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14 Abstract

15 In this work, a novel composite, Ca(OH)2 coated nanoscale zero-valent iron (denoted 

16 as nZVI-Ca(OH)2), was synthesized and used as an activator of persulfate for the 

17 degradation of sulfamethazine (SMT). The effects of sonication time during 

18 composite synthesis, pH, nZVI-Ca(OH)2 dosage and typical groundwater components 

19 were investigated by batch experiments. Sonication time during the synthesis of the 

20 composite could affect the thickness of Ca(OH)2 shell, however, it exerted no obvious 
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21 effect on SMT removal by nZVI-Ca(OH)2 activated persulfate. The initial pH also had 

22 insignificant effect on SMT removal in nZVI-Ca(OH)2/persulfate system. There was 

23 an optimum dosage of nZVI-Ca(OH)2 composites for the activation of persulfate, and 

24 the SMT removal efficiency decreased at both higher and lower dosage. The efficient 

25 performance of nZVI-Ca(OH)2 in synthetic groundwater was observed over a wide 

26 pH range (3-9). However, with the presence of high concentration of HCO3
- or SO4

2-, 

27 SMT removal was inhibited greatly due to the quenching of radicals by HCO3
- or 

28 SO4
2- and the buffering effect of HCO3

-. In addition, the longevity of nZVI-Ca(OH)2 

29 was also investigated. Even after 30 days of aging in the air, Fe0 could still be 

30 detected in nZVI-Ca(OH)2. Despite some loss of Fe0, the composites kept high 

31 reactivity for activation of persulfate for SMT removal, which might be attributed to 

32 the excellent activation ability of amorphous iron oxides. To sum up, the Ca(OH)2- 

33 shell can protect the inner iron core and consequently prolong the lifetime of nZVI. 

34 Keywords

35 Calcium hydroxide; Surface coating; Nanoscale zero-valent iron; Persulfate; 

36 Sulfamethazine

37 Introduction

38 In recent decades, nanoscale zero-valent iron (nZVI) has been widely applied in 

39 water treatment and soil/groundwater remediation processes [1]. Due to its high 
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40 reactivity, nZVI has been applied to remove various environmental contaminants, 

41 such as chlorinated organic compounds and heavy metals [2-4]. Apart from directly 

42 using nZVI to reduce pollutant, nZVI can also perform heterogeneous catalysis in 

43 advanced oxidation system which is more effective for the treatment of refractory 

44 organic pollutants [5, 6]. Recently, nZVI has been reported to be an efficient activator 

45 of persulfate for the treatment of various organic contaminants [7-9]. 

46 Since nZVI particles have large specific surface area and high reactivity [10], 

47 Fe0 can easily release Fe2+ in the presence of dissolved oxygen and persulfate (Eq. 1-

48 2). And then those ferrous ions activate S2O8
2- to produce sulfate radicals and 

49 hydroxyl radicals which can react with various environmental pollutants (Eq. 3 and 

50 4). Furthermore, Fe3+ generated from these reactions reacts with Fe0 sequentially to 

51 give a sustained supply of Fe2+ (Eq. 5) [11].

52                 (1)2𝐹𝑒0 + 𝑂2 + 2𝐻2𝑂→2𝐹𝑒2 + + 4𝑂𝐻 ‒

53                    (2)𝐹𝑒0 + 𝑆2𝑂2 ‒
8 →𝐹𝑒2 + + 2𝑆𝑂2 ‒

4

54                (3)𝑆2𝑂2 ‒
8 + 𝐹𝑒2 + →𝐹𝑒3 + + 𝑆𝑂2 ‒

4 + 𝑆𝑂4
∙  ‒

55                   (4)𝑆𝑂 ∙‒
4 + 𝐻2𝑂→ ∙ 𝑂𝐻 + 𝑆𝑂2 ‒

4 + 𝐻 +

56                       (5)2Fe3 + +  𝐹𝑒0 → 3𝐹𝑒2 +

57 However, strong magnetic attraction and van der waals force between nZVI 

58 nanoparticles cause them to aggregate into larger size particles [12-18]. The increased 

59 size of these cluster result in a sharp decrease in surface area and poor dispersion of 

60 nZVI in aqueous solution [13,14]. Thus, to overcome the aggregation of nZVI, 
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61 researchers have attempted different stabilization methods for its effective 

62 environmental application [12,19,20]. Some supporting materials (e.g., clay, zeolite 

63 and biochar) and surface stabilizers (e.g., surfactant, synthetic or natural 

64 macromolecule or polyelectrolyte) were chosen to stabilize nZVI [12]. However, the 

65 issues concerning the effective release of reactive iron from the supporting material 

66 and the reactivity loss after surface modification by surface stabilizer adsorption were 

67 reported [15,21,22]. Besides the above supporters and organic stabilizers, one kind of 

68 releasable inorganic shell (Ca(OH)2) on nZVI surface was developed [23]. It was 

69 reported that the Ca(OH)2 coating layer can effectively enhance the stability and 

70 mobility of nZVI. Depending on the solubility of Ca(OH)2, the Ca(OH)2 coating on 

71 nZVI surface was supposed as a releasable shell during application for onsite 

72 remediation, thus, it would not result in a reactivity loss of nZVI. 

73 Given that one drawback in nZVI+persulfate system is that the activation 

74 reactions usually proceed rapidly, resulting in self-quenching of radicals [24], it was 

75 presumed that the moderately soluble Ca(OH)2 layer might control the persulfate 

76 activation rate by nZVI. Up to date, no studies have applied the Ca(OH)2 coated nZVI 

77 (nZVI-Ca(OH)2) for persulfate activation. In this study, nZVI-Ca(OH)2 composites 

78 were synthesized for the activation of persulfate. Sulfamethazine (SMT) was chosen 

79 as a model contaminant, not only because it is one of frequently detected 

80 pharmaceutical compounds in aqueous environment, but the mechanism of SMT 

81 degradation by sulfate radicals has been well established in many studies [25,26]. The 
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82 effects of critical factors such as coating thickness, initial pH, nZVI-Ca(OH)2 dosage 

83 and typical groundwater components were examined. Furthermore, aging experiments 

84 were carried out to study the transformation of nZVI-Ca(OH)2 in air and its reactivity 

85 evolution with aging time. 

86 2. Materials and methods

87 2.1. Chemicals

88 All chemicals used in this study were of analytical grade and used as received 

89 without further purification. Sulfamethazine (SMT, ≥99%, w/w) was obtained from 

90 Sigma Chemical Company (Beijing, China). HCl, NaOH, CaCl2, FeCl3·6H2O, NaCl, 

91 NaHCO3, NaSO4, NaBH4, Na2S2O8, ethanol and n-butanol were all purchased form 

92 Damao Chemical Reagent Factory(Tianjin, China). Synthetic groundwater was 

93 prepared according to our previous work [27], containing Na+ (230 mg/L), Ca2+ (32 

94 mg/L), HCO3
- (183 mg/L), SO4

2- (96 mg/L) and Cl- (234 mg/L). 

95 2.2. Preparation of Ca(OH)2 coated nZVI composites

96     nZVI was prepared following the liquid phase reduction method as described in 

97 our previous study [15, 28]. In brief, with N2 purging, 100 mL NaBH4 solution (0.2 

98 M) was added dropwise into 100 mL of a 0.05 M FeCl3 solution with strong 

99 mechanical stirring. After that, the suspension was stirred for another 30 min. Then 

100 the synthesized nZVI particles were separated by a magnet, and washed three times 
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101 with ethanol. After vacuum dried at 60°C for 8 h, the nZVI particles were collected 

102 and stored in sealing bags at 4°C in order to avoid oxidization before further 

103 modification.

104 A surface precipitation method was employed to prepare Ca(OH)2 coated nZVI 

105 composites [23]. Firstly, CaCl2 (0.025 M) and NaOH (0.05 M) solutions were 

106 prepared with ethanol. Then, 600 mg nZVI particles were added into 200 mL NaOH 

107 solution. After mixing in a sonication bath for 5 min, the CaCl2 solution was quickly 

108 introduced into the nZVI suspension. After that, the mixture was placed in a 

109 sonication bath at 60 ℃ during the coating process. Then the Ca(OH)2 coated nZVI 

110 particles were magnetically separated from Ca(OH)2 particles. These separated 

111 particles were thoroughly washed with ethanol and vacuum dried. The synthesized 

112 nZVI- Ca(OH)2 particles were stored at 4°C before use.

113 2.3. Batch experiments

114 2.3.1. SMT-removal experiments 

115 The SMT removal experiments were conducted in 250 mL glass bottles in the 

116 dark. In a typical run, 250 mL SMT (0.1 mM) and 100 mL persulfate solutions were 

117 introduced in 650 mL water to achieve a SMT concentration of 0.025 mM and 

118 persulfate concentration of 1 mM. The reason for the use of higher concentration of 

119 SMT (~ 6.9 mg/L) than the realistic concentration (~μg/L) in natural waters was to 

120 facilitate the detection of SMT loss and examine the removal capacity of the oxidation 
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121 process. After adjusting the solution pH, the mixture was transferred to bottles (with 

122 200 mL for each). Finally, nZVI-Ca(OH)2 particles (10 mg) were added into the 

123 bottles, and immediately transferred to a vapour bathing constant temperature vibrator 

124 at 20.0 ± 0.2 °C for reaction up to 1 h. At predetermined time intervals, 1 mL of 

125 samples were extracted from the suspension and filtered through 0.22-μm membranes, 

126 and immediately quenched with 20 μL n-butanol (controlled experiments of SMT 

127 removal quenched with n-butanol are shown in Fig. S1). During the reaction period, 

128 the pH was monitored by using a pH meter (INESA, PHS-3C).

129 The concentration of SMT was measured using an Agilent 1200 high 

130 performance liquid chromatography (HPLC) with a C18 reversed-phase column (4.6 

131 mm×150 mm). The mobile phase was acetonitrile and ultrapure water (35:65, v/v) 

132 with a flow rate of 1.0 mL/min. The temperature of column was 25 °C, and the 

133 sample injection volume was 20 μL. UV detection at a wavelength of 266 nm was 

134 used to quantify SMT [25]. The SMT removal efficiency (η, 100%) was calculated 

135 with the following equation:

136                             (6)η =
C0 ‒ Cr

C0
× 100%

137 where C0 (mg/L) is the initial concentration of SMT, Cr (mg/L) is the residue SMT 

138 concentration.

139 Unless stated otherwise, all experiments in this study were performed in 

140 triplicate. The reported data took the mean values of each experimental value, and the 

141 error bars were presented as well.
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142 2.3.2. Aging experiments

143 Aging of nZVI-Ca(OH)2 particles was carried out in the air at room temperature. 

144 At certain intervals (5 d, 10 d, 20 d and 30 d), 100 mg of aged samples were collected, 

145 characterized and applied for the successive SMT removal experiments under the 

146 same condition as described above. 

147 2.4. Characterization and analysis

148 The morphological images of nZVI-Ca(OH)2 particles were recorded with a 

149 scanning electron microscope (SEM, JSM-6700). Energy dispersive X-ray 

150 spectroscopy (EDS) was coupled with SEM to examine the element on the particle 

151 surface. The mass ratio of Ca(OH)2 in the composite of nZVI-Ca(OH)2 was measured 

152 by analyzing the Fe and Ca concentration in acid-digestion solution of nZVI-Ca(OH)2 

153 with Atomic Absorption Spectrophotometer (AAS, PEAA700). The crystalline phases 

154 were identified with an X-ray diffractometer (XRD, Philips Electronic Instruments). 

155 3. Results and discussions

156 3.1. Characterization of nZVI-Ca(OH)2 composites

157 The SEM image of nZVI-Ca(OH)2 composite is presented in Fig. 1a. nZVI-

158 Ca(OH)2 particles are in the size range of nanoscale with shape of sphere. These 

159 particles existed in the form of chain-like aggregates. It is noticeable that these 

160 nanoparticles were covered by a thin coating layer of several nanometer thickness, 
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161 which might be the Ca(OH)2 shell. Further EDS elemental analysis of nZVI-Ca(OH)2 

162 shows a strong Fe peak and a weak Ca peak, indicating the existence of Ca on the 

163 surface of composite (Fig. 1b). 

164 The chemical components of nZVI-Ca(OH)2 were characterized by the XRD 

165 (Fig. 1c). As observed, there is a strong peak at 44.5° which should be assigned to Fe 

166 (0) [29, 30], while no obvious peaks of Ca(OH)2 were found. Similar phenomena 

167 were also reported in other studies [23, 31], in which XRD was used to characterize 

168 surface coated nZVI with Ca(OH)2 and Al(OH)3, and it was found that neither 

169 Ca(OH)2 nor Al(OH)3 was observed. This might be due to their low concentrations or 

170 low degree of crystallinity. 

171 In order to figure out the Ca(OH)2 content coated on nZVI, AAS was used to 

172 determine the ratio of Fe and Ca after acid digestion of the nZVI-Ca(OH)2 

173 composites. Fig. 1d shows the content of Ca(OH)2 coated on the nZVI particles under 

174 different sonication time. It is clear that the sonication time did significantly affect the 

175 coating thickness. The amount of Ca(OH)2 was 1.31% of the total weight after 0.5 h 

176 coating, which rose to 10.19% after 4 h coating. To verify the effect of Ca(OH)2 

177 coating on the mobility of nZVI particles, a simplified sand column test was carried 

178 out and the results show that the Ca(OH)2 coating did improve the transport of nZVI 

179 particles in porous media (Fig. S2). This is consistent with the finding in literature 

180 [23]. However, no obvious difference was observed for the nZVI-Ca(OH)2 with 

181 different amount of Ca(OH)2 (data not shown). In view of the effect of sonication time 
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182 on coating thickness, it may influence the reactivity of the composite, which will be 

183 discussed in the following part. Overall, the results from SEM, EDS, XRD, AAS 

184 analysis and mobility test, collectively, suggested the successful synthesis of nZVI-

185 Ca(OH)2 composite.

186 3.2. Removal of SMT in nZVI-Ca(OH)2/persulfate system

187 3.2.1. Effect of sonication time

188 As mentioned above, the sonication time during synthesis can affect the 

189 percentage of Ca(OH)2 on nZVI-Ca(OH)2 particle surface. It could possibly be a 

190 critical factor in SMT removal by nZVI-Ca(OH)2 activated persulfate. Thus, effect of 

191 sonication time on SMT removal was investigated (Fig. 2). As observed, both removal 

192 efficiency and reaction rates of SMT were almost overlapped at different conditions. 

193 With the sonication time varied from 0.5 h to 4 h, SMT removal efficiency could 

194 reach about 100% after 1 h reaction time. Even though the sonication time affected 

195 the Ca(OH)2 coating thickness on nZVI surface, it seems had little influence on SMT 

196 removal in persulfate system. Since 0.5 h sonication time was long enough to give an 

197 excellent performance in SMT removal for nZVI-Ca(OH)2, it was selected for the 

198 preparation of nZVI-Ca(OH)2 in the following study.

199 3.2.2. Effect of initial pH

200 SMT removal experiments were carried out at four different initial pH values, i.e. 3, 5, 

201 7 and 9. As shown in Fig. 3a, the final removal efficiency as well as the removal 
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202 kinetics were much similar at initial pH from 3 to 9. In order to probe into the 

203 underlying mechanism, the changes of pH during reaction were monitored (Fig. 3b). 

204 Obviously, no matter at what initial pH value, the solution pH dropped dramatically 

205 (within 10 min) to around 3.5 and finally maintained in a very narrow pH range of 3.0 

206 to 3.2. This should be the reason for the similar SMT removal under various pH 

207 conditions. The sharp pH change may be due to the release of H+ from the reaction of 

208 Fe3+ precipitation (Eq. 7) [11], the reaction between SO4
-. and H2O (Eq. 4) or the 

209 reaction of Fe0 with persulfate (Eq. 8) [32]. Although the dissolution of the outside 

210 Ca(OH)2 layer would consume protons and then cause a rise in solution pH (Eq. 9), 

211 the mass ratio of Ca(OH)2 is extremely low (1.31%), the influence of Ca(OH)2 layer 

212 on solution pH should be negligible. 

213                  (7)𝐹𝑒3 + + 3𝐻2𝑂→𝐹𝑒(𝑂𝐻)3(𝑠) + 3𝐻 +

214                𝐹𝑒0 + 𝑆2𝑂8
2 ‒ + 2𝐻2𝑂→𝐹𝑒2 + + 2·OH + 2𝑆𝑂4

2 - + 2𝐻 +

215 (8)

216                     (9)𝐶𝑎(𝑂𝐻)2 + 2𝐻 + →𝐶𝑎2 + + 2𝐻2𝑂

217 3.2.3. Effect of nZVI-Ca(OH)2 dosage

218 The effect of nZVI-Ca(OH)2 dosage on SMT removal was investigated over a 

219 range of 10–200 mg/L and the results are illustrated in Fig. 4a. The removal efficiency 

220 was 90.31%, 100%, 93.14% and 77.03% with the composite dosage of 10, 50, 100 

221 and 200 mg/L, respectively. With the increasing nZVI-Ca(OH)2 dosage from 10 to 50 

222 mg/L, SMT removal efficiency was improved. This should be due to the generation of 
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223 more amounts of radicals with the existence of more iron ions in the solution. When 

224 the dose was further increased up to 200 mg/L, the removal efficiency dropped 

225 significantly to 77.03%. To find out the difference among the reaction systems with 

226 varying nZVI-Ca(OH)2 dosage, the pH changes with time in different systems were 

227 measured (Fig. 4b). The pH changes in systems of 10 and 50 mg/L showed a similar 

228 trend, i.e., a drastic drop in the first 5 min followed by a gradual slowdown. While the 

229 systems of 100 and 200 mg/L displayed a very different way with pH increase after 

230 the sharp decrease in the first 5 min. As discussed earlier, this sharp pH decrease was 

231 mainly attributed to the release of H+ during the reactions. While for the system of 

232 100 and 200 mg/L, the following pH rise may be due to the dissolution of excessive 

233 nZVI-Ca(OH)2 (Eq. 9 and Eq. 10). The rapid consumption of H+ and release of OH- 

234 could lead to an increase in solution pH. 

235                        (10)𝐹𝑒0 + 2𝐻2𝑂→𝐹𝑒2 + + 𝐻2 + 2𝑂𝐻 ‒

236 With the increase of nZVI-Ca(OH)2 dosage form 50 mg/L to 200 mg/L, the 

237 dissolution of excessive catalyst would cause a rise of solution pH as well as a break 

238 out of ferrous ions. These ferrous ions could possibly have a scavenging effect on 

239 radicals (Eq. 11), and thus lowering the removal efficiency of SMT [33]. Moreover, 

240 the existence of dissolved iron could be just temporarily, under such pH condition, 

241 they could easily tend to get hydrolysis [34]. According to Eq. 3, 11 and 12, the lack 

242 of Fe2+/Fe3+ would inhibit the formation of sulfate radicals, and then further resulted 

243 in a relative low removal efficiency of SMT [35]. 
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244                       (11)𝐹e2 + + 𝑆𝑂 ∙‒
4 →𝐹e3 + + 𝑆𝑂2 ‒

4

245                      (12)𝐹e3 + + 𝑆2𝑂2 ‒
8 →𝐹e2 + + 𝑆2𝑂 ∙‒

8

246 3.2.4. Effect of typical groundwater components

247 In natural groundwater, there are many kinds of components that may have some 

248 effects on the contaminant removal process. In this study, experiments were carried 

249 out in synthetic groundwater under different pH conditions. As demonstrated in Fig. 

250 5a, SMT was removed efficiently at all pH values. However, the reaction rate at pH 9 

251 was much slower than that at other pH values. Specifically, the removal efficiency of 

252 SMT at pH 9 was just approximately 15.19% after reaction for 5 min, while around 

253 48.92%, 57.18% and 52.62% were obtained at pH 3, pH 5 and pH 7, respectively. The 

254 evolution of pH at different initial pH values was monitored (Fig. 5b). Different from 

255 the rapid pH drop in pure water condition, much less changes of pH were observed 

256 during the reaction in synthetic groundwater. This should be result from the good 

257 buffer capacity of HCO3
-. Under alkaline condition, nZVI-Ca(OH)2 could hardly be 

258 dissolved and also it would be favorable for the precipitation of Fe2+/Fe3+, thus, there 

259 would be less free iron ions existed in the system, resulting in the less activation of 

260 persulfate [36]. Pang et al. [36] reported that ultrasound irradiation could contribute to 

261 acceleration of ZVI corrosion and removal of passive films, resulting in high 

262 efficiency in peroxymonosulfate activation. Thus, the precipitation of Fe2+/Fe3+ could 

263 possibly be one reason for the slower removal rate of SMT at pH 9. Besides, 

264 bicarbonate can be a scavenger of sulfate radicals (Eq. 13). Although other radicals 
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265 (i.e. ) are generated from the scavenging reaction, they are quite unreactive  𝐶𝑂 ∙‒
3

266 compared to  toward most organic substrates in aqueous condition [37].𝑆𝑂 ∙‒
4

267                   (13)𝑆𝑂 ∙‒
4 + 𝐻𝐶𝑂 ‒

3 →𝐻 + + 𝑆𝑂2 ‒
4 + 𝐶𝑂 ∙‒

3

268 In addition, previous studies reported that SO4
2- could also exhibit negative effect 

269 on the radical-based reactions [38]. SO4
2- ions can form bonding with Fe2+ and Fe3+, 

270 producing complexes of FeSO4 and Fe2(SO4)3. These complex reactions reduced the 

271 concentration of free iron ions in the solution for activation of persulfate, thus 

272 inhibiting the removal of SMT.

273 To further identify the role of each individual component, SMT removal in the 

274 presence of single ions (i.e., HCO3
-, SO4

2-, Cl- and Ca2+) was examined respectively 

275 with different concentration. As shown in Fig. 6a, all these ions with a lower 

276 concentration (1 mmol/L) could barely affect the nZVI-Ca(OH)2 performance on 

277 SMT removal. Only in the case of HCO3
-, a slower removal rate was observed. 

278 However, after 60 min reaction time, the removal efficiency reached 100% in all 

279 reaction systems. When increasing the concentration to 10 mmol/L, the groundwater 

280 components showed very different impacts on the removal performance (Fig. 6b). 

281 Ca2+ and Cl- had insignificant impact on SMT removal, while the presence of HCO3
- 

282 or SO4
2- substantially decreased the SMT removal. The results verified the previous 

283 assumption that the drop of SMT removal efficiency in synthetic groundwater was 

284 mainly due to the effect of HCO3
- and SO4

2-. 

285 To sum up, the effect of these typical groundwater components at low 
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286 concentration were negligible, and even at higher concentration Cl- and Ca2+ had little 

287 effect on SMT removal. While HCO3
- or SO4

2- with higher concentration could inhibit 

288 the degradation efficiency of SMT and the inhibiting effect of HCO3
- was more 

289 pronounced than the other ions at the same concentration.

290 3.2.5 Effect of particle aging

291 To further verify whether the Ca(OH)2 coating could alleviate the surface 

292 passivation of nZVI caused by corrosion, the nZVI-Ca(OH)2 particles were aged in 

293 the open air for different time. Then, the removal of SMT by the aged nZVI-Ca(OH)2 

294 activated PS were tested for comparison (Fig. 7a). The results show that, after aging 

295 up to 30 days, nZVI-Ca(OH)2 still kept a high capacity of PS activation for the SMT 

296 degradation. 

297 The reactivity of nZVI-Ca(OH)2 was associated with its surface composition, 

298 XRD analysis was then conducted to identify the composition evolution and 

299 crystalline change of nZVI-Ca(OH)2 with aging time. Fig. 7b shows the XRD patterns 

300 of fresh and different aged nZVI-Ca(OH)2. It is noticeable that the peak of Fe0 at 

301 44.5° became weaker with aging time. But the Fe0 peak can still be detected even 

302 after 30 days of aging, indicating the existence of Fe0 on the surface of particles after 

303 30 days. Our previous study on Fe/Ni bimetal nanoparticles aging process reported 

304 that the Fe0 peak disappeared in just 5 days [29]. In comparison, it was clear that 

305 coating nZVI with Ca(OH)2 did prolong its lifetime due to the protection of Ca(OH)2 
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306 outer shell. For the aged samples, peaks assigned to iron oxide were not detected, 

307 which is quite different from the reported XRD patterns of aged nZVI. Typical aging 

308 products of nZVI in oxic condition are goethite, maghemite, magnetite and 

309 lepidocrocite [39]. Whilst, there were no iron oxides detected in the aging samples of 

310 nZVI-Ca(OH)2, which manifests that the corrosion of nZVI in nZVI-Ca(OH)2 was not 

311 significant and iron oxides were not existing in crystalline phrase. 

312 Even though there were some loss of Fe0 with aging, SMT removal efficiency 

313 was barely influenced. This could possibly be attributed to the good persulfate 

314 activation capacity of amorphous iron oxides [40]. Since both Fe0 and iron oxides can 

315 activate persulfate, fresh and aged nZVI-Ca(OH)2 samples showed similar 

316 performance in the process of SMT degradation.

317 4. Conclusion

318 In this study, a thin Ca(OH)2 shell was successfully coated on the surface of 

319 nZVI particles. The thickness of Ca(OH)2 is related to sonication time during 

320 synthesis, the longer sonication time the more Ca(OH)2 coated. Then, nZVI-Ca(OH)2 

321 composites were utilized as an activator of persulfate to remove SMT. The effects of 

322 sonication time, pH, nZVI-Ca(OH)2 dosage and typical groundwater components 

323 were investigated. The following conclusions were made:

324  The sonication time and initial pH had little effect on SMT removal by 

325 nZVI-Ca(OH)2/persulfate system, while nZVI-Ca(OH)2 dosage affected the 
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326 removal efficiency of SMT greatly. There was an optimum dosage of nZVI-

327 Ca(OH)2, at higher or lower dosage, the SMT removal was decreased.

328  nZVI-Ca(OH)2 showed different performance in synthetic groundwater and 

329 pure water over the pH range of 3-9. The effect of typical groundwater 

330 components (Ca2+, Cl-, HCO3
- and SO4

2-) were examined respectively and it 

331 was found that the groundwater ions at low concentration showed negligible 

332 influence on SMT removal, but HCO3
- and SO4

2- at high concentration could 

333 inhibit the SMT removal in a large degree. 

334  Effect of aging time on the reactivity of nZVI-Ca(OH)2 was investigated, 

335 and it was found that the particles kept its reactivity even after 30 days of 

336 aging. This suggests that coating nZVI with Ca(OH)2 did prolong the 

337 lifetime of nZVI.
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473 MnO2 composite: Identification of iron oxide and the optimum pH for degradations, 

474 Chemosphere, 95 (2014) 550-555. 

475

476 Fig. 1. (a) SEM image of nZVI-Ca(OH)2 particles (sonication time: 0.5 h), (b) the 

477 corresponding EDS (sonication time: 0.5 h), (c) XRD analysis of nZVI-Ca(OH)2 

478 particles (sonication time: 0.5 h), and (d) the content of Ca(OH)2 coated on the nZVI 

479 particles under different sonication time

480
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482 Fig. 2. Effect of sonication time during synthesis of nZVI-Ca(OH)2 on SMT removal 

483 by nZVI-Ca(OH)2 activated PS (initial pH = 5; [SMT] = 0.025 mM; [PS] = 1 mM; 

484 [nZVI-Ca(OH)2] = 50 mg/L)

485



  

26

486

Time (min)

0 10 20 30 40 50 60

SM
T 

re
m

ov
al

 e
ffi

ci
en

cy
 (%

)

0

20

40

60

80

100

 pH 3 
 pH 5 
 pH 7 
 pH 9 

Time (min)

0 10 20 30 40 50 60

pH

3

4

5

6

7

8

9
 pH 3 
 pH 5 
 pH 7 
 pH 9 

a

b

487

488 Fig. 3. (a) Effect of initial pH on the removal of SMT by nZVI-Ca(OH)2 and (b) pH 

489 changes with time ([SMT] = 0.025 mM; [PS] = 1 mM; [nZVI-Ca(OH)2] = 50 mg/L)
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491 Fig. 4. (a) Effect of nZVI-Ca(OH)2 dosage on the removal of SMT and (b) pH 

492 changes with time in different nZVI-Ca(OH)2 dosage systems (initial pH = 5; [SMT] 

493 = 0.025 mM; [PS] = 1 mM)

494
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498 Fig. 5. (a) SMT removal by nZVI-Ca(OH)2 in synthetic groundwater under different 

499 pH, and (b) pH changes with time in synthetic groundwater ( [SMT] = 0.025 mM; 

500 [PS] = 1 mM; [nZVI-Ca(OH)2] = 50 mg/L )
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501

502 Fig. 6. Effect of typical groundwater components of different concentrations (a: 1 

503 mmol/L; b: 10 mmol/L) on the removal of SMT by nZVI-Ca(OH)2 activated PS 

504 (initial pH = 5; [SMT] = 0.025 mM; [PS] = 1 mM; [nZVI-Ca(OH)2] = 50 mg/L )

505
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507 Fig. 7. (a) SMT removal by the aged nZVI-Ca(OH)2 activated PS and (b) XRD 

508 patterns of aged particles (initial pH = 5; [SMT] = 0.025 mM; [PS] = 1 mM; [nZVI-

509 Ca(OH)2] = 50 mg/L)
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510

511  nZVI-Ca(OH)2 was used as an activator of PS for the degradation of SMT
512  There was an optimum dosage of nZVI-Ca(OH)2 for the activation of PS to 
513 degrade SMT
514  nZVI-Ca(OH)2 was efficient for PS activation in synthetic groundwater at pH 3-9
515  The presence of high concentration of HCO3

- or SO4
2- greatly inhibited SMT 

516 removal
517  The Ca(OH)2 shell can protect the inner iron core from oxidation in the air

518

519

520


