big to fit co-planarly into the cavity of porphyrin, it is located out of the ligand plane and distorts it. Therefore the structure deformation of cadmium(II) metalloporphyrins results in kinetic lability as well as peculiar photophysical and photochemical behavior [START_REF] Valicsek | Formation, photophysics, and photochemistry of cadmium(II) complexes with 5,10,15,20tetrakis(4sulfonatophenyl)porphyrin and its octabromo derivative: the effects of bromination and the axial hydroxo ligand[END_REF][START_REF] Valicsek | Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions[END_REF]. By the other hand, both cadmium and porphyrin exhibit rich coordination chemistry. In fact, the Cd 2+ site shows equally diverse coordination modes and exists in five different coordination environments [START_REF] Zheng | Cadmium-Porphyrin Coordination Networks: Rich Coordination Modes and Three-Dimensional Four-Connected CdSO 4 and (3,5)-Connected Hms Nets[END_REF]. However, it has been noticed that for porphyrins, cadmium(II) can coordinated only one axial ligand to form fivecoordinated complexes [START_REF] Chin | Spectral Properties of Cadmium Porphyrin Apomyoglobin and Apohemoglobin Complexes[END_REF]. This makes cadmium metalloporphyrins simple systems to evaluate the effect of the type of the axial ligands on the electronic and structural properties of porphyrin coordination compounds.

It is noteworthy that cadmium porphyrin derivatives exhibit several biological applications. In this context, we can mention the investigations in 2001 of Nyarko et al., [START_REF] Nyarko | Interactions of tetracationic mercury(II), cadmium(II) and lead(II) porphyrins with DNA and their effects on DNA cleavage[END_REF] which reported the interactions of cadmium(II), mercury(II), and lead(II) metalloporphyrins with DNA and their effects on this enzyme. Due to the fact that Cd(II), Hg(II) and Pb(II) are large divalent cations, which are known to dissociate from their metalloporphyrin complexes in the presence of DNA and ethylenediamine tetraacetic acid (EDTA). This is not the case of d transition center metals such as Mn 3+ , Fe 3+ and Co 3+ , the characteristic effects of the already mentioned heavy divalent cations are expected to influence the DNA cleavage reaction. More recently, in 2012, Lee et al; [START_REF] Lee | Biomimetic Carbon Nanotube for Catalytic CO 2 Hydrolysis: First-Principles Investigation on the Role of Oxidation State and Metal Substitution in Porphyrin[END_REF] noticed that hydrolysis of carbon dioxide is an important reaction for CO 2 collection by using accurate first-principles electronic structure calculations. These authors, predict how the catalytic hydrolysis reaction in carbonic anhydrase (CA) can be mimicked in a zinc(II) and cadmium(II) metalloporphyrins -carbon nanotube system. Notably, morpholine is widely used as a solvent and it possesses two sites for coordination to the metal ions. In the literature, are reported the spectroscopic properties of the morpholine with divalent metallo-tetraphenyl porphyrins type [M(TPP)] (M = Co(II), Cu(II), Ni(II) and Zn(II)), which elucidate the nature of ligation and the binding site of the morpholine [START_REF] Chandrashekar | Coordinative Interaction Of Morpholine With Divalent Metallo Tetraphenyl Porphyrins[END_REF].

Nevertheless, up to date no reported investigation on the effect of the coordination of morpholine axial ligand to the structural, spectroscopic, photophysical and electrochemical properties of metalloporphyrins. In this work, we report the first example of the reaction of a Cd(II)-porphyrin complex with the morpholine leading to the (morpholine)[(meso-tetrakis(4chlorophenyl)porphyrinato]cadmium(II) complex with the formula [Cd(TClPP)(morph)] (I) (Scheme 1) where the morpholine axial ligand is bonded to the cadmium through the oxygen atom. 

Experimental Section

Syntheses

The synthesis of the meso-tetrakis(para-chlorophenyl)porphyrin (H 2 TClPP) and the [mesotetrakis(para-chlorophenyl)porphyrinato)]cadmium(II) starting material complex [Cd(TClPP)] were performed according to the methods described in the literature [17-18].

Scheme S1 gives the main steps of the preparation method.

H 2 TClPP porphyrin was obtained as purple crystals with 21% yield. [Cd(TClPP)(morph)] (I) [Cd(TClPP)] (20 mg, 0.020 mmol) and morpholine (0.5 mL, 0.125 mmol) were dissolved in 3 mL of chloroform. The solution was stirred overnight before to be filtrated. Crystals of complex (I) were obtained by slow diffusion of hexane into the chloroform solution with 80% yield (Scheme S1 

Spectroscopic and photophysical measurements:

1 H spectra were recorded using Brucker Advance 300 spectrometer. The spectra were recorded in DMSO-d 6 solutions at room temperature (T = 298 K) using DMSO residual peaks (δ = 2.50 ppm) as internal references. Chemical shifts (δ) and coupling constants (J) are given in parts per million (ppm) and Hertz (Hz), respectively. Multiplicities are reported as follow: s = singlet, d = doublet, t= triplet, m-Ph and o-Ph = meta and ortho protons on the phenyl rings, and β-pyr = β-pyr protons on the pyrrole rings. Infrared spectra were recorded from 4000 to 400 cm -1 FT-IR Nexus (Nicolet) spectrometer. Absorbance spectra were recorded on a UV-3600 Shimadzu spectrophotometer and the concentrations of porphyrin derivatives were controlled to be ca. 

X-ray Crystallography

Single crystals of [Cd(TClPP)(morph)] (I) were grown at room temperature from CHCl 3hexane mixture and carefully selected under a microscope and mounted on a Mitegen micromesh with the help of a trace of mineral oil. on a D8 VENTURE Bruker AXS diffractometer equipped with a graphite monochromatic Mo-K radiation source (λ = 0.71073 Å). The unit-cell parameters were calculated and refined from the full data and the data collection was performed with a Bruker D8 VENTURE diffractometer at 150 K. The reflections were scaled and corrected for absorption effects by using Multi-Scan method 

Results and discussion

Crystal structure description

The complex (I) crystallizes in the triclinic system, space group P-1 with a = 10.987 1. The Cd 2+ ion is positioned above the porphyrin core and coordinated to the four nitrogens of the porphyrin and axially by the oxygen atom of the morpholine axial ligand leady to a pentacoordinate Cd(II) porphyrin complex with a square pyramidal geometry. The coordination environment around the Cd(II) center in (I) is presented in Figure 2 where we can see that the morpholine ligand adopts the usual chair conformation. The fact that the morpholine is coordinated to Cd(II) via the oxygen atom and not the nitrogen atom needs to be discussed. Cadmium(II) cation is known to be a soft Lewis acid and oxygen donor ligands are known to be generally hard Lewis bases while, nitrogen donor ligand are in the borderline between hard and soft base. Therefore, since the morpholine ligand is O-bonded to the Cd(II) central ion (soft base -soft acid), the crystallographic data confirms the towards the axial ligand (0.60 Ȧ), leading to a domed structure of the porphyrin core of (I) (Figures 2 and3) . By the other hand, the distance between the cadmium atom and the mean plane made by the 24-atom core of the porphyrin (Cd __ P C ) for (I) (0.741 Å) is similar to those of the related five-coordinated cadmium metalloporphyrin (Table 2). [37] a : Cd __ Np =average equatorial distance between the cadmium and the nitrogen atoms of the porphyrin ring, b : Cd __ O ax = cadmium-oxygen axial ligand distance, c : Cd __ P C is the distance between the cadmium atom and the mean plane made by the 24-atom core of the porphyrin (P C ), d : TPP = meso-tetraphenylporphyrinato d : 18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadécane (18-crown-6), f : tetraphenylporphinato-bis(dioxane)cadmium(II), f : pip = the piperidine.

In porphyrins, the π-conjugation favor the planar structure, however, geometrical distortion can be imposed on the macrocycle by several factors: (1) packing constraints in the crystal, (2) steric crowding caused by peripheral substituents of the porphyrin ligand, (3) the effects of intramolecular interactions between atoms of the axial ligands and the porphyrinate core, (4) intermolecular interactions, typically between two porphyrins ligands, i.e., dimeric interactions, and (5) the coordination requirements of the central metal ion itself [START_REF] Kadish | The Handbook Porphyrins[END_REF]. The most characteristic types of distortions of the porphyrin core are the saddle, the dome, the ruffling and the wave distortion. Thus, the doming distortion (dom) is often observed in fivecoordinate complexes when the axial ligand causes a displacement of the metal center out of the mean plane, and the nitrogen atoms are also displaced toward the axial ligand, the ruffling distortion (ruff) is indicated by the values of the meso-carbon atoms above and below the porphyrin mean plane, the saddle distortion (sad) involves the displacement of the pyrrole rings alternately above and below the mean porphyrin macrocycle so that the pyrrole nitrogen atoms are out of the mean plane and in the waving distortions (wav), the four fragments "(β-carbon)-(α-carbon)(meso-carbon)-(α-carbon)-(β-carbon)" are alternatively above and below the 24-atoms of the C 20 N 4 least squares plane (P C plane). For the [Cd(TClPP)(morph)] complex, the formal diagrams of the porphyrinato cores showing the displacements of each atom from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å is illustrated in Figure 3 where we can see that the porphyrinic core exhibits an important doming distortion and moderate ruffling and saddle deformations.

The supramolecular assemblies for the [Cd(TClPP)morph] complex is depicted in Figure 4. interaction with a distance of 2.953 (7) Å (Table 3 and Figure 4). Additionally, we notice the presence of several C-H•••π contacts, for example, the C43-H43•••Cg3 interaction involving the carbon C43 of a phenyl group and the centroid Cg3 of a pyrrole ring of an adjacent [Cd(TClPP)morph] complex with a distance of 3,761(10) Å (Figure S1).The Table 3. Inter-and intramolecular interactions in (I). 

Hirshfeld Surface

1 H NMR spectroscopy

The 

IR spectroscopy

The [Cd(TClPP)(morph)] IR spectrum has been recorded in the 4000-400 cm -1 domain (Figure S3) and is characteristic of a meso-porphyrin complex with the morpholine as axial ligand. Thus, the C-H stretching frequency of TClPP moiety is located in the 2850 cm -1 spectral region. The metalled meso-porphyrin exhibits also absorption bands attributed to the δ(CCH) vibration mode at 1089 cm -1 . The (C-Cl) vibration of the meso-substituted porphyrin is identified as a strong absorption band at 719 cm -1 which is in the [800-600]

cm -1 domain [40-41].
The IR spectrum of the title compound exhebits also a very weak absorption band at 3293 cm -1 corresponding to (NH) vibration of the morpholine ligand and a band at 1387 cm -1 attributed to the carbonyl stretching ν(CO) of the axial ligand.

Photophysical properties

The photophysical properties such as the optical absorption, the steady state emission, the fluorescence quantum yield, the fluorescence decay and the singlet oxygen profile were studied for the porphyrin free-base H 2 TClPP, and the [Cd(TClPP)] and [Cd(TClPP)(morph)] complexes in dichloromethane solvent.

UV-vis spectroscopy

Metalloporphyrins display usually two types of absorption bands, i.e., intensive B band appears at 420 nm while, the four Q bands are found at 517, 553,589, and 645 nm. The λ max value of the Soret band is 433 nm for [Cd(TClPP)] which is red-shifted by 13 nm while the number of Q-band is reduced to two which are located at 568 and 609 nm (Table S2). The difference of the Q-band number between [Cd(TClPP)] and the free base H 2 TClPP is attributed to the increase of the molecular symmetry originated from the metalation of the porphyrinic macrocycle center of the free base H 2 TClPP. Whereas for (I) the λ max values of the Soret and Q bands are 436 nm for the first band and 575, and 620 nm for the latter band, which are slightly red-shifted compared with those of [Cd(TClPP)] indicating the complexation of the morpholine axial ligand. This is also the case for others related fivecoordinated metalloporphyrins [M II (TPP)(Morph)] (M = Co, Cu, Ni and Zn) (Table S2). It is noteworthy that the higher redshift of the absorption bands is related mainly to the important distortion of the porphyrin core S2) suggesting that the Cd-meso-porphyrin display interesting organic semiconducting properties [43]. 

Steady-State fluorescence and Singlet oxygen

The steady-state fluorescence of porphyrins was performed in order to study their electronic properties in excited state. The fluorescence emission spectra of the free base porphyrin 5 summarizes the maxima of the fluorescence of the Q(0,0) and Q(0,1) bands, the fluorescence quantum yields (ɸ f ) and the fluorescence lifetimes (τ f ) of our derivatives (I) as well as a selected species. The emission spectrum of the free base porphyrin H 2 TClPP in CH 2 Cl 2 exhibits two well-defined emission bands near 605 nm (Q(0,0)) and 657 nm (Q(0,1)) displays two emission Q bands at 650 and 717 nm (Q(0,0) and Q(0,1), respectively), the emission spectrum of [Cd(TClPP)] shows a 31 nm (from 650 to 619 nm) and a 67 nm (from 717 to 650 nm) blue shifts of the Q(0,0) and Q(0,1) bands, respectively, accompanied by a decline of fluorescence intensity, ɸ f and τ f (Fig. 8a). Thus, after the insertion of cadmium ions into the porphyrin cavity, the emission band became blue-shifted and less intense compared to those of free-base porphyrin (Table 6) which are 1.6 and 1.5 ns respectively (Table 6). We notice that the τ f of the cadmium porphyrins is not influenced by the axial ligand. Whereas the lifetimes of the fluorescences decrease consequence of the macrocycle distortion [START_REF] Kumar | New molecular arrays based on a Tin (IV) porphyrin scaffold[END_REF] and mainly to the large Cd atom. Table 5. Photophysical data of our synthetic species and a selection of cadmium porphyrins complexes recorded in CH 2 Cl 2 .

a : Fluorescence spectra of porphyrins were obtained as a function of λ ex = 433 nm. b : Fluorescence quantum yield, c : Fluorescence lifetime (ns), d: Singlet oxygen production quantum yield. e : in toluene solvent, f : in ethanol solvent, g : in THF solvent.

Singlet oxygen production was detected in the infrared region, following excitation of the porphyrin at 433 nm. Figure 8b illustrates the singlet oxygen production spectra of the our synthetic compounds with the maximum emission at 1270 nm. As seen in Table 5, the 

Compound Fluorescence a  max (nm) Q(0,1) Q(0,0)  f b τ f (ns) c   d Ref.
H 

Cyclic Voltammetry

The electrochemical behavior of the free base H 2 TClPP, the staring material [Cd(TClPP)]

and the [Cd(TClPP)(morph)] complex (I) were studied by cyclic voltammetry (CV) with the tetra-n-butylammonium hexafluorophosphate (TBAPF 6 ) as the supporting electrolyte (0.2 M) in the non-coordinating solvent CH 2 Cl 2 under an argon atmosphere. In Figure 9 is illustrated the voltamogramm of (I) while in Table 6 is summarized the CV data our the free base, the starting material, complex (I) and a selection of some meso-porphyrins and zinc(II) metalloporphyrins. cadmium(II) as well as zinc(II) cations for which the correspondent metal belong to the same 12 group exhibit the 4d 10 and 3d 10 ground state electronic configurations respectively. Therefore, these cations are diamagnetic and only the oxidation and reduction waves of the porphyrin ring are observed in the voltammograms. Indeed, the CV of the H 2 TClPP, the [Cd(TClPP)] and the [Cd(TClPP)(morph)] present each one a two one-electron reduction waves and three one-electron oxidation waves (Table 6). We notice that the values of the half potentials (E 1 st oxidation (O1,R1) 2 nd oxidation (O2,R2) 3 rd oxidation (O3,R3) 1 st reduction (R4,O4) 2 nd reduction (R5,O5) --------------------------------------------------------------------------------------------------------------------------------E 

Conclusion

In summary, we have synthesized and characterized the five-coordinate cadmium(II) meso- shifted with a decrease of the fluorescence intensity, quantum yield (φ f ) and lifetime (τ f ). The important singlet oxygen quantum yield (  ) makes this complex a good candidate to develop antibacterial and antiviral treatments. The cyclic voltammetry investigation on the H 2 TClPP, the starting material [Cd(TClPP)] and complex (I) are also reported and the electrochemical gap values of these porphyrinic species were determined from the CV voltammogram which are slightly higher than those of the optical gap.
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Scheme 1 .

 1 Scheme 1. Structure of [Cd(TClPP)(morph)] (I).

[ 21 ]

 21 . The structure was solved by direct method by using SIR-2004 program[START_REF] Burla | SIR2004: an improved tool for crystal structure determination and refinement[END_REF] and refined by full-matrix least-squares techniques on F 2 by using the SHELXL-97 program [23]. The drawings were made with Mercury [24]. Crystal data and experimental parameters used for the intensity data collection are available free of charge from the Cambridge Crystallographic Data Centre (CCDC 1908921).2.5 Hirshfeld surface analysisHirshfeld surfaces and their two-dimensional fingerprint [25-26] have been used to gaining additional insight into the intermolecular interactions in the title compound, based on results of single crystal X-ray diffraction studies. The Hirshfeld surface enveloping a molecule is defined by points where the molecule of interest and all the other molecules that surround it have the same contribution to the electronic density. For each point on that isosurface one has two distances: "di" the distance to the nearest nucleus internal to the surface, and "de" the distance from the point to the nearest nucleus external to the surface. The normalized contact distance (d norm ) based on both d i and d e , and the vdW radii of the atom[START_REF] Spackman | Fingerprinting intermolecular interactions in molecular crystals[END_REF]. The value of the d norm is positive or negative when intermolecular contacts are longer or shorter than vdW separations, respectively. Because of the symmetry between d e and d i in the expression for d norm , where two Hirshfeld surfaces touch, both will display a red spot identical in color intensity as well as size and shape. The Hirshfeld surfaces are mapped with d i , and 2D fingerprint plots presented in this paper were generated using CrystalExplorer 3.1. Graphical plots of the molecular Hirshfeld surfaces mapped with d norm (Eq. I) using a red-white-blue color scheme, where red highlights shorter contacts, white is used for contacts around the vdW separation, and blue is for longer contacts.

( 8 )

 8 Ȧ, b = 12.096(8) Ȧ, c = 16.586(9) Å, α = 88.24(2)°, β = 72.54(2)°, γ = 82.35(2)°, V = 2084(2) Å 3 and Z=2. Crystallographic data and structure refinement are reported in Table S1. The asymmetric unit of our cadmium(II) derivative consists of one [Cd(TClPP)(morph)] molecule. The atom numbering and thermal ellipsoids are shown in Figure 1. Selected bond distances and angles are given in Table

Figure 1 .

 1 Figure 1. ORTEP diagram of [Cd(TClPP)morph] (I) with atomic numbering. Thermal ellipsoids shown at 50 % probability level and the hydrogen atoms are omitted for clarity.

Figure 2 .

 2 Figure 2. The coordination environment of Cd 2+ ion.

Figure 3 .

 3 Figure 3. Formal diagrams of the porphyrinato core of [Cd(TClPP)morph] complex.

  The molecules of this complex are connected by several weak non-conventional hydrogen bonds, such as N-H•••Cl involving the NH group of the coordinated morpholine and the Cl2 atom of the meso-phenylporphyrin with N5-H5A•••Cl2 distance of 2.905(5) Ȧ. The crystal packing is also stabilized by weak C-H•••Cl interactions between a pyrrolic proton of one porphyrin and a chlorine atom of an adjacent porphyrin such as the C65-H65•••Cl3

C

  -H•••π interaction is observed also between the carbon C65 of the morpholine ring and the centroid Cg3 with C65-H65•••Cg3 distance of 3.935(14) Å.

Figure 4 .

 4 Figure 4. Schematic representation of the N-H•••Cl and the C-H•••Cl hydrogen bonds between the morpholine axial ligand and the chlorine atom of the adjacent meso-phenylporphyrin complex.

  is the donor atom, b : A is the acceptor atom, Cg3 is the centroid of the N3/C8-C9-C10-C11 five membered ring.

For a given crystal

  structure, the Hirshfeld surface is unique and it suggests the possibility of obtaining additional insight into the crystal [39]. Figure 5 illustrates the Hirshfeld surfaces of the title complex, showing surfaces that have been mapped over d norm . The surfaces are shown transparent for the purpose of visualizing the molecular fragment. The fingerprint plot is illustrated is given in the Figure 6 and the Hirshfeld surface, which have been mapped over a d norm range of -0.6 to 2.8 Å, are shown in Figure 5. The red spots on the Hirshfeld surface indicate the presence of close contacts, whereas areas without close contacts are shown as blue spots. The crystal packing in porphyrin is mainly controlled by the close contacts involving chlorine; Cl•••H __ C, which are observed as intense red spots on the Hirshfeld surface. In the crystal, 42 % of the intermolecular contacts are associated with H•••H contacts, 27% for the contacts between chlorine and hydrogen Cl•••H and for the C•••H contacts appear by the percentage contributions are 17.9%. Further, the Hirshfeld surface, shows intense red spot on thes (d e ) surface near the pyrrole ring which is due to close (Porph/pyr) C-H ... Cl and (ph) Cl .... H-C (Porph/pyr) contacts. In addition to this, (morph) H-H(ph) contacts are also seen as intense red spots.

Figure 5 .

 5 Figure 5. (a): Hirschfeld surfaces mapped over d norm for the title compound and (b) : Towdimensional fingerprint plot with a d norm of the title compound.

Figure 6 .

 6 Figure 6. Two-dimensional fingerprint plots with a d norm view of the H … H (42%), H … Cl/Cl … H (27%) and C … H/H … C (17.9%) contacts in the title compound.

1 H

 1 NMR spectrum of the free-base H 2 TClPP presents the expected profile for mesotetra-substituted porphyrins molecules. For instance, the signals at δ = 8.86 ppm correspond to the resonances of the β-pyrrolic protons. The phenyl protons (H o , H o' /H m , H m' ) present chemical shift values at 8.15/7.77 ppm and the NH pyrrole protons are very shielded and appears at -2.84 ppm in the form of a low-intensity singlet. The disappearance of the resonance of the peak corresponding to the pyrrole N-H protons was observed in the 1 H NMR spectrum of the metallated porphyrin [Cd(TClPP)] starting material. This spectrum of the later species is very similar to that of the free-base meso-porphyrin due to the diamagnetic nature of cadmium ion which is at the oxidation state (+II). For (I), the NMR spectrum (Figure S2) reveals also the characteristic signals of the axial morpholine ligand, where the Ha and Hb protons of the morpholine resonate at 3.47 and 2.64 ppm respectively in the form of triplet and the NH proton of the same ligand resonates as a broad singlet around 5 ppm. These values are slightly different from those of the free morpholine molecule.

(Figure 7 .

 7 Figure 7. The value of the  max of the Soret absorption band of the free base H 2 TClPP

[ 10 -

 10 11]. The higher atomic radius of Cd(II) metal ion compared to the other metals (M = Zn, Cu, Ni, Co) (Table S2) implies that Cd(II) is too large to fit into the central hole of the TClPP which generates significant the deformations of the TClPP core and the complexation of the morpholine O-donor axial ligand tends to increase the doming distortion by pulling out the Cd(II) metal ion from of the porphyrinato plane. The optical band gap energy (E g ) refers to the energy difference between the HOMO and the LUMO orbitales of the porphyrin species can be calculated from the UV-visible spectrum using the Tauc plot method [42]. The E g values in CH 2 Cl 2 solution are 1.960 and 1.903 eV for [Cd(TClPP)] and [Cd(TClPP)(morph)] respectively, indicating that the gap energy of the metallized species are higher than that obtained for H 2 TClPP free base (1.820 eV) (Table

Figure 7 .

 7 Figure 7. UV-visible absorption spectra in CH 2 Cl 2 (c = 10 -5 M) of H 2 TClPP, [Cd II (TClPP)], and [Cd II (TClPP)(morph)] (I).

(H 2

 2 TClPP), [Cd(TClPP)] and [Cd(TClPP)(morph)] coordination compounds at room temperature were recorded in CH 2 Cl 2 (c = 10 -6 M) under the excitation wavelength of 433 nm (Figure-8a). Table

  , indicating that the structure of the originally flat porphyrin (free base porphyrin H 2 TClPP) is distorted in out-of-plane [Cd(TClPP)] causing a dome distortion in the structure, consequently the ɸ f decrease. The decrease of the fluorescence quantum yield can be also explained by the high molar mass of Cd(II) which leads to a quenching effect, resulting in the very low ɸ f values. Which may be due to other non-radiative energy dissipation processes such as enhanced internal conversion, intersystem crossing [44-45]. The emission spectrum of complex (I) is quite similar to that of [Cd(TClPP)] and shows that the coordination of the morpholine Odonor axial ligand to Cd(II) metal ion have a minor effect. This result suggests that the outof-plane distortion of porphyrin rings in [Cd(TClPP)] and [Cd(TClPP)(morph)] complex are relatively similar. The Fluorescence lifetimes ( f ) were measured by time-correlated single photon counting technique. The representative fluorescence decays for the free base H 2 TClPP, [Cd(TClPP)] and [Cd(TClPP)(morph)] are shown in Figure. S4. The  f values of the free base H 2 TClPP (~ 8.9 ns) is as expected much higher than those of [Cd(TClPP)] and [Cd(TClPP)(morph)]

Figure 8 .

 8 Figure 8. (a) : Fluorescence emission spectra and (b) : Singlet oxygen production spectra performed at λ ex = 433 nm of H 2 TClPP, [Cd II (TClPP)] and [Cd II (TClPP)(morph)], in CH 2 Cl 2 (c 10 -6 M) at room temperature.

[

  Cd II (TClPP)(morph)] presents the highest singlet oxygen quantum yield (  = 0.53 ) compared to [Cd II (TClPP)] (  = 0.41) and H 2 TClPP (  = 0.49). The singlet oxygen quantum yield depends generally on the intersystem crossing rate. Thus, the increase of Φ ∆ for the [Cd II (TClPP)(morph)] can be attributed to the structure distortion caused by the insertion of the cadmium heavy metal as well as the coordination of morpholine axial ligand. These factors are thought to promote the intersystem crossing rate through the enhanced spin-orbit coupling, consequently, increase the triplet quantum yield [50-51].

  , a : The potentials are reported versus SCE, b : E 1/2 = half wave potential, c: TPBP = meso-{tetrakis-4-(benzoyloxy)phenyl]porphyrinato, d : Him = imidazole, e : 4,4'-mda = 4,4′-diaminodiphenylmethane.

Figure 9 .

 9 Figure 9. Cyclic voltammogram of [Cd(TClPP)(morph)] (I). The solvent is CH 2 Cl 2 , and the concentration is ca. 10 -3 M in 0.2 M (TBAP), 100 mVs -1 , vitreous carbon working electrode (Ø = 3 mm).

  tetrachlorophenylporphyrin complex with the oxygen coordinated morpholine to the central metal. The structure of [Cd(TClPP)morph] (I) complex was determined by single-crystal Xray crystallographic analysis. The molecules of this complex are connected by hydrogen bonds type N-H•••Cl, C-H•••Cl, and C-H•••π. By the other hand, based on Hirshfeld topology analyses all possible intermolecular interactions occurring in the crystal structure have been quantified. The displacement of the Cd(II) metal atom out of the porphyrinato mean plane is 0.74 Å. This high value induces a significant porphyrinato core doming, moderate ruffling and saddle distortion. Absorption spectra reveal that the insertion of Cd(II) metal ion into TClPP and the addition of the morpholine axial ligand are accompanied by a redshift of the Soret and Q bands of the [Cd(TClPP)] starting material and the [Cd(TClPP)(morph)] complex. While the Q bands of fluorescence emission spectra are blue-

  

  was obtained as a dark green solid with 85% yield.1 H NMR (300 MHz, DMSO-d 6 ) (ppm), 8.11 (d, 8H, H o-Ph ), 7.97 (d, 8H, H m-Ph ), 8.75 (s, 8H, β-pyr). UV/vis (CH 2 Cl 2 ), [ max(nm) in CH 2 Cl 2 , (ε x 10 -3 , mol -1 x L x cm -1 )]: 433 (117), 568(2.3), 609(2.6).

	1 H NMR (300 MHz,
	DMSO-d6): δ (ppm.) -2.84 (s, 2H, N-H), 7.77 (d, 8H, Hm-Ph), 8.15 (d, 8H, Ho-Ph), 8.86 (s,

8H, β-pyr). UV-vis [ max (nm) in CH 2 Cl 2 , (ε x 10 -3 , mol -1 .L.cm -1 )] 420(309), 517

(15.8)

, 553
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, 589(5.6), 645
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. FTR-IR cm -1 : 3316 ν[(NH) porphyrin], 2960 ν[(CH) porphyrin], 967 [(δCCH) porphyrin], 780 ν(C-Cl).

[Cd(TClPP)]

FTR-IR cm -1 : 2926 ν[(CH) porphyrin], 1086 [(δCCH) porphyrin], 720 ν(C-Cl).

  ). Elemental analysis (%) calcd for C 48 H 33 Cl 4 CdN 5 O (950.04). C, 60.68, H, 3.51, N, 7.37; found : C, 60.81, H, 3.59, N, 7.49.

	1 H NMR (300 MHz, DMSO-d6) (ppm), 2.64 (t, 4Hb, morph), 3.47 (t, 4Ha, morph); 5.75

(s, Hc, NH morph), 7.97 (d , 8H, H m-Ph ), 8.21 (d, 8H ,H o-Ph ), 8.74 (s, 8H, β-pyr). UV/vis (CH 2 Cl 2 ), [ max (nm) in CH 2 Cl 2 , (ε x 10 -3 , mol -1 L cm -1 )]: 436 (126), 575(4.4) , 620(2.6). FTR-IR (cm -1 ): 2849 ν[(CH) porphyrin], 1089 [(δCCH) porphyrin], 3293 ν(N-H) morph , 1387 ν(CO) morph , 719 ν (C-Cl).

Table 1 .

 1 Selected bond lengths (A˚) and angles (deg) of [Cd(TClPP)morph] (I).

	Cadmium(II) coordination polyhedron		
	Cd-N1	2.205(5)	N1-Cd-N2	148.30(17)
	Cd-N2	2.206(5)	N1-Cd-N3	143.04(19)
	Cd-N3	2.215(6)	N1-Cd-N4	84.77(19)
	Cd-N4	2.191(5)	N1-Cd-O	99.3(2)
	Cd-O	2.337(7)	N2-Cd-O	104.1(3)
			N3-Cd-O	107.2(2)
	Morpholine Ligand			

Table 2 .

 2 

Selected bond lengths [Å] and angles [°] for complex (I) and several related Cd(II) porphyrintic and non-porphyrintic complexes.

Complex Cd

__ N p a Cd __ O ax b Cd __ P C c Ref.

  

	Porphyrinic complexes			
	[Cd(TClPP)(morph)]	2.204(5)	2.338(7)	0.741	This work
	[Cd(TPP)(H 2 O)].(18-C-6) d,e	2.230(2)	2.237(2)	0.803	[30]
	[Cd(TClPP)(DMF)]	2.197	2.280	0.824	[31]
	[Cd(TPP)(2-dioxane)] d	2.140	2.650-2.80		[32]
	[Cd(TClPP)(py)]	2.203(4)	0.729	0.729	[31]
	[Cd(TPP)(pip)] d,f	2.204		0.751	[33]
	[Cd(TPP)(4-picoline)] d	2.195		0.744	[34]
	[Cd(TPP)(2-NH 2 -py)] d	2.204(3)		0.739	[35]
	[Cd(TPP)(N 3 )] d	2.215(1)		0.796	[36]
	Non-porphyrinic complexes			
	{[Cd 2 Cl 6 (morph) 2 ]} n		2.323-2.371		[29]
	{[Me 2 Cd] 3 [NH 2 N(CH 2 ) 4 O]} n		2.655		

Table 6 .

 6 Electrochemical data a for H 2 TClPP, [Cd(TClPP)], complex (I) and a selection of metalloporphyrins.
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CCDC 1908921 contain the supplementary crystallographic data of complex (I). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data_request/cif. The five-coordinate cadmium(II) meso-tetrachlorophenylporphyrin complex, containing morpholine O-donor as axial ligand was prepared. Their Structural and Photophysical properties have been studied.