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Abstract—We consider the scattering of an H-polarized plane wave by an infinite dielectric rod with a 
conformal graphene strip of arbitrary angular width, placed at the rod rear side. Our analysis is based on the 
hypersingular integral equation for the current induced on the strip. Discretization of this equation is carried 
out by the Nystrom-type method, which has a guaranteed convergence. This meshless trusted computational 
instrument enables us to plot the dependences of the absorption cross-section (ACS) and the total scattering 
cross-section (TSCS) on the strip angular width and the frequency, in wide range from 1 GHz to 6 THz. We 
concentrate our analysis on studying the interplay between the broadband photonic-jet effect of dielectric rod 
and the reasonably high-Q resonances on the plasmon modes of graphene strip. It is found that as the photonic 
jet becomes brighter with higher frequencies, the plasmon-mode resonances become more intensive as well. 

Keywords—dielectric rod, graphene strip, integral equation, photonic jet, plasmon resonance 

I.  INTRODUCTION 

A circular dielectric rod is known to produce a specific near-field effect called “photonic jet” provided that its 
relative dielectric permittivity is less then 4 and the rod radius is at least twice larger than the wavelength [1,2]. The 
larger the radius, the narrower and brighter the photonic jet. This is, in fact, a sort of imperfect focusing effect, non-
resonant and therefore explained by the geometrical optics for optically large rods, although for mesoscale ones 
diffraction is also essential, according to [3]. Note that this imperfect focusing can be improved by making the circular 
rod “discrete,” i.e. concentrically layered, with step-wise dielectric permittivity mimicking the Luneburg lens. 
Photonic jets on various dielectric scatterers were reported in [4-7]. On the other hand, a strip made of graphene is 
able to support plasmon modes in the infrared and THz ranges of frequencies [8-10]. If such a strip is placed into the 
photonic-jet area, one can expect that two effects can be combined, thus increasing the amplitude of the field in the 
vicinity of the rod without increasing its radius. 

Fig. 1. Cross section of a circular dielectric rod with a partial graphene cover. 
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Guided by these considerations, we are going to analyze the scattering and absorption of a THz range H-polarized 
plane wave by a circular dielectric rod with a graphene strip located at the rear side of rod – see Fig. 1.  

For solving this problem, we combine the Maxwell boundary-value problem with the Kubo model of graphene 
conductivity. Here, we consider the graphene as a zero-thickness layer with a complex surface electron conductivity 
defined by the chemical potential, frequency, temperature, and relaxation time [11]. Note that the thickness of 
graphene monolayer or small stack of them is so small, 1-2 nm, that the assumption of zero thickness is perfectly valid 
even in the X-ray range. The famous hexagonal honeycomb fine in-plane structure of graphene has characteristic size 
of 10 nm and hence graphene’s surface conductivity can be safely considered as isotropic in the THz and even in the 
visible range. Non-local effects in the conductivity can be neglected if the size of graphene samples is larger than 100 
nm. 

Graphene strips have already attracted attention in the THz science community as attractive and easily 
manufactured components of plasmonic waveguides, antennas and sensors [12-14]. Apart of commercial codes, their 
modeling has been done with several convergent methods: regularizing method-of-moments, Riemann-Hilbert 
Problem (RHP) method, and Nystrom-type discretization with Chebyshev quadratures [15-21]. Application of these 
mathematically grounded methods allows finding the solutions to the considered problems with controlled accuracy 
within reasonable time of computation. 

Single flat strip scattering was studied in [8-10] and its wave-guiding properties in [15]. Plasmon-assisted 
resonances in the scattering and absorption by infinite and finite gratings of coplanar graphene strips under normal 
and inclined incidence were analyzed in [15-19]. Focusing ability of a parabolic graphene reflector in the free space 
was considered in [20]. Still most frequently graphene is placed on top a dielectric layer, which provides better 
mechanical rigidity. Such a combination of graphene with dielectric objects results in the interplay between the 
resonances associated with each part of the whole configuration. This, for instance, was demonstrated in [21] where 
the THz wave scattering and absorption by a graphene strip grating embedded into a dielectric slab was analyzed with 
the aid of regularizing method-of-moments. Curved graphene-dielectric configurations studied so far have been 
mainly restricted to fully covered circular dielectric rods [22-25]. Arbitrary dielectric rod, fully covered with 
graphene, was analyzed with boundary integral equation in [26]. The authors of [27] considered a finite-width 
graphene strip attached to the surface of arbitrary dielectric rod using quasi-static approximations. In our work, we 
build on the preliminary studies presented in the conference papers [28,29]. 

The remaining part of the paper is organized as follows. In Section II, we reduce the problem to a dual-series 
equation and then to a hyper-singular integral equation, which is discretized in Section III. In Section IV, we obtain 
approximate formula for the resonance values of the graphene strip angular width as function of the frequency and 
rod’s parameters. In Section V, we present numerical results and discuss them. Section VI contains the conclusions. 

II. DERIVATION OF HYPER-SINGULAR INTEGRAL EQUATION

Consider the H-polarized time-harmonic ( i te  ) plane wave incident on a circular dielectric cylinder (rod), the 
outer boundary of which is partially covered with conformal strip of graphene placed symmetrically to the incident 
wave propagation direction. The cross section of such a scatterer by the coordinate plane 0z   is presented in Fig. 1, 
where the cylindrical coordinates ( , , )r z  are co-axial with the rod. Here, R  is the radius of the rod and 2  is the 

angular width of the graphene strip, so that 2 2 2     is the angular width of the slot. The Н-polarized field has 
electromagnetic field components ( , ,0)rE E  and (0,0, )zH . 

As the zH  field does not depend on z , we obtain the following two-dimensional problem: find the function 

( , )zH r  , which satisfies (i) the Helmholtz equation with the wavenumber ,I IIk  for all r R ,  
2

,( , ) ( ) ( , ) 0z I II zH r k H r    ,    (1) 

(ii) the dual boundary condition at r R : on the graphene arc,  ,| |L r R    , this is 

02 ( )I II I II
z zE E ZZ H H      and I IIE E  , (2) 

while on the slot arc,  ,| |S r R      , this is 
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I II
z zH H   and I IIE E  ,  (3) 

(iii) the Sommerfeld radiation condition at infinity, and (iv) the local power finiteness. 
Here, 0 1/ZZ   is the graphene surface impedance,   is the surface conductivity, 0Z  is the impedance of the free 

space, index I (II) is assigned to the inside (outside) domain filled in with dielectric of the permittivity ( )I II  , and 

, ,( / )I II I IIk c  , where c is the speed of light in vacuum. 

The given incident wave, IIik xinc
zH e , propagates along the positive direction of the x-axis. The total field can be 

presented as the Fourier series, 

     
   

,,

,

/ ,

/ ,

inc II in II
z II n n nI II

z
I in I

I n n n

H C H k r e H k R r R
H

C J k r e J k R r R













     




, (4) 

Here  nJ   and  nH   are the Bessel and Hankel first kind functions of integer order n , prime means a 

derivatives of the functions and ( , ),I II nC  are unknown coefficients, which should be found. Such a field satisfies the 

Helmholtz equation and the radiation condition.  
Using the boundary condition (2) and (3) at r R , we derive the following dual series equation: 

  , | | ,

0,  | |

in in
n n nn n

in
nn

A W e iZ A e f

A e

 



  

  

 

 





   


  

 


, (5) 

The field expansion coefficients in (4) depend on An as 

 , /n n
I n I n n n n n nC W A i J H H i J     ,  , /n n n

II n II n n n n n n nC W A i J H H i J i J       , (6) 

   
11 1

n I n n II n nW J J H H 
 

     , (7) 

and the right-hand part function is 

  1
( ) n in n in

n n n n n nn n
f i J H H W e i J W e   

 
    .        (8)

 

Introduce the function  

  in
nn

v A e  


 . (9) 

From the bottom line of (5), we can find that ( ) 0v   , hence 
1(2 ) ( ) , 0, 1, 2,...in

nA v e d n
 


   


    . (10) 

Then, with the aid of parametric representations [28] of the integral operators with the hyper-singular and 
logarithmic kernels, we obtain from the bottom line of (5) an integral equation over the interval  ,  ,  

     

       

1 0 21
22

1

2 ln 2
. . . ln sin

2 2 22sin [( ) / 2]

, ,

v W BB
h f p d B v d v d

K v d iZv f

  

  





       
  

      



  



  
    

 

 

  


      (11)

where h.f.p. denotes Hadamard’s finite part,  

   1

1 2
1

, cos ( )n
n

K W B n B n n   






                 (12) 

1 1/ ( )I IIB kR    ,   2

22 21
2 I II I IIB kR     

    (13) 

Further, on introducing new notations   0( )f f t  , where | |   and 0 /t   , and also /t   , we transform 

this integral equation into the equation over the standard interval ( 1,1) , 
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   
 

       
1 2

1 12 2 1 2 2 1 21
0 0 2 0 0 02 1 1

1 0

1
1 . . . ln 1 1 , ,

B t
iZ t t h f p t dt B t t t t dt t t K t t dt f t

t t
        


 

 


          
  

  

 

(14) 

with a smooth kernel      1

0 1 2 0
1

, cos ( )n
n

K t t W B n B n n t t






    . Note that the local power finiteness condition is 

fulfilled at the strip edges as the function  v  , which is the electric current on the graphene strip, has the form 

  2 1/2( )(1 )v t t t  , where the function ( )t  remains finite at the strip edges, i.e. if 1t   . 

III. DISCRETIZATION AND CONVERGENCE  

In the discretization of the integral equation (14), the unknown function ( )t  is substituted with the interpolating 

polynomial 1( )N t  , and the integrals within the equation are replaced with interpolation quadrature formulas [30]. 

Here, the equation kernels should be also replaced with their interpolating polynomials having the same nodes, which 
are the zeros of the Chebyshev second kind polynomials, 0 pt , 

           
 

 

         

      

1
2 2 01 11

0 0 0 0 12
1

0 0

22 22
0 0 0 0

1 1

22
0 0 0 0 0

1

( 1)1 1
1 1

1 2

1 ln2 2 / 1 / (2 2)
1

2 / ( 1) 1 , ( ),           

q p NN
qN N

q q p p
p

q pp q

N N
p qN

p p s p s q
p s

N

p p q p q
p

N tB
iZ t t t t B

N t t

B
t t T t T t s N

N

N t t K t t f t


 

 

 

 
 






 



 
   

 

              

   



 

          1,.., .q N

         (15) 

 Denoting  1
0

N
q qx t  , we rewrite this set as 

1

N

q q qp p qp
Z x A x b


  ,  1,...,q N ,               (16) 

where 0( )q qb f t  ,  2
01q qZ i Z t   are known, and the elements of the matrix take the form 




2 2 2 21
1 2 0 0 02

1

2 2
0 0 0

( 1) 1 ( ) ln 2 2 ( ) ( ) / ( 1) / (2 2)

2 (1 ) ( , ) / ( 1),

N
q

qq q s q s q
s

q q q

A B N B t T t T t s N

t K t t N






                

 


    (17) 

 



2 2 2
1 0 2 0 0 02

10 0

2 2
0 0 0

1 ( 1)
1 ( ) 1 ( ) ln 2 2 ( ) ( ) / 1 / (2 2)

( )

2 1 ( ) ( , ) / ( 1), if ,

q p N
p q

qp p p s p s q
sq p

p q p

A B t B t T t T t s N
t t

t K t t N q p










                        

    


                (18) 

where 0( )s qT t  stands for the Chebyshev polynomial of the first kind of the order s. 

The obtained matrix equation has strong diagonal predominance. The convergence of solution of (16) with N→∞ 
is guaranteed by the theorems of approximation of hyper-singular operators with the aid of quadratures [30]. The 
validation of the constructed algorithm has been performed by the comparison with RHP method results available in 
[31] for the limit case of  = 1 and Z = const. As both methods are convergent, their agreement is within arbitrary 
number of digits, controlled by the order of discretization. 

 
IV. GRAPHENE CONDUCTIVITY AND PLASMON RESONANCES  

Today, the most widely recognized model of the electromagnetic properties of graphene monolayer is the Kubo 
formalism [11]. It tells that the graphene surface conductivity is a sum of the intraband and interband terms, 
  intra inter     , where the second term heavily dominates from the statics to the optical frequencies. Then  

     1

0 intra 0 1( ) 1/ /Z Z i Z c      ,             (19) 

where  

  2 2 1 1 1
1 ( ) ( ) 2 ln 1 exp( ( ) )e B c B c Bc q k T k T k T                            (20) 
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is a value that is independent of the frequency, eq  is the electron charge, Bk  is the Boltzman constant, T  is the 

temperature,   is the reduced Planck constant, τ is the electron relaxation time and μc is the chemical potential.  
The plasmon modes (i.e. the natural oscillations) of a strip of graphene are commonly viewed as the modes of a 

Fabry-Perot resonator working on the plasmon surface wave [8-10], which bounces between the strip edges. This is an 
empiric model, which is however well supported by the full-wave computations and experiments. Assuming that the 
graphene layer is infinite and its curvature can be neglected, the complex propagation constant of the plasmon wave 
can be found as 

2 2 21
2( ) ( ) ( )plas I II I IIk Z           .             (21) 

Then, the approximate empiric equation for the transverse plasmon modes on the strip of the width 2 R  is 
obtained as 

 sin Re 2 0plas R    .                (22) 

Here, the value of   is associated with the phase of the reflection coefficient of the plasmon wave from the strip 

edge. Our study has shown that the best fit of the first-order plasmon-mode resonance is provided by / 4  . Note 

that the expression (21) is more accurate than equation (25) of [10], which can be obtained by setting Z = 0. 
The roots of (22) determine the natural frequencies of the graphene strip plasmon modes Pm, whose fields are 

symmetric and anti-symmetric with respect to the strip middle point. They can be assigned odd (m = 1,3,…) and even 
indices (m = 2,4,…), respectively. In view of the fact that the graphene surface impedance is a function of the 
frequency given by (19), the resonance values of the graphene strip angular width are obtained as follows: 

  12
0 12 ( ) ( ) .I IIm Z cc R                         (23) 

As demonstrated by the numerical results presented in the next section, this equation is in excellent agreement with 
full-wave computations. 
 

V. NUMERICAL RESULTS 

Here we present and discuss several characteristics, which depend on the frequency and size of the graphene strip. 
These are the far-field scattering pattern, 

       1
2, /

n in II
n nn

D C i e H k R



   ,                    (24) 

and the total scattering and absorption cross-sections, i.e., 
2 2

2,(4 / )TSCS II n nn
S k C H

 


  ,                    (25) 

  2
ReACSS R Z v d




   .                                                                    (26) 

In computations, we normalize the cross-sections by 4R, and take 50 μmR  and the following parameters of 

graphene: 1 ps  , 300 KT  , 0.5 eVc  . To clarify the effect of the graphene strip, we build color maps of TSCS 

and ACS as a function of the frequency and the strip angular width, see Fig. 2 and Fig. 3. On these maps, a higher-
scattering range between 2.5 and 4.5 THz is the contribution of the dielectric rod, while that of the strip shows up as 
narrow curved “ridges.”  

On the maps, the white dashed curves are the values predicted by (23) for the orders m  from 1 to 5. As visible, the 
odd- index curves agree well with the actual resonances on the corresponding plasmon modes of the curved graphene 
strip. Here, the resonances on the even-index plasmon modes are absent because these modes are “dark” in the case of 
symmetric strip placement. For better understanding, the plots in Fig. 2 (c) and Fig. 2 (d) show the sections of the 
maps presented on panels (a) and (b), respectively, at the fixed values of strip angular width, 2. In Fig. 2 (e) and Fig. 
2(f), we zoom in the high-frequency extensions of Fig. 2 (a) and Fig. 2 (b), respectively, where graphene becomes 
more transparent however the plasmon-mode resonances are still present, on the narrower strips. 

The maps in Fig. 3 (a) and Fig. 3 (b) are similar to those in Fig. 2 (a) and 2 (b) however computed for the graphene 
strip attached to the dielectric rod in such a way that the strip center is on the y-axis of Fig. 1. Modification of our 
equations to arbitrary non-symmetric strip placement needs some algebra, not presented here. In this case, the even-
index plasmon modes become “bright,” i.e. the corresponding resonance peaks appear on the spectra of TSCS and 
ACS. As visible, their location is also well predicted by the equation (23). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 2. Color maps of TSCS (a) and ACS (b) versus two variables: the angular width of graphene strip and the frequency. 
Panels (c) and (d) show cross-sections of maps on panels (a) and (b) at the fixed angular widths of graphene strip, 2 . 
Panels (e) and (f) show zoomed-in areas of the right-bottom corners of panels (a) and (b), respectively. The dielectric rod 
radius is R = 50 m, its relative dielectric constant is 2.4I  , and the graphene parameters are explained in the text. 
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(a) (b) 
Fig. 3. The same in Fig. 2 (a) and (b), however for the graphene-strip arc rotated by 90 degrees around rod’s axis. 

To understand why so narrow graphene strips remain strong resonant absorbers if located at the rear side of the rod, 
we have analyzed the near-field patterns, i.e. the portraits of the | |zH  value normalized by 0 1 A/mH  . The field in 

Fig. 4 corresponds to the 50-m dielectric rod without graphene strip at the frequency of 5.438 THz. Here, one can 
clearly see the photonic jet [1,2] at the rod rear side.  

(a) (b) 
Fig. 4. Normalized near-field patterns for the 50-mm rod of 2.4I   without graphene illuminated by a plane H-

polarized wave at f = 5.438 THz. The right panel shows a zoom of a part of the left panel.  

This high-intensity field spot has its maximum inside the rod near to its boundary; at the higher frequencies it 
shifts out of the rod however remains close to its boundary. This feature has broadband geometrical-optics character. 
Therefore, if a narrow graphene strip is placed on the rear side of the rod and its width is tuned to a plasmon 
resonance, it is illuminated more efficiently and the ACS shows a peak at the frequency of (23). Several in-resonances 
near fields are shown in Fig 5. The solid white arcs indicate graphene strips and the dashed arcs - the dielectric rod 
boundary. In all cases, the graphene strip is placed on the rear side of the rod and hence near to the photonic-jet area.  

The panels (a), (b), (c), (d), (e), (f), (g) and (h) correspond to the first order plasmon P1 (m = 1) and the panel (i) 
and (j) to the third-order plasmon P3 (m = 3).  As already mentioned that if the incident plane wave propagates along 
the x-axis, then the even-order plasmon modes of the strip remain “dark” (not excited) because their fields are 
orthogonal to such excitation. It is clearly seen that the peak field value gets higher for the narrower strips, apparently 
because the photonic jet becomes brighter.  

Here, the resonance on P1 yields a three times greater increment in the near-field amplitude than on P3 at the same 
frequency of 5.999 THz. This indicates inherently that the Q-factor of P3 is three times lower than the Q-factor of P1 
that is in line with inverse-m behavior of Q-factors of modes in the other Fabry-Perot resonators.  

Note also that if the strip material is perfect electric conductor (Z = 0), then the plasmon modes are absent and the 
discussed resonance phenomenon does not exist. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
Fig. 5. The same as in Fig. 4, however for the rod with a graphene strip at its rear side, with the strip angular width and 
the frequency as indicated. (a-b) 2 36 , 1.7  THzo f  , (c-d) 2 8.88 , 3.704  THzo f   , (e-f) 2 4.42 , 5.438  THzo f  , (g-h) 

2 3.46 , 5.999  THzo f  , (i-j) 2 13.18 , 5.999 THzo f  .   

VI. CONCLUSION

We have presented the results of the accurate study of the scattering and absorption of an H-polarized THz plane 
wave by a graphene-strip decorated circular dielectric rod. If a narrow strip is placed on the rod’s backside, it 
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demonstrates a sharp growth of the near field at a certain high frequency. This is the combination of two effects. The 
first is the non-resonant optical effect called photonic jet and the second is the strip plasmon resonance. We would 
like to emphasize that our results have been computed with the aid of convergent numerical method and have 
accuracy of 10-6 or better in the near field data. 

We believe that the reported effect can be potentially useful for enhancing the imaging characteristics of THz 
systems. Besides, it can be used for the additional enhancement of the local field in the jet domain that can be 
attractive in the design of more sensitive THz receivers. 
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