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ABSTRACT 

In recent years, low melting temperature glasses have received wide attention as the hosts of 

phosphor-converted light emitting diodes (pc-WLED). In this work, a series of trivalent europium doped 

tin fluorophosphates glasses were prepared by conventional melting method. Under ultraviolet excitation, 

the blue-green broadband emission from Sn2+ activation centers in the glass matrix and the red emission 

of Eu3+ ions together constituted a cool white luminescence. The spectra analysis was used to 

demonstrate the energy transfer between Sn2+ centers and Eu3+ ions. The results showed that Sn2+ and 

Eu3+ possessed independent intrinsic emission and mutual energy transfer simultaneously. The 5D4 and 

5G2 excited states of Eu3+ ion favored the energy transfer to Sn2+ center, the 5L6 excited state of Eu3+ ion 

would absorb more of the energy by the Sn2+ ground state excitation to contribute on red emission. 

Therefore, the fluorescent glass can transform cool white light to warm white light by changing the 

excitation wavelength. The tunable white light is obtained in the WLED devices built with the glass and 

commercial UV chips. 
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1 Introduction 

In general, many of the low and ultra-low melting temperature glasses, including tin 
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fluorophosphates glass, barium fluoride-thorium fluoride glass, phosphate glass, boron lead glass and so 

on [1-5], have been widely used in glass-metal sealing, IC packaging, Phosphor-in-Glass (PiG) host 

[6-9]. Specially, the tin fluorophosphates (SnF2-P2O5-SnO) glass, of which the glass transition 

temperature (Tg) value is generally lower than 200 °C, has been considered to be an excellent host of 

fluorescent glass in the past two decades. Unlike the conventional encapsulant material, i.e., organic 

silicone or resin, tin fluorophosphates glass avoids the problem of the serious yellowing and aging issues, 

which leads to luminous efficacy degradation and color shifting in WLED [10]. On the other hand, the 

tin fluorophosphates glass, doping the rare earth metals, also has been showed to be a promising host to 

achieve photon conversion in solar cell applications [11]. However, the luminescent materials consisting 

of SnF2-P2O5-SnO glass host containing trivalent rare earth (RE) ions have rarely been researched, 

which is suspected of potential application value in white fluorescent lamp, the pc-WLED and laser.  

In recent years, the tunable white fluorescent materials basing on the tin-containing inorganic glass 

matrix have received wide attention. It is considered to be an excellent matrix for the preparation of 

white fluorescence glass, of which the Sn2+ activation center can emit a broadband blue-green emission 

with short lifetime and high quantum efficiency. Therefore, a high quality white light can be obtained by 

simply doping suitable activator. Hirokazu Masai et al. firstly reported that SnO-ZnO-P2O5 low-melting 

glasses showed a broadband blue luminescence with high efficiency, which was described as the 

emission of Sn2+ defects as an activation center in the subsequent research [12-13]. Simultaneously, an 

adjustable white light emission with a high value of quantum efficiency (QE) was obtained by doping 

Mn2+ ions into the SnO-ZnO-P2O5 glass matrix [14]. In the tin fluorophosphates glass matrix 

(SnF2-P2O5-SnO), Wang et al. reported a similar broadband visible luminescence, which was also 

recognized as the contribution of the Sn2+ centers. Utilizing the efficient energy transfer from Sn2+ to 
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Mn2+, a warm white fluorescence was obtained. It is worth noting that tin-containing glass materials 

have been focused on the study of transition metals (TM) doping luminescent materials, however, the 

optical properties of rare earth doped tin-containing inorganic glass have been rarely studied. 

Compared with TM ions, the 4f-4f state of RE ions exhibits stable and complex transition energy 

levels, which makes the energy transfer process of the multi-activator system exhibit special 

luminescence characteristics [15]. The Eu3+ ion, as a kind of typical trivalent RE ions, has been 

frequently applied in phosphor crystals, quantum dots and luminescent glasses [16-17]. On one hand, the 

energy transitions from the excited 5D0 level to the 7FJ ( J = 0, 1, 2, 3, 4, 5, 6) emission levels of Eu3+ 

provide a stable red emission to material hosts. On the other hand, as one kind of well-known probe ions, 

the characteristic peak located at 620 nm of Eu3+ ions will be affected by the change in the surrounding 

crystal field environment [18]. In many researches, Eu doped white fluorescent has been obtained by 

energy conversion between multi-activators, such as Eu2+/Eu3+ [19], Cu2+/Eu3+ [20], Ag/Eu3+ [21], 

Sb3+/Eu3+ [22] in proper materials.  

In this text, using the 60SnF2-30P2O5-10SnO glass matrix as an example, we prepared a series of 

Eu3+-doped tin fluorophosphates glasses by conventional melting method. The energy conversion 

relationship between the Sn2+ activation center and Eu3+ ions was investigated by spectrum spectral 

analysis. And by adjusting the excitation wavelength, the tunable emission from cold white to warm 

white was obtained in the Eu3+ doped SnF2-P2O5-SnO glasses. Finally, a WLED device model based on 

this fluorescent glass was produced with commercial ultraviolet (UV) chips. 

2 Experimental 

Glass samples were prepared using reagent-grade SnF2 (99.99%, metals basis), NH4H2PO4 (99.99%, 

metals basis), SnO (99.9%, metals basis) and Eu2O3 ((99.99%, metals basis)) as starting materials. These 
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starting materials were carefully mixed and melted in alumina crucibles heated to 350 °C for 20 minutes. 

After melting, the glass melts were poured into a cold stainless-steel mold for quenching in air and 

cooled to room temperature directly. The mixing and heating steps were similar for all glasses, and the 

melting temperature and time for homogenization were the same. All samples were cut and polished into 

10×10×2 mm3 for further measurement. 

Absorption spectra were obtained by using a Perkin Elmer Lambda 900UV-VIS-NIR 

spectrophotometer in the range of 190-800 nm with a resolution of 1 nm. The photoluminescent (PL) 

and photoluminescent excitation PLE spectra were collected by a high resolution spectrofluorometer 

(Fluorolog 3-211, Horiba Jobin Yvon Inc., Edison, NJ) using a 450 W Xe-lamp as the excitation source. 

The pump light beams were incident and the emitted light beams were collected both at a 45° degree 

angle to the plate normal with the same slit width for all samples, while reported data were corrected for 

instrumental response. The color rendering index and absolute quantum efficiency of glasses were 

measured in a integrating sphere with a high sensitive spectrometer (Nova, Idea Optics Instruments).All 

the measurements were carried out at room temperature.  

3 Results and Discussion 

Regarding the thermal properties of SnF2-P2O5-SnO5 glass, it has been enthusiastically studied in 

recent years [11, 23]. More than 40 mol% of the P2O5 content leads to the awful chemical stability of the 

glass and is sensitive to water. However, if the content of P2O5 is less than 25 mol%, it will be 

disadvantageous for the formation of the glass network. Therefore, in our work, 30 mol% content of 

P2O5 was chosen and kept invariable for the following experiment. As the proportion of stannous 

fluoride (SnF2) increases, the melting temperature of the glass gradually decreases. When 60 mol% is 

reached, the glass transition temperature is as low as 98 °C [23]. For our desire to explore the optical 
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properties of rare earth doped ultra-low melting glass, the 60SnF2-30P2O5-10SnO5 (TFP) glass is chose 

as trivalent Eu doped glass matrix. Herein, x/2Eu2O3-60SnF2-30P2O5-10SnO5 glasses were collectively 

referred to as TFPxEu. 

 

Fig. 1. (a) The absorption spectrum of the TFP. The inset is a schematic representation of the energy levels of the Sn2+ activation 

center. (b) The PL and PLE spectra of the TFP. (c) The absorption spectra of the TFP1Eu. (d) The PL and PLE spectra of the TFP1Eu and 

TFP matrix. 

The absorption spectrum of the TFP sample is shown in the Fig. 1(a). The undoped tin 

fluorophosphates glass exhibits a significant red shift of ultraviolet absorption edge compared with 

conventional phosphate glasses, which originates from the Sn2+ activation center. The triplet (T1)-singlet 

(S0) relaxation band model has been commonly used to describe the emission mechanism of Sn2+center. 

The PL and PLE spectra are reflected in Fig. 1(b), which can more accurately reflect the energy level of 
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the Sn2+ activation center. Under the 365 nm excitation, the TFP matrix shows a broadband blue 

emission from 390 nm to 600 nm. The broadband emission at 428 nm corresponds to the emissions of S1 

and T1 states of the Sn2+ activation center, which are defined as α-band [singlet (S1)-singlet (S0)] and 

β-band [triplet (T1)-singlet (S0)] [13, 24]. The PLE spectra of the 415 nm and 515 nm emissions suggest 

the wide excited state. It is worth mentioning that the excited state of Sn2+ can be divided into S1 state 

(high energy band) and S1' state (low energy band). The S1' state is confirmed to be a strongly 

concentration dependent excitation band, and its relaxation process from S1' to T1 state has been 

considered to be the key to high quantum efficiency of tin-containing glass. In the inset of Fig. 1(a), the 

energy transfer of Sn2+ activation center is described. The Sn2+ activator in tin fluorophosphates glass is 

transferred to the excited state by the ground state absorption: S0 + hν(~3.39 eV) → S1. By nonradiation 

transition, a part of the absorbed photons in S1 state relaxed to ground state: S1 → S0 (α-band emission), 

from which produces the blue emission of 3.02 eV (415 nm). And another part of energy for ground state 

absorption: T1 → S0 + hν (2.41eV, β-band emission). 

The absorption, PL and PLE spectra of the TFP1Eu sample are showed in the Fig. 1 (c) and (d) 

respectively. When doping the Eu3+ ions, it exhibits a strong absorption band in the region of 300 to 400 

nm compared with the absorption of TFP matrix. And the main peaks at 360nm, 375nm and 395nm 

correspond to the ground excitation of Eu3+ ion: 7F0 → 5D4, 
5G2 and 5L6 respectively. Under the 365 nm 

excitation, the TFP1Eu sample shows a similar broadband emission as the TFP sample in the blue-green 

region. What is different is that the TFP1Eu sample exhibits two sharp peaks at 600 nm and 620 nm, 

which correspond to the radiation transitions of the 5D0 states to 7F1, 
7F2 states of the Eu3+ ions, 

respectively. The excitation range of TFP1Eu at 600 nm covers the range of excitation and emission of 

TFP glass, which appears as narrow linewidth emissions corresponding to the absorption level of Eu3+ 
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ions. Among them, the energy transfers of 7F0 → 5L6 and 5D2 are in the emission band of Sn2+. It 

indicates the presence of energy transfer between the Sn2+ excitation center and the Eu3+ ions in the 

prepared Eu3+ doped TFP glass. At the same time, a clear wide excitation band can be seen in the range 

marked by the purple frame, which overlaps with the excitation band of Sn2+ in the TFP glass. It is worth 

mentioning that the 5L6 excited state of Eu3+ ion shows strongest excitation intensity in the PLE 

spectrum of TFP1Eu compared to weak intensity of the 5D4 and 5G2 excited states, which suggests that 

the energy levels of the Eu3+ ion possess different trends to energy transfer. 
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Fig. 2. (a) The PL spectra of the TFPxEu samples excited by 365 nm. And the PLE spectra of the TFPxEu samples at 415 nm (b) and 

515 nm (c). (d) The energy -level diagram of the Sn2+ and Eu3+ and the description of energy transfer (ET). (e) the dependence of the 

emission intensity of the TFPxEu sample at 428 nm (blue line) and 600 nm (red line) on the Eu3+ ions doping concentration under the 

excitation at 365 nm. (f) The two-dimensional color coordinates of TFPxEu samples. The digital photograph of the samples is in the inset. 

In order to more deeply understand the energy transform mechanism of Sn2+ centers and Eu3+ ions 

in Eu3+ doped SnF2-P2O5-SnO glass, a series of TFPxEu (x=1,2,3,4 and 5) glasses are prepared with the 

same melting process. The Fig. 2 (a) is the PL spectra of TFPxEu samples. As the concentration of Eu3+ 
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increasing, the emission intensity is gradually enhanced, including the broadband emission at ~428 nm 

belonging to the Sn2+ center and the sharp peaks at 600 nm and 620 nm of the 7FJ (J=1, 2) states. At the 

same time, the characteristic peaks of the 5L6 and 5D2 emitted states belonging to Eu3+ appear at 395 nm 

and 464 nm in the broadband emission clearly. Further, the emission intensity at ~395 nm is significantly 

reduced. The energy transfer of Sn2+ to Eu3+ was demonstrated in previous discussion, which can explain 

the decrease of emission intensity at ~428 nm in TFP1Eu. The increase of emission intensity at ~428 nm 

is attributed to the energy transfer of Eu3+ ions to Sn2+ centers.  

The PLE spectra of the TFPxEu samples emitted at 415 nm and 515 nm are shown in Fig. 2 (b) and 

(c) respectively. Their change in excitation intensity is consistent with the change in emission intensity 

of Fig. 2 (a). As the increasing doping concentration of Eu3+ ions, the characteristic excited states of 5L6 

and 5D2 belonging to Eu3+ gradually become apparent, which proves the energy feedback of Eu3+ ions to 

the Sn2+ centers. Further, it is worth noting that there is deep pit at ~395 nm in the PL excitation spectra 

at 415 nm and 515 nm. In combine with the excitation spectrum of the TFP1Eu in Fig. 1 (d), it suggests 

that the 5L6 excited state of Eu3+ ions receive the energy transfer from the Sn2+ activation center. The 

energy transfer model of Sn2+ and Eu3+ is depicted in Fig. 2(d). Under the excitation at ~365nm, the 

luminescence of the Sn2+ centers and the Eu3+ ions presence independent stimulated emission processes. 

Furthermore, these two activators exhibit a mutual energy transfer process. The S1 state of the Sn2+ 

activation center overlaps with the 5D4 and 5G2 excited states of Eu3+ ion, and the S1’ state is similar to 

the 5L6 emission state of Eu3+ ion, they perform mutual energy transfer. 

The mechanism for the blue-green emission can be expressed as: Intrinsic emission of Sn2+: 

S1/S1’(Sn2+) + T1(Sn2+) → S0(Sn2+); Energy transfer of Eu3+ ion to Sn2+: 7F0(Eu3+) → 5D4(Eu3+) + 

5G2(Eu3+) → S1’(Sn2+). 
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The mechanism for the red emission can be expressed as: Intrinsic emission of Eu3+: 7F0(Eu3+) → 

5D4(Eu3+) + 5G2(Eu3+) + 5L6(Eu3+, mainly) → 5D0(Eu3+) → 7FJ(J=1, 2)(Eu3+); Energy transfer of Sn2+ to 

Eu3+: S1(Sn2+) → 5L6(Eu3+) → 5D0(Eu3+) → 7FJ (J=1, 2)(Eu3+). 

Fig. 2 (e) shows the dependence of the emission intensity of the TFPxEu sample at 428 nm and 600 

nm on the Eu3+ ions doping concentration under the excitation at 365 nm. Due to the energy feedback 

process of Eu3+ ions to Sn2+ centers, the broadband emission belonging to Sn2+ increases with the 

concentration of Eu3+, which is disadvantageous for the desired white light emission. In the Fig. 2 (f), 

the emission spectra data of the TFPxEu sample are reflected in the two-dimensional color coordinates. 

All the samples shown in the Fig. 2 (f) emerge similar cool white light, which are consistent with the 

digital photograph of the sample at 365 nm excitation in the inset. 
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Fig. 3 (a) The PL spectra of the TFP5Eu samples with the different excitation wavelength form 350 nm to 390 nm. (b) The 

dependence between the excitation wavelength with emission peak position of Sn2+ (Red) and the emission intensity at 600nm (Black), 

respectively. (d) The two-dimensional color coordinates of TFP5Eu samples. The digital photograph of the TFP5Eu under the different 

excitation is in the inset. 

Due to the TFP5Eu sample has the strongest emission intensity, this sample is used as the research 

object. The Fig. 3 (a) is the PL spectra of TFP5Eu sample under the different excitation wavelength from 

350nm to 390nm. As the excitation wavelength increases, the emission peaks in the blue-green band are 

continuously red-shifted, which corresponds to the change of the S1 to S0 transitions in the Sn2+ center. 

At the same time, the emission of 600nm and 620nm belonging to Eu3+ ions is also affected. The 
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dependence of both these on the excitation wavelength is depicted in Fig. 3 (b). In Fig. 3(b), the 

emission peak of the Sn2+ centers exhibits an approximately linear change with respect to the excitation 

wavelength, which is advantageous for the production of white light with high color rendering index. On 

the other hand, the emission law of 5D0 → 7FJ in Eu3+ ions is consistent with the results discussed 

previously. By regulating the excitation wavelength, the red portion of emission of TFP5Eu sample is 

enhanced and a warm white light is obtained using the energy transfer difference of the 5L6 excited state 

and the 5D4, 
5G2 excited states. The results are clearly shown in the color coordinates of Fig. 3 (d). 

Among them, when the excitation wavelength is changed from 375 nm to 390 nm, the sample color 

gradually changes from warm white light to cool white light. 

Table 1. The fluorescent properties of WLED devices based TFP5Eu sample with 375nm and 

390nm chips 

WLED device 
CIE coordinates Color Rendering 

Index (Ra) 

Absolute quantum 

efficiency (±5%) 

Color 

Temperature(K) x y 

375 nm 0.33 0.30 91.8 6.12 5896 

390 nm 0.30 0.29 88.3 6.70 8815 

 

Further, in order to demonstrate the previous discussion, the encapsulated WLED devices based on 

this glass with 375 nm and 390 nm ultraviolet chips (40mA, 5V) are also prepared, whose models 

shown in the Fig. 3 (c). And the digital photograph of TFP5Eu glass excited by the 375nm and 390 nm 

LED chips is shown in the inset of Fig. 3 (d). The fluorescent properties of WLED devices based 

TFP5Eu sample with 375nm and 390nm chips are shown in the Table 1. Compared to conventional 

phosphors, the WLED devices display excellent white light consequent: the CIE values close to (0.33, 
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0.33), higher color rendering indexs (Ra = 91.8; 88.3). It demonstrates the different willingness of 

different excitation states of Eu3+ ions for energy transfer. Unfortunately, the WLED devices exhibit 

poor QE values, which affect practical applications. In generally, the concentration of Sn2+ ions and the 

relaxation process from S1 state to T1 state in Sn2+ ions have been considered to be important factors 

affecting quantum efficiency [25-27]. Therefore, excessive concentration of Sn2+ ions and F/O 

proportion in tin fluorophosphoate glass are suspected to be responsible for poor quantum efficiency in 

our glass. It is expected that the QE value can be simultaneously improved by changing the composition 

ratio of xSnF2-yP2O5-zSnO, which will be the goal of further work. Moreover, compared to these 

glasses in the existing reports shown higher Tgs exceeding 500 °C and the melting temperatures 

exceeding 700 °C, the tin fluorophosphoate glass we reported is still considered to be a promising 

candidate for WLED encapsulant materials. 

4 Conclusion 

Briefly, a series of Eu3+ doped tin fluorophosphates glasses were successfully fabricated by a 

conventional melt quenching process, which all emitted similar cool white fluorescence under the same 

ultraviolet excitation. By spectra analysis, the energy transfer processes between the Sn2+ activation 

centers and Eu3+ ions were analyzed. The results prove that the Sn2+ activation center and Eu3+ ions in 

these glasses possess intrinsic emission and mutual energy conversion. The part of energy in Eu3+ ion 

will transfer to the Sn2+ and participate in the emission process of Sn2+, due to the 5D4 and 5G2 excited 

states of Eu3+ ion are energetically close to the S1 state in Sn2+ center. The 5L6 excited state in the Eu3+ 

ions favor energy transfer from Sn2+ center and mainly participate in the intrinsic emission: 5L6 → 7FJ. 

Therefore, the luminescent color of the Eu3+ doped TFP glass can be adjusted from blue/cold white to 

warm white/red by controlling the excitation wavelength from 350 nm to 390 nm. The encapsulated 
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WLED devices based on this glass with 375 nm and 390 nm ultraviolet chips were prepared. Although 

the WLED device exhibits a poor QE value, it is considered desirable to increase the QE value by 

adjusting the chemical composition of the glass. In the word, the TFPxEu white fluorescent glass, which 

possesses the characteristics of mutative fluorescent colors by simply adjusting the excitation 

wavelength, has a promising application prospect in the field of white LEDs. 
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1. This work forces on the optical spectroscopy of trivalent europium ions in tin

fluorophosphates glasses.

2. The transition of the glass luminescence from blue/cold white to warm white/red is

controlled by controlling the excitation wavelength from 350 nm to 390 nm.

3. The WLED devices show: the higher CRI (~90) and tunable color temperature.


