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Abstract 18 

The frequency of cyanobacterial proliferations in fresh waters is increasing worldwide 19 
and the presence of associated cyanotoxins represent a threat for ecosystems and 20 
human health. While the occurrence of microcystin (MC), the most widespread 21 
cyanotoxin, is well documented in freshwaters, only few studies have examined its 22 
occurrence in estuarine waters. In this study we evaluated the transfer of 23 
cyanobacteria and cyanotoxins along a river continuum from a freshwater reservoir 24 
through an interconnecting estuary to the coastal area in Brittany, France. We 25 
sampled regularly over 2 years at 5 stations along the river continuum and analysed 26 
for phytoplankton and cyanotoxins, together with physico-chemical parameters. 27 
Results show that cyanobacteria dominated the phytoplanktonic community with high 28 
densities (up to 2x106 cells mL-1) at the freshwater sites during the summer and 29 
autumn periods of both years, with a cell transfer to estuarine (up to 105 cells mL-1) 30 
and marine (2x103 cells mL-1) sites. While the temporal variation in cyanobacterial 31 
densities was mainly associated with temperature, spatial variation was due to 32 
salinity while nutrients were non-limiting for cyanobacterial growth. Cyanobacterial 33 
biomass was dominated by several species of Microcystis that survived intermediate 34 
salinities. Intracellular MCs were detected in all the freshwater samples with 35 
concentrations up to 60 µg L-1, and more intermittently with concentrations up to 1.15 36 
µg L-1, at the most upstream estuarine site. Intracellular MC was only sporadically 37 
detected and in low concentration at the most downstream estuarine site and at the 38 
marine outlet (respectively < 0.14 µg L-1 and < 0.03 µg L-1). Different MC variants 39 
were detected with dominance of MC-LR, RR and YR and that dominance was 40 
conserved along the salinity gradient. Extracellular MC contribution to total MC was 41 
higher at the downstream sites in accordance with the lysing of the cells at elevated 42 
salinities. No nodularin (NOD) was detected in the particulate samples or in the 43 
filtrates.  44 

*Manuscript

mailto:myriam.bormans@univ-rennes1.fr
http://ees.elsevier.com/haralg/viewRCResults.aspx?pdf=1&docID=3846&rev=3&fileID=95147&msid={CD1FF21A-A42D-42A4-88C8-CC33601DAB42}


 2 

 45 

1. Introduction 46 

Cyanobacterial blooms have been reported worldwide (Merel et al., 2013) and their 47 

proliferations have been increasing in recent years as a result of anthropogenic 48 

activities including eutrophication and climate warming (O’Neil et al., 2012; Rigosi et 49 

al., 2014; Paerl, 2018). This tendency is also recorded in France and in particular in 50 

Brittany (AFSSA, 2006; Pitois et al., 2014; Le Moal et al., 2019) where most of the 51 

French agricultural lands are located. Freshwater cyanobacteria produce a variety of 52 

toxins (i.e. hepatotoxins, neurotoxins, dermatotoxins) which have strong negative 53 

impacts on animal and human health (Lance et al., 2010; Metcalf and Codd, 2012; 54 

Meriluoto et al., 2017). Reports of toxic cyanobacterial blooms in Brittany have been 55 

numerous in freshwater lakes and reservoirs (Vezie et al., 1998; Brient et al., 2009; 56 

Pitois et al., 2018). Among the diversity of cyanotoxins, the hepatotoxin microcystin 57 

(MC) is largely recognised as the most common and widespread in freshwater 58 

ecosystems (Harke et al., 2016). The general structure of that cyclic heptapeptide 59 

includes a specific beta amino acid- 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-60 

4,6-decadienoic acid - Adda (Ortiz et al., 2017; Tillett et al., 2000) as well as two 61 

amino acids that can vary leading to the identification of more than 250 MC variants 62 

(Puddick et al., 2014). The regulation and synthesis of MC, as well as its ecological 63 

role, are complex and not yet fully understood (Neilan et al., 2013; Omidi et al., 64 

2017). Nodularin (NOD) is also a potent cyanobacterial hepatotoxin occurring in 65 

brackish waters (Sivonen et al., 1989; Kaebernick and Neilan, 2001). It is a cyclic 66 

pentapeptide structurally similar to MC, consisting of Adda, D-glutamicacid (D-Glu), 67 

N-methyldehydrobutyrine (MeDhb),D-erythro--methylaspartic acid (D-MeAsp) andL-68 

arginine (L-Arg) (Rinehart et al., 1988). 69 

 70 

The transfer of cyanobacteria along the freshwater-marine continuum has been 71 

observed worldwide (Preece et al., 2017 for a review), in Africa (Ndlela et al., 2016), 72 

USA (Lehman et al., 2005; Peacock et al., 2018), South America (Dörr et al., 2010), 73 

Australia (Robson and Hamilton, 2003; Orr et al., 2004), Europe (Verspagen et al., 74 

2006; Tonk et al., 2007; Paldavičiene et al., 2009), and Turkey (Taş et al., 2006). The 75 

majority of these studies reported on the cyanobacterial transfer being dominated by 76 

Microcystis aeruginosa demonstrating a certain salt tolerance of that species. The 77 

associated transfer of MC along the river continuum was less often reported (Preece 78 
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et al., 2017) and very few studies reported on MC levels high enough to affect 79 

recreational activities (Paldavičiene et al., 2009; Albay et al., 2005). In particular, MC 80 

transfer to the coastal environment resulting from freshwater discharge from an 81 

upstream reservoir has only been reported in Italy (De Pace et al., 2014) and Japan 82 

(Umehara et al., 2012). Both MC and NOD have been reported to accumulate in fish 83 

and bivalves resulting in a potential risk to humans from consumption of 84 

contaminated food (Lopes and Vasconcelos, 2011; Gibble et al., 2016; Karjalainen et 85 

al., 2007). 86 

 87 

Here we report on the dynamics and transfer of cyanobacteria and cyanotoxins from 88 

a freshwater reservoir discharge to the marine environment during a 2 year field 89 

study, which to our knowledge is the first study in France reporting on such transfer.  90 

This study is part of a larger project aiming at the evaluation of the potential risk of 91 

contamination of aquatic organisms (i.e. bivalves) by cyanotoxins during transfer 92 

from a freshwater reservoir to an estuary mouth in Brittany, France. We present 93 

results on cyanobacterial biomass, species composition, as well as cyanotoxins 94 

concentrations of different variants of MC and NOD both in intracellular and 95 

extracellular forms. The quantification of those two forms of cyanotoxins are 96 

necessary as we anticipate gradual cells lysing along the salinity gradient.  97 

 98 

2. Materials and methods 99 

2.1. Study site and sampling strategy 100 

In Brittany, surface water dominated rivers have short residence times (Fraisse et al, 101 

2013) and reservoirs are generally close to marine outlets. The study site is located 102 

in the Morbihan (Brittany, France) along a continuum of moderate length (<10 km), 103 

from the Pen Mur freshwater reservoir upstream through the estuary and the marine 104 

outlet (Fig. 1). This study site was chosen as the Pen Mur reservoir, used for drinking 105 

water, is monitored by the Regional Health Agency (ARS) and undergoes recurrent 106 

intense cyanobacterial blooms dominated by the genus Microcystis (L. Brient, pers. 107 

comm.). Freshwater discharge from the reservoir to the estuary is frequently 108 

observed but not monitored and therefore not quantified.   109 

 110 

From May 2016 to April 2018, we sampled at 5 stations along the freshwater-marine 111 

gradient (F1 in the Pen Mur reservoir and F2 in the river downstream of the reservoir 112 
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are both in the freshwater section, E1 and E2 are located in the estuarine section and 113 

the site M is located at the marine outlet). For each campaign, all 5 stations were 114 

sampled on the same day. We consistently sampled the 3 downstream stations 115 

within 1 hour of low tide to maximize the freshwater discharge and minimize the tidal 116 

contribution. At each station, forthnightly to monthly water sampling was carried out 117 

in the water column to: i) describe phytoplankton and cyanobacterial species 118 

(identification and enumeration), and (ii) quantify cyanotoxins (MC and NOD) in the 119 

cells and in the water. Physico-chemical parameters (temperature, conductivity, 120 

dissolved oxygen, phosphorus and nitrogen concentrations) using a YSI 6920 multi-121 

parameter probe (YSI Environmental, Anhydre) and chemical analyses were also 122 

determined at a subset of the sampling dates.  123 

 124 

                125 

Fig. 1: Map of the study site and sampling stations: F1 and F2 are located in the 126 

freshwater section, E1 and E2 in the estuarine section and M at the marine outlet. 127 
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 128 

2.2. Samples analyses 129 

Samples were filtered upon arrival at the laboratory within a few hours of sampling. 130 

Dissolved nutrient concentrations were measured from filtered (GF/F) water using 131 

common colorimetric methods (Aminot and Chaussepied, 1983) with a Bran and 132 

Luebbe Autoanalyser 3 (Axflow, Norderstedt, Germany). Nitrate was measured after 133 

reduction to nitrite on a cadmium-copper column (Henriksen and Selmer-Olsen, 134 

1970). Phosphate was measured following the method of Murphy and Riley (1962). 135 

Phytoplankton and cyanobacteria identification and counts were conducted on fresh 136 

samples under an optical microscope (100x magnification) using a Nageotte 137 

chamber within 24 hours of sampling.  138 

 139 

2.3. Chemical analysis of cyanotoxins by LC-MS / MS 140 

Water samples containing cyanobacteria were filtered upon arrival at the laboratory 141 

through a 0.45 μm cellulose filter to separate the cell pellet for the intracellular 142 

cyanotoxin analysis and the filtrate for dissolved extracellular toxins and frozen at -143 

20°C until chemical analysis. The filtrate was purified on a C18 SPE cartridge (Solid 144 

Phase Extraction) according to the ISO 20179 standard method (Anon 2005). The 145 

fraction containing the toxins was frozen until LC-MS/MS analysis. The cell pellet was 146 

ground with 250 mg of glass beads (0.15-0.25 mm) and 1 ml of MeOH so that cells 147 

released their toxins. Both fractions (intracellular and extracellular) were filtered by a 148 

0.2 µm filter and analyzed by Ultra Fast Liquid Chromatography (Shimadzu, Marne 149 

La Vallee, France) coupled to 5500 QTrap tandem mass spectrometry (ABSciex, 150 

Villebon sur Yvette, France). Toxins were separated on a Kinetex XB C18 column 151 

(100 x 2.1 mm, 2.6 μm, Phenomenex), with water (A) and acetonitrile (B), both 152 

containing 0.1% formic acid at 0.3 mL min-1 flow rate. The gradient was raised from 153 

30 to 80% B in 5 min and was held during 1 min before dropping down during 0.5 min 154 

to the initial conditions. 155 

 156 

Mass spectrometry detection was carried out in multiple reactions monitoring (MRM) 157 

mode (positive ions). The electrospray ionization interface (ESI) was operated in 158 

positive mode using source setting: curtain gas set at 30 psi, ion spray at 5000 V, a 159 

turbogas temperature of 300°C, gas 1 and 2 set at 30 and 40 psi respectively and an 160 

entrance potential of 10 V. Each toxin was identified and quantified with two 161 



 6 

transitions (Table S1): The toxin concentrations of all 10 lipophilic cyanotoxins were 162 

determined using certified standards provided by CNRC (Halifax, NS, Canada). The 163 

method was developed and validated internally in the IFREMER Phycotoxins 164 

laboratory. 165 

 166 

 167 

 168 

Table S1 : LC-MS/MS transitions for the 9 MC variants and NOD tested with 169 

standards 170 

 171 

Toxin Precursor ion (m/z) Transition (m/z) - 

Quantification 

Transition (m/z) - 

identification 

MC-LR  995.6 213.2 374.5 

MC-LW  1025.6 375.2 135.2 

MC-LF   986.6 375.2 135.2 

MC-LY 1002.6 375.2 135.2 

dmMC-LR 981.4 103.0 135.2 

MC-RR 520.1 135.2 213.2 

dmMC-RR 512.8 135.0 103.0 

MC-LA 910.7 375.2 135.2 

MC-YR 1045.6 213.2 375.2 

NOD 825.5 227.0 163.2 

 172 

 173 

2.4. Statistical analyses 174 

All statistical analyses were carried out using R studio software (R Development 175 

Core Team, 2011). A Kruskal-Wallis analysis was used to test the temporal and 176 

spatial effects on physico-chemical conditions and dissolved nutrient concentrations. 177 

The significance threshold was set at p < 0.05. A Spearman correlation was applied 178 

between cyanobacterial biomass and overall toxin concentrations. Changes in the 179 

physico-chemical and biological conditions were characterized by a principal 180 

component analyses (PCA). Analyses were performed on temperature, conductivity, 181 

oxygen saturation, cyanobacterial biomass (cell/mL) and Shannon diversity index 182 

data. 183 
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 184 

3. Results 185 

3.1. Dynamics and transfer of cyanobacteria along the freshwater marine continuum  186 

Diatomophyceae and chlorophyceae occurred in winter and spring while 187 

cyanobacteria dominated the phytoplankton community in Pen Mur reservoir (F1 site) 188 

in summer and early fall during both years (Fig. 2). It is important to note that only 189 

few sampling campaigns (6) were performed in winter and spring, while the majority 190 

(18) occurred in summer and fall.  191 

 192 

Fig. 2: Dynamics of phytoplankton community structure at the freshwater site F1 over 193 

the 2 year field study. The x axis corresponds to sampling dates (and not time).  194 

 195 

The proliferation dynamics of cyanobacteria presented in Fig. 3 shows that the 196 

biomass reached very high concentrations in the freshwater reservoir (F1 site) (> 105 197 

cells mL-1) in summer and fall (from July to October) with a peak of 106 cells mL-1 in 198 

2016 and of 2x106 cells mL-1 in 2017. These intense cyanobacterial blooms were 199 

also observed at F2 in the riverine section downstream of the reservoir with a slightly 200 

lower biomass.  201 
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 202 

Fig. 3: Dynamics of the cyanobacterial biomass (cells/mL) along the freshwater-marine 203 

continuum at the 5 sampling sites. The x axis corresponds to sampling dates (and not time).  204 

 205 

Transfer to the estuary was demonstrated with a progressively lower cyanobacterial 206 

biomass along the estuary as the distance from the upstream reservoir increased. 207 

Downstream cells concentrations were always related to upstream cells 208 

concentrations suggesting that they were due to horizontal transfer and not to in situ 209 

growth. A maximum of 2x105 cells mL-1 was recorded at E1 in June 2017 and a 210 

maximum of 1.2x103 cells mL-1 was observed at E2 on the same day. At the most 211 

downstream station M, coinciding with the marine outlet, a maximum of 240 cells/mL 212 

was recorded (in October 2016).  213 

 214 

3.2. Environmental factors associated with the cyanobacterial biomass 215 

The spatial and temporal variations of cyanobacterial biomass were associated with 216 

physico-chemical conditions presented in Fig. 4: a statistically significant seasonal 217 

variation in water temperature was observed with maxima in June/August and 218 

minima in December/February (p=10-8) but relatively little spatial variation along the 219 

estuary (p=0.97). On the contrary, conductivity exhibited a strong statistically 220 

significant spatial variation (p=3x10-11) and a relatively low temporal gradient 221 

(p=0.82). Hence temporal variation in cyanobacterial biomass was essentially 222 

correlated with changes in temperature whereas spatial variation was mostly derived 223 

from the longitudinal gradient of salinity/conductivity. A threshold of 18°C 224 

corresponded to a biomass higher than 105 cells mL-1 in the reservoir upstream. The 225 
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concentration variation in dissolved oxygen gave an indication of photosynthetic 226 

activity, values greater than 100% saturation corresponding to photosynthetic 227 

production conditions, values around 100% indicating a balance between the water 228 

and the atmosphere and values below 100% indicating respiration or consumption by 229 

bacteria.  230 

 231 

Fig. 4: Spatio-temporal variation of physicochemical conditions measured during the 232 

2 year study along the freshwater to marine continuum. 233 

 234 

Dissolved oxygen displayed a statistically significant temporal variation (p=0.0016) 235 

while no spatial variation (p=0.17) was observed during the study period. In the 236 

reservoir (F1 site) during high cyanobacterial biomass, the dissolved oxygen was 237 

oversaturated, while in the shallow F2 site where low water level (< 1m) of near 238 

stagnant waters coincided with high biological degradation and bacterial 239 

consumption, the dissolved oxygen was strongly undersaturated. Further 240 

downstream in the estuary (E1 and E2 sites) the dissolved oxygen was around 80 to 241 

100 % saturation.  242 
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 243 

 244 

Fig. 5: Spatio-temporal variation of dissolved nutrient concentrations measured 245 

during the two year study along the freshwater to marine continuum.  246 

 247 

Both dissolved nutrients (NO3 and PO4) displayed a statistically significant temporal 248 

variation while the spatial variation only showed tendencies (Fig. 5). Nitrate 249 

concentrations presented an upstream to downstream decrease while phosphate 250 

concentrations showed the opposing trend with higher values downstream.  251 

 252 

3.3. Cyanobacterial species composition along the salinity gradient  253 

The composition of cyanobacterial populations was very diverse in the freshwater 254 

reservoir with 27 species present during the study. As Fig. 6 shows, during the 255 

strongest proliferations (from August to October both years), a dominance of the 256 

genus Microcystis was observed at the F1 site with up to 7 different species of 257 

Microcystis i.e. M. aeruginosa, M. viridis, M. flos aquae, M. wesenbergii, M. novacekii 258 

and Microcystis sp. This same diversity and composition was observed at the F2 site 259 
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(not shown). There was a shift in the dominant Microcystis species between 2016 260 

and 2017 with a mix of M. viridis, M. flos aquae, M. aeruginosa and Microcystis sp in 261 

2016 and an almost monospecific bloom of M. aeruginosa in 2017.  262 

 263 

The transfer to the estuary selected for certain species according to their adaptation 264 

to the new physicochemical conditions, mainly salinity (recorded as conductivity). Up 265 

to half of the cyanobacterial species were present in the estuarine section: 14 266 

species at E1, 7 at E2 and 1 at M. The maximum conductivity recorded during 267 

sampling in summer and fall was 12 mS cm-1 at E1, 35 mS cm-1 at E2 and 50 mS cm-268 

1 at M. The species that survived the transfer through the estuary were several 269 

species of Microcystis, Aphanizomenon sp., Pseudanabaena limnetica and 270 

Planktothrix agardhii, all recorded at the estuarine site E2. P. agardhii was the only 271 

cyanobacterial species recorded at the marine outlet M. The transfer of P. agardhii 272 

was observed on 4 October 2016 between the freshwater site F2 (density P. agardhii 273 

7400 cells mL-1, Microcystis sp 22000 cells mL-1), through the estuarine E1 site 274 

(density P. agardhii 4480 cells mL-1, Microcystis sp 2200 cells mL-1), and the 275 

estuarine E2 site (P. agardhii density 533 cells mL-1, Microcystis sp 267 cells mL-1). 276 

Another transfer to the marine outlet was observed at the end of October 2016 277 

between E2 (432 cells mL-1 of P. agardhii, 480 cells mL-1 of total cyanobacteria) and 278 

M (240 cells mL-1 of P. agardhii, 100% cyanobacteria), while P. agardhii was not the 279 

majority at F2 (160 cells mL-1 P. agardhii, 4400 cells mL-1 Microcystis sp.). Among 280 

the other filamentous cyanobacteria surviving the estuarine transfer, Pseudanabaena 281 

limnetica was observed on 26 June 2017 with a decreasing concentration from 282 

165120 cells/mL at F1 to 7680 cells mL-1 at E1 down to 192 cells mL-1 at E2 while 283 

Aphanizomenon sp was observed on 27 April 2017 from 220 cells mL-1 at F2, down 284 

to 132 cells mL-1 at E1 and 8 cells mL-1 at E2. It is interesting to note that the relative 285 

transfer of filamentous cyanobacteria was higher than that of either unicellular 286 

(Aphanocapsa) or colonial (Microcystis). Of the transferred Microcystis species, M. 287 

viridis was observed further downstream than M. aeruginosa and M. flos aquae in 288 

2016 while the opposite was observed in 2017, in accordance with the relative 289 

biomass in the freshwater section.  290 
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 291 

 292 

 293 
  294 

 295 

Fig. 6: Dynamics of cyanobacterial species composition at stations F1, E1, E2 and M 296 

over the 2 year field study period.    297 
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 298 

The cyanobacterial species diversity was also quantified through the cyanobacterial 299 

Shannon index which is presented in Fig. S1. A gradual decrease of the Shannon 300 

index along the salinity gradient is observed together with higher values in summer 301 

and fall.  302 

 303 

 304 

Fig. S1: Spatial and temporal variation of the cyanobacterial Shannon diversity index  305 

 306 

A PCA analysis performed on the complete dataset (Fig. S2) confirmed the stronger 307 

role of salinity (i.e. conductivity) in structuring the spatial distribution of the 308 

observations together with the Shannon diversity index, while the cyanobacterial 309 

biomass was most strongly associated with elevated temperature and dissolved 310 

oxygen concentration.  311 

 312 
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Fig. S2: PCA analysis highlighting the spatial variation in physico-chemical (T, O2, 313 

Cond) and biological parameters (cyanobacterial biomass, Shannon index) 314 

 315 

3.4 Transfer of cyanotoxins along the freshwater-marine continuum 316 

This study presents the concentrations of non-protein bound lipophilic cyanotoxins, 317 

MC and NOD in particulate samples and in the filtrates during the field campaigns of 318 

2016 and 2017. In particular, the intracellular and extracellular forms of MC are 319 

separated to consider the potential risk associated with the lysing of the cells at high 320 

salinities. 321 

 322 

3.4.1. Intracellular toxins  323 

Firstly, the toxins analysis of the particulate samples of the different stations didn’t 324 

reveal the presence of NOD, which corroborates the observation of cyanobacteria 325 

species not potentially producing NOD. The time variation shows the annual 326 

reproducibility with measured concentrations and transfer of MC occurring in both 327 

2016 and 2017 with higher toxin concentrations reached in 2017 (Fig. 7).  328 

         329 

 330 
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 331 

Fig. 7: Intracellular concentrations of MC variants in the cyanobacteria during the 332 

field campaigns of A) 2016 and B) 2017. Note that the x axis corresponds to 333 

sampling dates (and not time).  334 

 335 

While the presence of MC was recorded in all the freshwater samples (at F1 and F2), 336 

a high temporal variation in concentration was observed with a maximum 337 

concentration of total MC (sum of the MC analogs) of 40 μg L-1 in September / 338 

October 2016 and 60 μg L-1 in September 2017. Among the MC variants observed, 339 

some MC analogs (MC-RR, MC-LR, dmMC-RR and MC-YR) were detected in all 340 

samples while others (dmMC-LR, MC-LY, MC-LW, MC- LF) were only recorded in 341 

some samples. The three dominant variants at F1 were MC-LR, MC-RR and MC-YR. 342 

The total MC values at F2 reached a maximum of 14 μg L-1 with a dominance of MC-343 

RR, MC-LR, dmMC-RR and MC-YR. A demonstrated transfer of cyanotoxins through 344 

the estuary was recorded on many occasions (Table 1) with progressively lower 345 

intracellular toxins concentrations reaching 1.15 μg L-1 at E1 (comprising of MC-RR, 346 

MC-LR, MC-YR, dmMC-RR). In a less frequent manner, a maximum of 0.14 μg L-1 347 

was recorded at E2 (comprising of MC-RR, ML-LR) and a maximum of 0.03 μg L-1 at 348 

site M (MC-RR, MC-LR). In summary, we observed a gradual decrease in 349 

occurrence and in concentrations of intracellular toxins from upstream to 350 

downstream.  351 

 352 
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 353 

 354 

Sites FO % intra MC (Jun – Nov) Max intra MC μg/L 

 2016 2017  

F1 100 100 60 

F2 100 100 14 

E1 67 87 1.15 

E2 17 38 0.14 

M 0 27 0.03 

 355 
Table 1: Frequency of occurrence (in %) and maximum concentrations of intracellular 356 
MC at the 5 stations during the period June to November of both sampling years 357 
 358 
The results of this study show relatively strong overall correlation between the 359 

amount of toxins in the phytoplankton samples and the total cells density of 360 

potentially toxic cyanobacteria (correlation coefficient of 0.85, p=10-11). However, 361 

when we consider relationships on specific dates, the correlation varies with the 362 

dominant cyanobacterial species. For example, in August 2016, a maximum of 5 μg 363 

MC L-1 was observed at site F1, associated with a cyanobacterial density of 900,000 364 

cells/mL composed mainly of Microcystis sp, whereas up to 40 μg MC L-1 were 365 

measured at the same site in October 2016, associated with a density of 360,000 366 

cells mL-1 composed essentially of the species P. agardhii. Transfer of P. agardhii 367 

(4480 cells mL-1) to the estuarine site E1 in early October 2016 coincided with the 368 

presence of MC (1.2 μg MC L-1). MC was also measured at E1 in August, September 369 

and the end of October, at concentrations close to 1 μg MC L-1. MC in low 370 

concentration was measured in the particulate samples at E2 and at M despite the 371 

presence of low density cyanobacteria.  372 

 373 
 374 
3.4.2. Extracellular toxins 375 
 376 

The extracellular toxins (measured in the filtered water) were analyzed only from July 377 

2017 to October 2017 (Fig. 8). Similarly to the intracellular fraction, no NOD was 378 

detected. The extracellular MC profiles revealed a dominance of MC-LR, MC- RR 379 

and MC-YR. Maximum MC concentrations of 0.65 μg L-1 were found at F1 in the 380 
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upstream freshwater reservoir.  We observed higher MC concentrations downstream 381 

of F2 during August and September 2017 in the estuarine section and marine site.  382 

 383 

Fig. 8: Extracellular concentrations of MC variants in the filtered water at the 5 384 

sampling sites during summer and fall 2017 385 

 386 

When comparing ratios of extracellular MC to the total MC (intracellular + 387 

extracellular fractions) along the salinity gradient, we observed a consistent trend 388 

with minimal contribution of extracellular toxins in freshwater and a gradual increase 389 

with increasing salinities (Fig. 9). At site E1 where the maximum conductivity 390 

recorded during sampling during 2017 was 12 mS cm-1, the extracellular contribution 391 

was up to 50%, while it increased to 100% at sites E2 and M where conductivities 392 

were above 35 and 47 mS cm-1 respectively.  393 

 394 

 395 

 396 

 397 
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 398 

Fig. 9: Contribution of extracellular MC to the total MC concentrations at the 5 399 

sampling sites during summer and fall 2017 400 

 401 

 402 

4. Discussion 403 
 404 
This study demonstrated over 2 successive years the recurrent transfer of 405 

cyanobacteria and cyanotoxins along the freshwater – marine continuum in a Brittany 406 

estuary, France. This result is in accordance with published studies worldwide. This 407 

transfer was first reported in the late 1980’s in Europe (Sivonen et al., 1989) and 408 

USA (Paerl, 1988) but have gained an interest recently (Preece et al, 2017) and likely 409 

to increase in frequency in the future (Paerl et al., 2018). Although the biomass was 410 

lower than in the freshwater reservoir, cyanobacterial biomass of up to 2x105 cells 411 

mL-1 was observed in the estuarine section. These cyanobacteria could therefore 412 

contribute significantly to the phytoplankton community structure of the estuary, 413 

which has typically a much lower biomass (usually reported in cells L-1) than in 414 

freshwater, or serve as food source for invertebrates.  While the temporal variation in 415 

cyanobacterial densities was mainly associated with temperature, spatial variation 416 

was due to salinity while nutrients were unlikely to limit cyanobacterial growth. Nitrate 417 

presented an upstream to downstream decrease suggesting a freshwater dominant 418 

source. Phosphate values showed the opposing trend with higher values 419 
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downstream and in particular at the outlet where we expect sediment resuspension 420 

to be the largest, based on the observed high concentrations of suspended particles. 421 

 422 

Although the freshwater discharge was not monitored and therefore not quantified, 423 

the progressive increase in salinity near the surface was a good indicator of dilution. 424 

Possible light limitation could also be important but the short residence time (of the 425 

order of one to two days), inferred from observations of the surface velocities during 426 

sampling, would not permit in situ growth. Hence we suggest that the lower biomass 427 

in the estuary results from freshwater discharge dilution with estuarine waters. 428 

 429 

The dominant blooming genus in the upstream freshwater reservoir was 430 

overwhelmingly Microcystis, consistent with the most widespread cyanobacterial 431 

occurrence of Microcystis in freshwaters worldwide (Harke et al., 2016) and as well 432 

as in Brittany (Pitois et al., 2014). While cyanobacterial transfer from freshwaters to 433 

estuaries has been reported for around 20 years, the majority of studies worldwide 434 

reported that M. aeruginosa was the dominant species transferred to coastal waters 435 

(Preece et al., 2017 for a review).  M. aeruginosa is described as one of the 436 

freshwater cyanobacteria with the highest salinity tolerances (Verspagen et al., 2006) 437 

but variable thresholds have been observed from 4 ppt (Chen et al., 2015), 10 ppt 438 

(Lewitus et al., 2008; Tonk et al., 2007) to 35 ppt (Miller et al., 2010 ; Black et al., 439 

2011) possibly showing strong intraspecific variability. In this study, different 440 

Microcystis species were transferred through the estuary in 2016 and 2017, in 441 

accordance with their relative biomass upstream. Therefore we cannot suggest a 442 

stronger resistance of either of the Microcystis species (M. aeruginosa, M. viridis and 443 

M. flos aquae). While the mucilage associated with the colonial form of Microcystis is 444 

likely to protect the cells from osmotic shock at high salinity, as suggested by Kruk et 445 

al.,2017 and Martínez de la Escalera et al., 2017, the relative resistance of the 446 

different Microcystis species is not known. Filamentous cyanobacteria i.e. 447 

Planktothrix and Pseudanabaena have been shown in this study to also survive the 448 

transfer through the estuary and therefore the salinity stress. The salinity tolerance of 449 

P. agardhii has been recently tested on brackish isolated species and a tolerance 450 

value of up to a salinity of 15 has been found (Vergalli et al., 2016). The transfer of 451 

Planktothrix agardhii through an estuary has been recently reported on one occasion 452 

although the bloom was non toxic (Churro et al., 2017). Pseudanabaena sp. has 453 
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been occasionally reported in the Baltic Sea (Lopes and Vasconscelos, 2011),  454 

however, the role of the mucilage/sheath around the filaments, as a potential 455 

protective morphological characteristic has not been suggested. On the other hand 456 

unicellular species present in relatively high numbers in the freshwater reservoir (i.e. 457 

Aphanocapsa sp., Coelosphaerium sp., Cyanodiction sp. or Cyanogranis sp.) were 458 

not found in the estuary. A possible explanation besides a sensitivity to salinity is that 459 

these species might be difficult to identify in samples with high suspended matter, 460 

and therefore not accounted for in the counting. 461 

  462 

Intracellular MC was detected in all samples in the freshwater section with 463 

concentrations reaching 40 μg L-1 in 2016 and 60 μg L-1 in 2017. These levels are 464 

much higher than the alert 3 warning level of 10-20 μg L-1 of the World Health 465 

Organization forbidding any recreational activities in waterbodies (Ibelings et al., 466 

2014; Funari et al., 2017). In this study, the measured gradual decrease in 467 

cyanobacterial biomass was accompanied by a decrease in intracellular MC 468 

concentrations from upstream to downstream indicating a likely dilution effect as 469 

expected due to strong tidal influence, even though we minimized that influence by 470 

sampling within one hour of low tides. This decrease has also been reported in the 471 

San Francisco Estuary (Lehman et al., 2008) and in Monterey Bay (Gibble and 472 

Kudela, 2014). A concomitant physiological response to MC production could also be 473 

possible at high salinity. Indeed, the effect of salinity on the physiology of M. 474 

aeruginosa has demonstrated a reduction in the production of MCs under salt stress 475 

(Black et al., 2011; Martín-Luna et al., 2015).  476 

 477 

A highly significant overall relationship between potentially toxic cyanobacterial 478 

biomass and intracellular MC concentrations was found. In 2017, there was an early 479 

summer dominance of the small unicellular non-toxic cyanobacteria Cyanodyction sp. 480 

and Cyanogranis sp. which did not occur in 2016 when the summer blooms were 481 

dominated by the potentially toxic M. viridis. The toxicity of Microcystis is also known 482 

to vary among species, M. wesenbergii being rarely found toxic, while the majority of 483 

M. aeruginosa and M. viridis is reported as toxic (Harke et al., 2016, Otten et al., 484 

2017). The MC concentration in the reservoir and the estuary was most likely due to 485 

Microcystis sp., due to its overwhelming dominance and the high percentage of 486 

potentially toxic species within that genus in Brittany (Pitois et al., 2014). P. agardhii 487 
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is also known to produce MCs in relatively large quantities (Briand et al., 2009; Lance 488 

et al., 2007) and the most toxic bloom reported in Italy’s estuarine waters was indeed 489 

one of Planktothrix (De Pace et al., 2014).  490 

 491 

Few studies report on the different variants of MC during blooms in the natural 492 

environment although their identification is important as different variants display 493 

different toxicities and health risks (Lehman et al., 2008; Otten et al., 2017). 494 

Toxicological studies reported on similar LD50 values for MC-LR, MC-LA, MC-YR and 495 

MC-YM while the value for MC-RR was 10 times higher (Sivonen and Jones, 1999), 496 

while Gupta et al., 2003 reported that MC-LR was twice as toxic as MC-LA.  The 497 

dominant MCs variants (MC-LR and MC-RR in 2017 and (MC-LR, MC-RR and MC-498 

YR in 2016) were transferred without specific selection along the salinity gradient. 499 

The difference between the two years of the dominant variants may be attributed to 500 

different dominant Microcystis species as it is known that each species and strain 501 

produced, in culture conditions or in situ, different variants in different proportions and 502 

cell quantities (Rios et al., 2014; Briand et al., 2016; Otten et al., 2017). The 503 

demonstrated concentrations of the three dominant variants of MC reported in this 504 

study might therefore induce potential impacts on cyanobacterial consumers. Our 505 

preliminary data (unpublished) show MC accumulation by filter feeding organisms 506 

supporting this hypothesis. While we quantified 9 variants of MC it is still possible that 507 

other variants were present in the samples. 508 

 509 

In this study, a lysis of the cyanobacterial cells at high salinity was most likely as the 510 

ratio of extracellular MC to the total MC concentration increased downstream and in 511 

particular accounted for 100 % of the total MC concentrations at the two most 512 

downstream sites. In accordance with literature results the dominant form of MC in 513 

the freshwater section was intracellular indicating its constitutive nature (Orr and 514 

Jones, 1998; Briand et al., 2012), while the dominant form became extracellular as 515 

cells lysis increased at elevated salinity (Tonk et al., 2007).  516 

 517 

5. Conclusion 518 

This study reports on the transfer of both cyanobacteria and cyanotoxins from a 519 

freshwater reservoir to the marine outlet in France. Moreover, the transfer through 520 

the estuary occurred frequently over the 2 year study period. The higher the 521 
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concentrations upstream, the more intense the transfer. The very high correlation 522 

between the biomass of potentially toxic species and total MC concentrations 523 

suggests that the majority of the cyanobacterial present in the estuary were toxic. 524 

Microcystis which dominated the blooms in the freshwater reservoir was the most 525 

likely genus responsible for the measured MC concentrations in the estuary, followed 526 

by P. agardhii both being relatively resistant to the salinity gradient. The extracellular 527 

contribution to the total MCs increased from upstream to downstream in accordance 528 

with cells lysis at elevated salinity. Both intracellular and extracellular MC variants did 529 

not show specific selection along the salinity gradient and the dominance of two 530 

highly toxic variants (i.e. MC-LR and MC-YR) is worrisome, as it could impact 531 

cyanobacterial consumers.  532 

 533 
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Sites FO % intra MC (Jun – Nov) Max intra MC μg/L 

 2016 2017  

F1 100 100 60 

F2 100 100 14 

E1 67 87 1.15 

E2 17 38 0.14 

M 0 27 0.03 

 
Table 1: Frequency of occurrence (in %) and maximum concentrations of intracellular 
MC at the 5 stations during the period June to November of both sampling years 

 

Table



Table S1 : LC-MS/MS transitions for the 9 MC variants and NOD tested with standards 

 

Toxin Precursor ion (m/z) Transition (m/z) - 

Quantification 

Transition (m/z) - 

identification 

MC-LR  995.6 213.2 374.5 

MC-LW  1025.6 375.2 135.2 

MC-LF   986.6 375.2 135.2 

MC-LY 1002.6 375.2 135.2 

dmMC-LR 981.4 103.0 135.2 

MC-RR 520.1 135.2 213.2 

dmMC-RR 512.8 135.0 103.0 

MC-LA 910.7 375.2 135.2 

MC-YR 1045.6 213.2 375.2 

NOD 825.5 227.0 163.2 
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