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Abstract
Our intention is to demystify the MR quantification of hepatic iron (i.e., the liver iron concentration) and give you a step-by-step
approach by answering the most pertinent questions. The following article should be more of a manual or guide for every
radiologist than a classic review article, which just summarizes the literature. Furthermore, we provide important background
information for professional communication with clinicians. The information regarding the physical background is reduced to a
minimum. After reading this article, you should be able to perform adequate MR measurements of the LIC with 1.5-T or 3.0-T
scanners.
Key Points
• MRI is widely accepted as the primary approach to non-invasively determine liver iron concentration (LIC).
• This article is a guide for every radiologist to perform adequate MR measurements of the LIC.
•When using R2* relaxometry, some points have to be considered to obtain correct measurements—all explained in this article.
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Abbreviations
DIOS Dysmetabolic iron overload syndrome
HH Hereditary hemochromatosis
LIC Liver iron concentration
ME-GRE Multi-echo gradient-echo
MRI Magnetic resonance imaging
SIR Signal-intensity-ratio
TE Echo time

Introduction and overview

Magnetic resonance imaging (MRI) is widely recognized as
the primary approach to non-invasively determine liver iron
concentration (LIC). Over the past 20 years, various methods
have been extensively studied and eventually introduced into
routine clinical management in many centers. Nevertheless, in
our experience, it seems that many radiologists are still
“afraid” of this method and therefore do not use it or use it
inappropriately. The likely reason for this seems to be its ap-
parently complex background and the many different ap-
proaches on offer. As a result, although the benefits of MRI
in the diagnosis and management of iron overload are at hand,
MRI has only been included in a few clinical guidelines and
recommendations [1–6] and is therefore actually not seen as a
mandatory method that ought to be offered by every radiolo-
gist working with MRI.

Which MRI techniques are available?

There is an easy way to get an idea or first impression of a
possible iron overload in the liver with MRI: nearly every
MRI protocol of the liver integrates a chemical shift sequence,
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i.e., in- and opposed-phase. Iron leads to decreased signal in-
tensity on in-phase images compared with the opposed-phase
which in turn should alert on a possible iron overload disease
[7, 8]. An example is provided in Fig. 1. A quantification meth-
od has been proposed by Lim [7]. However, concomitant
steatosis is a crucial limitation of this technique which compro-
mises its value [9, 10]. Further, fast spin-echo T2-weighted
imaging can also be used to detect iron: the T2 shortening leads
to low liver signal intensity, relative to that of the spleen.

There are two more advanced methods that can determine
the LIC quantitatively: relaxometry and the signal-intensity-
ratio method.

Relaxometry

Relaxometry is the quantitative evaluation of the MRI signal
loss due to the predominant shortening of the T2 and more-
over the T2* relaxation times. There are two approaches: the
calculation of the T2 time constant, based on spin-echo se-
quences, and of the T2* time constants, based on gradient-
echo sequences. Both can be estimated from signal intensity
decay acquired at multiple echo times (TEs). Because of the
increase in the presence of tissue iron and therefore more
logical applicability, we use the mathematical inverses of T2
and T2*, the R2 and R2* relaxation rates, for daily routine and
regulatory purposes in the liver.

R2 Relaxometry - Ferriscan® (St. Pierre’s method) is a
commercially available and FDA-approved technique for
1.5-T scanners, based on five T2-weighted spin-echo (SE)
acquisitions during free-breathing with increasing TEs for
the calculation of R2 [11]. Its advantages are undeniable
showing excellent correlation with the LIC and it is used in
many clinics worldwide as well as in various studies, often
determined as the “gold-standard” due to its cross-site and
cross-platform validation and an ongoing data quality con-
trol/assurance. Nevertheless, this technique requires long im-
aging time (~ 20 min), with the definitive need for sedation in
pediatric imaging, complex data processing with centralized

data analysis (takes 2 business days to return a report), and a
former calibration of instruments. Furthermore, a correspond-
ing service fee per patient is charged with this method for the
data analysis. On top of the costs of the MRI scan itself, this
narrows its widespread adoption.

R2* relaxometry has emerged as a reliable method provid-
ing a linear correlation with the LIC. It has shown superb
reproducibility but the fact that sequence parameters and im-
age analysis procedures were different among many studies
has always been portrayed as a disadvantage [12–15].
Although there is no actual consensus on the ideal image
acquisition, many centers are using R2* relaxometry with
their house-made sequence and post-processing software with
own LIC calibration. Nevertheless, studies have shown that
the existing biases are correctable and, in some cases, also
negligible if some individual points are considered, providing
clinically acceptable estimation of the LIC with reproducible
results [14, 16–18]. R2* relaxometry has further emerged as a
very quick technique, acquired in only one breath-hold.With a
first TE about 1 ms, the quantification of the LIC is possible
up to 20 mg/g dry weight with 1.5-T scanners [19].
Nevertheless, we have to be aware that there remains an inac-
curacy in such high iron values. Examples for using
relaxometry in different patients are provided in Fig. 2. One
of the major advantages of R2* relaxometry is the possibility
of 3D acquisitions and parallel imaging, which allow to ac-
quire a complete volumetric coverage of the liver.

Signal-intensity-ratio

In 2004, Gandon and colleagues introduced the so-called
signal-intensity-ratio (SIR) method (imagemed.univ-rennes1.
fr) which is based on measuring the signal-intensity-ratio be-
tween the liver and the paraspinal muscles. It is performed by
obtaining multiple breath-hold gradient-echo (GRE) sequence
acquisition with 3 different TEs (4, 9, and 14 ms) and 20° flip
angle, and the time to repetition (TR) is constant at 120 ms
[20]. The model of the Spanish Society of Abdominal

Fig. 1 Example of a chemical shift sequence which already indicates a
pathological iron deposition. The signal intensity of the liver in in-phase
(a, TE = 4.77 ms, TR = 6.68 ms) is decreased (SI 100) compared to out-

phase ((b) SI 120, TE = 2.35, TR = 6.68 ms) suggesting iron overload.
Multi-echo gradient-echo sequence (c) provides a R2* of 128 s−1, which
corresponds to a pathological LIC of ~ 67 μmol/g
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Imaging (SEDIA) proposed by Alustiza et al uses the same
method with only 2 echoes (4 and 14 ms) and a different
mathematical formula to calculate the LIC [21]. The results
of the SEDIA’s model are better correlated with R2* and with
LIC measured on liver biopsies [22]. In case of high iron
overload, an add-in sequence using a shortest TE was pro-
posed by Rose et al [21, 23]. With SIR, it is important to only
use the body coil, and no surface coils should be selected
(especially those integrated in the patient’s bed) to avoid any
signal gradient between the surface and the depth (Fig. 3).
This leads to a reduction of the signal-to-noise performance
which ultimately limits the dynamic range of SIR and there-
fore induces bias (due to the use of magnitude images).
Another limitation of SIR is that the technique does not correct
for fat, despite the fact that it uses “in-phase” echoes [24]. This
can also lead to a relevant bias.

Which MRI technique is preferable?

For a long time, the R2* and SIR methods were opposed.
They each have their limits.

The most significant advantages of SIR methods are their
accessibility, being feasible on every machine in the world.
With the improvement of ME-GRE sequences, SIR method is
now considered less precise than R2* relaxometry for low or
moderate iron overload. It can strongly overestimate the result
if the measurements are made, bymistake, on images acquired
with a surface coil.

The R2* method presents a risk for major underestimation
of the overload if the signal is already collapsed at the first
echo. This can be avoided at 1.5 T, in most cases, by setting a
first very short echo, less than 1 ms, but this may be insuffi-
cient in case of massive overload or even less on a 3-T device.

Fig. 3 SIR method applied correctly on an image (a) acquired with the
body coil providing a normal liver to muscle ratio of 0.97. The wrong
application is shown in image (b) on the same patient acquired using
surface coil with a liver to muscle ratio of 0.43. This may lead to a

crucial mistake with the erroneous assumption that there is a significant
iron overload. This is caused by the signal increase of the body parts
closest to the surface coil

Fig. 2 Three examples (a–c) of a liver ME-GRE sequence obtained at
1.5 Twith 12 echoes showing for each patient a selection of TE = 4.8 and
14.8 ms images (first line) and also a MRQuantif graph (second line)
plotting the signal intensity according to TEs (signal of liver is yellow,
signal of muscle in light red). a Patient without iron overload (LIC
12 μmol/g). Visually, the liver signal is close to that of the paraspinous
muscles on both echoes. On the graph, curve of the liver signal (yellow
line) decreased progressively but stayed above that of the muscle (light

red line). The slight sinusoidal ripple of the signal according to the phase
corresponded to a mild degree of fatty infiltration. b Mild iron overload
(LIC 93 μmol/g). Visually, the liver signal is below that of the
paraspinous muscles, particularly on the long TE. On the graph, the liver
signal decreased more rapidly than that of the muscle. cMajor iron over-
load (LIC 355 μmol/g). Visually, the liver signal is collapsed on both
echoes. On the graph, the liver signal decreased very rapidly and reached
the level of the background noise at the fourth echo (4.8 ms)
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In this case, the use of the body coil makes it possible to
compare with the muscle and to provide a ratio correcting
the calculation error of the R2*. Indeed, the R2* and SIR
methods can be carried out jointly from a single sequence if
the body coil is selected, which is helpful in case of high
overload and at 3 T [25].

Whenever the decision on the appropriate MRI method is
made, keep the samemethod in case of patient follow-up. This
is especially important for therapy monitoring as these
methods (like R2 and R2*) should not be used interchange-
ably in the same patient [26, 27].

The following paragraphs are now based on R2* as the
method of choice but you should keep in mind its limitations,
at 3 T and in case of high overload.

Which MR protocol do I need for R2*?

Multi-echo gradient-echo (ME-GRE) sequences are means of
choice to determine the R2*. Aswas done in early work on the
R2* calculation, an ME-GRE sequence can be replaced by
several GRE sequences with a single TE variation, but with
the condition of not recalibrating between acquisitions [12].

The first echo time (TE) is the key parameter and should be
chosen as short as possible, i.e., 1 ms or less [16, 28–30].
Because the effect on the signal decrease is proportional to
the magnetic field, at 3 T, to get the same level of result, the
TE values should be divided by 2. This explains the limitation
of quantifying high LIC at that field because it is difficult, at
least routinely, to obtain the first TE below 0.5 ms.
Furthermore, an appropriate number of echoes with short echo
spacing (around 1 ms) should be used, and in literature, all
calibrated sequences never had less than 8 echoes and we
suggest at least 12 echoes. The TR is usually being set be-
tween 25 and 120 ms with a low flip angle, which is important
if the same sequence is also used to quantify fat.

The use of fat saturation can lead to systematically
lower R2* values [31, 32]. This effect is significant for
R2* > 300 s−1 (when fat and water peaks begin to overlap) and
therefore not relevant in patients with hereditary hemochro-
matosis (HH) or dysmetabolic iron overload syndrome
(DIOS) with expected R2* values far below this threshold. It
has been shown that the spectral complexity of the fat signal
introduces errors in R2* quantification in the presence of high
fat concentration [33]. Using multi-peak modeling can miti-
gate those effects on R2* measurements. Applying the fat
saturation on the sequence used seems to be a possible solu-
tion to this; however, most of the existing R2*-LIC biopsy
calibrations have been mainly derived in the absence of fat
suppression [34]. Moreover, joint quantification of steatosis
could be necessary in a context of metabolic syndrome.
Therefore, we advise to not use fat suppression for routine
work to simplify the approach.

A single transverse slice through the liver (at the same time
through the spleen) is traditionally acquired in clinical prac-
tice, with only one breath-hold. All measurements should be
performed prior to any administration of intravenous gadolin-
ium chelate because this can change the clinically relevant
results, especially with hepatocyte-specific contrast agents
[35].

How do I measure the R2*?

R2* is usually reported in sec−1 (s−1) in which T2* is simply
its reciprocal (i.e., R2* = 1000/T2*, T2* is reported in ms).
T2* can easily be converted by applying the factor of 1000,
e.g., a T2* of 14 ms corresponds to 71.4 s−1 (1000/14 = 71.4).
We suggest using R2* rather than T2* in your report, because
R2* is directly proportional, rather than inversely, to iron.

An important part is the application of the fitting algorithm
on the average signal intensity at various echo times. The
following decaymodels are available: mono (single) exponen-
tials with/without truncation or with constant or variable off-
set, complex or simple fitting, basic, baseline subtraction, sub-
traction of measured image noise; bi-exponential [36]. These
data-fitting procedures need correcting for confounding ef-
fects, in particular image noise and signal modulations from
fat. It is not yet clear which model appears to be the best, but
the truncated model seems to be very accurate and the con-
stant offset model very robust even for high iron levels [30].
The complex fit has been postulated as the best approach to
avoid noise-related biases [37]. Nevertheless, as this is not a
solution for daily clinical practice, we suggest that you adhere
to two important aspects: decide on a decay model and stay
with it, especially at follow-up examinations.

Freely available software is available in which the
group from Rennes recently launched, MRQuantif
(http://mrquantif.org). This DICOM-dedicated solution
automatically selects the best method and the preferable
algorithm depending on the data provided but gives also
the opportunity to select a fitting method and visualize the
matching of curve to the data points (Fig. 4). This tool has
the advantage to warn in case of incorrect or insufficient
data. There are also other free tools building T2* maps,
such as MRmap (https://sourceforge.net/projects/mrmap)
or processing data allowing T2* calculation such as
IronCalculator (http://www.ironcalculator.com) [38, 39].
We have to mention that all these free tools have no CE
ce r t i f i c a t i on a t t h e momen t . The CMR too l s
(Cardiovascular Imaging Solutions, London, UK)
provide a paid alternative. MRI vendors also propose
dedicated tools like StarMap from General Electric or
MapIt from Siemens Healthineers.

MR vendors are proposing optional 2D or 3D multi-
echo Dixon solutions integrating data processing, taking
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also fat influence into account. With General Electric, the
product is called “IDEAL-IQ”, with Philips “StarQuant”
(or mDixon-Quant), and with Siemens Healthineers
“LiverLab” (or qDixon). They produce T2* or R2* but
also fat fraction maps by doing a pixelwise fitting. An
advantage that results from this is the possibility of cal-
culating the proton density fat fraction. Some of these

sequences have already been evaluated in literature with
promising results at 1.5 T [40]. Comparison between 3D
multi-echo Dixon approaches and the conventional,
already-approved 2D GRE technique has shown excellent
correlation [41]. Nevertheless, studies have shown some
outliners or individual limitations such as reconstruction
errors with fat-water swap. The first TE should be short

Fig. 4 Example of a MR
evaluation using the MRQuantif
software. Selected ROIs are
placed manually, three in the liver,
one in the spleen, two in
paraspinal muscles, and one in the
background noise (a). The
software then automatically
calculates R2* (and T2*) values
and further provides results
calculated with the selected SIR
method (b). The LIC is then stated
for eachmethod. It also allows the
user to choose between different
calibration formulas and fitting
procedures (c)
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enough to provide correct R2* evaluation (and conse-
quently fat fraction) and to avoid a major LIC underesti-
mation in case of high overload, particularly at 3 T
(Fig. 5). We strongly recommend to first check that there
is some liver signal left on the first two echoes of the
native images before using the R2* map values.

The different approaches for placement of regions of inter-
est (ROIs) or automatic whole-liver evaluation play a minor
role in daily routine, and its pros and cons are negligible
whereas whole-liver approaches are becoming favored in re-
cent literature [42–45]. In general, several ROIs (2–3) should
be drawn with 2–3 cm2, as large as possible [44]. Care should
be taken to avoid large vessels or lesions [45]. Review the R2*

images for iron heterogeneity and avoid measuring only in
these areas due to the possibility of sampling errors.

How to obtain the liver iron concentration
from the R2*?

This is probably one of the most important steps. Again, the
golden rule is tomention that youmust staywith yourmethod,
especially when it comes to monitoring of therapy. In contrast
to the MR-based determination of fat, the MR quantification
of iron is not a direct method; it is based on calibration with

Fig. 5 High LIC with 3-T imaging. a 2D ME-GRE sequence (first TE =
1.2 ms) obtained with body coil showing signal collapsed with a LIC of
521 μmol Fe/g as estimated by SIR method. In the same patient,
pixelwise R2* map built by the 3D ME-GRE vendor solution (b),
performed with surface coil, provides a wrong mean R2* of 188 s−1

which corresponds to slight iron overload (LIC = 59 μmol/g). The same

patient was also scanned with another 3-T system from a different vendor
(picture not provided) giving even a lower wrong R2* estimation by the
3D ME-GRE pixelwise map. R2* calculated using the same ROIs by
MRQuantif (c) providing selected truncation fitting, excluding most of
the points, was 1587s−1 corresponding to a LIC of 496 μmol Fe/g
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biopsy. Therefore, we need a formula to translate the R2* into
the LIC.

1.5 Tesla

The group by Wood et al was one of the first to report such a
calibration-based formula (Fe in mg/g dry weight [R2*] =
0.0254 × R2* + 0.202) [12]. Other groups also performed
such studies, and differences were as mentioned in sequence
parameters as well as in post-processing [27, 46]. To transfer
the R2* into the LIC, simply apply the measured R2* values
to a calibration formula. Still, the question arises which cali-
bration you should use? This depends on the sequence param-
eters you have chosen and then the applied fit. Next, choose
the validated formula from Table 1 below. The LIC is reported
either in mg Fe/g or μmol Fe/g dry liver tissue; a con-
version of mg/g in μmol/g is done by a multiplication
by the factor 18 (Fe[μmol/g] = 18 × Fe[mg/g]), i.e., in
detail 1 μmol~55.845 μg (=atomic weight of iron).

The problem is that all available calibration formulas differ
from each other, but why is this so? Firstly, all sequences have
different acquisition parameters and post-processing fitting
algorithms. Further differences in post-biopsy sample process-
ing may also explain the difference between the calibration
curves in literature [27]. These are the two major points.
Nevertheless, it was shown that pooled data from studies that
have a low initial TE in common provide relatively similar
calibration results [16]. In general, when taking the studies by
Wood, Garbowski, Hankins, and Henninger into account, a
R2* threshold of 70 s−1 is in general a good surrogate and
first orientation [12, 16, 27, 46]. Nevertheless, the studies by
Kühn et al provide distinct different R2* thresholds [33, 47].
The reason can be seen in the histological evaluation of the
liver biopsy samples (done by a subjective grading with no
quantitative LIC determination), performing the MRI after the
liver biopsy and the imaging parameters with a relatively low
initial TE of 2.4 and only 3 acquired echoes, all based on a 3-

point Dixon technique. Therefore, we must be aware when
comparing different techniques and calibration with each oth-
er. Nevertheless, sequence parameters provided in Table 2 are
a good orientation, rough deviations of which should be
avoided.

With the other abdominal organs (pancreas and spleen),
there is no calibration that translates the R2* value into any
quantitative unit for tissue iron but the same R2* technique as
for the liver can be used. Pancreas and spleen R2* measure-
ments can readily be obtained using the same approach as for
liver R2*; they “come for free”. Schwenzer et al measured
R2* of the liver, spleen, and pancreas in a healthy population,
to get an idea of possible threshold [48]. They used a 12-echo
gradient-echo sequence with fat saturation (first TE 2.6 ms),
mono-exponential decay. The R2* range for the liver was
21.8–73.5 s−1 (n = 129 patients; R2* mean 35.6) which is also
compatible with most studies. For the pancreas, the range was
15.4–38.6 s−1 (n = 61 patients; R2* mean 24.1) and for the
spleen, 8.8–69 s−1 (n = 129 patients; R2* mean 22.8). A pan-
creas R2* of 100 s−1 appears to represent a risk threshold for
predicting cardiac iron overload with a “clean” pancreas pro-
viding a nearly 100% negative predictive value for cardiac
iron deposition [49]. For the spleen, 70 s−1 can be chosen as
a reliable threshold, whereat 100 s−1 is a pathologic condition.
R2* measurements of the pancreas and the spleen offer valu-
able information in the management of patients with
hyperferritinemia [50].

3 Tesla

For the moment, there is only one reference analyzing the SIR
and R2* methods in comparison with the LIC obtained by
biopsy in a significant number of patients [25]. The conver-
sion formula proposed from R2* calculated after subtraction
of the background noise is LIC (μmol) = 0.314 R2* − 0.96.
We could simplify in LIC (μmol) = R2* / 3.2. The increased
sensitivity at 3 T allows for more precise analysis and

Table 1 LIC calibration formulas at 1.5 T and R2* thresholds from literature

Study/method Sequence; TR; TE;
delta-TE; echoes; fit; fs

Calibration formulas
to convert R2*[s−1]
into LIC in mg/g
and in μmol/g

Threshold for LIC > 2 mg/g
or 36 μmol/g

Wood [12] Single-echo gradient-echo; 25 ms; 0.8 ms;
0.25 ms; 16; variable offset; no fs

Fe [mg/g] = 0.0254 × R2* + 0.202
Fe [μmol/g] = R2* / 2.18 + 3.6

71 s−1

Garbowski [27] Multi-echo gradient-echo; 200 ms 0.93 ms;
0.8 ms; 20; truncation; fs

Fe [mg/g] = 0.032 × R2* − 0.14
Fe [μmol/g] = R2* / 1.74–2.5

67 s−1

Henninger [16] Multi-echo gradient-echo; 200 ms; 0.99 ms;
1.41 ms; 12; truncation; fs

Fe [mg/g] = 0.024 × R2* + 0.277
Fe [μmol/g] = R2* / 2.31 + 4.8

70 s−1

Hankins [46] Multi-echo gradient-echo; not mentioned;
1.1 ms; 0.81 ms; 20; truncation; no fs

Fe [mg/g] = 0.028 × R2* × 0.454
Fe [μmol/g] = R2* / 1.98–8.1

88 s−1

TR repetition time, TE echo time, fs fat saturation, LIC liver iron concentration, delta-TE time between two echoes
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detection of mild iron overload; conversely, it can be difficult
to quantify severe iron overload beyond 150 μmol/g, unless
the body coil is used to combine the two methods.

A complete checklist for the whole procedure is provided
in Table 3.

How to report?

The cut-off value for pathological LIC and hence iron over-
load has been defined as 36 μmol Fe/g or 2 mg Fe/g of dry

weight [21]. The LIC should be calculated and reported; a
simple R2* value of the liver does not help any clinician to
get an idea of what is going on—calibration is the key [51]. It
is important to speak one common language and the LIC is
well known among clinicians. There is a terminology pro-
posed in 2000 by EASL but a more detailed version taking
in account more recent knowledge can be proposed (Table 4)
[1].

The distinction between the different iron distribution pat-
terns is an important aspect in the differential diagnosis of iron
overload disorders; therefore, R2* of the spleen and the pan-
creas should also be reported and, if possible, evaluated as
pathological or not [52].

In therapy monitoring, the baseline finding and the
calculated LIC should be mentioned, if available. An
example of monitoring a patient under chelation with
MRI is provided in Fig. 6. We strongly suggested struc-
tured reporting. The software MRQuantif, proposed by
the Rennes team, automatically builds a report and
stores a data file.

Closing comments

We are aware that in literature, concerning R2*
relaxometry, there is strong doubt on its reproducibility
with the fear that recalibration is necessary for any mod-
ifications on sequence parameters and post-processing.
This “fear” is partly justified, of course, especially if
you want to have a very accurate quantification.
Measured R2* values depend an awful lot on how the
images are processed. While these effects are relatively
modest at LIC levels typically found in HH, they can
become significant at higher LIC’s. It could be shown that
changing sequence parameters and post-processing alters
results but not to the expected extent [16–18].

Table 2 Sequence parameters for
R2* Sequence type Gradient-echo sequence, breath-hold

Coil At least at 3 T or in case of high overload use the
body coil (coil autoselection should be switched off)

Plane/orientation Axial

Field-of-view 38–40 cm

TR ~ 120 ms

TE initial < 1 ms (as low as possible)

delta-TE 0.25–1.4 ms

Number of echoes 12–20

FA 20°

Options No fat saturation is advised (depending on the calibration formula)

Slice thickness 7–10 mm

Number of slices The maximum allowed, from the spleen to the pancreas

Table 3 Checklist for LIC evaluation

SIR methods
• You could use several single-echo GRE but preferably ME-GRE to
reduce the acquisition time, to be able to combine both methods and to
quantify fat.
• For Rennes algorithm (for both 1.5-T and 3-T systems), use the pro-
tocol described on the https://imagemed.univ-rennes1.
fr/en/mrquantif/protocols.php web page. For SEDIA protocol at 1.5 T,
global parameters are identical but only the two echoes at 4 and 14 ms
TEs are used.
• Use only body coil!
• To get LIC preferably, use the DICOM software MRQuantif to have a
control of the coil selected or go on-line to mrquantif.org or www.
sedia.es

R2* methods
• Use a 2D ME-GRE sequence (or several single-echo GRE if not
available) and/or a vendor 3D ME-GRE optional sequence.
• Check that the first echo is about 1 ms or even less.
• Prefer a 2D ME-GRE sequence using body coil as described on the
https://imagemed.univ-rennes1.fr/mrquantif/protocols if you are using
a 3 T or dealing with highly overloaded patients
• If you use a 2DME-GRE sequence, choose your software option and
the appropriate fit
• Check that the R2* calculated is coherent with the liver signal
• Select your R2* to LIC conversion formula
• Mention the LIC and R2* values of spleen/pancreas in your report,
define the thresholds for the clinicians

Eur Radiol (2020) 30:383–393390

https://imagemed.univ-rennes1.fr/en/mrquantif/protocols.php
https://imagemed.univ-rennes1.fr/en/mrquantif/protocols.php
http://mrquantif.org
http://www.sedia.es
http://www.sedia.es
https://imagemed.univ-rennes1.fr/mrquantif/protocols


The goal is to have a tool that can allow for different ac-
quisition parameters, determine the best method of analysis,
and provide an LIC value that is sufficiently reproducible
whatever the brand of the device or even the magnetic field

used. Until this type of software is scientifically validated, it is
important that you choose your method, decide for the cali-
bration formula that fits most to your settings, and stay with
that method.

Fig. 6 A 15-year old patient with secondary iron overload due to blood
transfusion therapy. R2* with “in-house”ME-GRE sequences revealed a
pathologic value of 162 s−1 (a), confirmed by qDixon (LiverLab) (b) with
169 s−1. After 2 years of chelation therapy, the values normalized to 35 s−1

(ME-GRE) (c)/32 s−1 (qDixon) (d). Further iron overload of the spleen
was initially detected (R2* 102 s−1). Spleen values also decreased to a
normal value under therapy (R2* 21 s−1)

Table 4 Proposition of a classification of iron overload severity

Limits Iron overload Comment

Upper limit (× normal) μmol/g
(approximately)

mg/g
(approximately)

< 1N 0 to < 36 0 to < 2 No

< 2N 36 to < 75 2 to < 4 Insignificant Usually with no treatment needed (except HH), follow-up

< 3N 75 to < 100 4 to < 6 Mild Treatment depends on the patient profile

< 4N 100 to < 150 6 to < 8 Moderate Treatment is usually performed (except hematologic
causes)

< 8N 150 to < 300 8 to < 16 Moderate-severe Corresponding usually only to HH or hematologic cause

≥ 8N ≥ 300 ≥ 16 Severe With more cardiac risk
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