Reactivity of 5 -alkynyl-3,4-dihydro-2H-pyrroles with Au (III) Route to vinylgold(III) complexes, aurocycles by cyclisation of these complexes and ML complexes

Huy-Dinh Vu, Christelle Bouyry, Jacques Renault, Arnaud Bondon, Fabian Lambert, Thierry Roisnel, Philippe Uriac

To cite this version:

Huy-Dinh Vu, Christelle Bouyry, Jacques Renault, Arnaud Bondon, Fabian Lambert, et al.. Reactivity of 5-alkynyl-3,4-dihydro-2H-pyrroles with $\mathrm{Au}(\mathrm{III})$ Route to vinylgold(III) complexes, aurocycles by cyclisation of these complexes and ML complexes. Journal of Organometallic Chemistry, 2019, 897, pp.228-235. 10.1016/j.jorganchem.2019.07.014 . hal-02278402

HAL Id: hal-02278402
https://univ-rennes.hal.science/hal-02278402
Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reactivity of 5-alkynyl-3,4-dihydro-2H-pyrroles with $\mathbf{A u}($ III): route to vinylgold(III) complexes, aurocycles by cyclisation of these complexes and ML complexes.

Huy-Dinh Vu ${ }^{1,3}$, Christelle Bouvry ${ }^{1}$, Jacques Renault ${ }^{1 *}$, Arnaud Bondon ${ }^{1}$, Fabian Lambert ${ }^{2}$, Thierry Roisnel ${ }^{2}$, and Philippe Uriac ${ }^{1}$
${ }^{1}$ Univ Rennes, CNRS, ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, F35000 Rennes, France
${ }^{2}$ Univ Rennes, CNRS, ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, ScanMat - UMS 2001, F-35000 Rennes, France
${ }^{3}$ Department of Chemistry, Vietnam National University of Forestry, Hanoi, Vietnam

Corresponding Author

*E-mail: jacques.renault@univ-rennes1.fr

Abstract

The reaction of 5-alkynyl-3,4-dihydro-2H-pyrroles (imine) with AuCl_{3} led to the synthesis of the vinyl gold(III) complexes $\mathbf{3}$ that could give the aurocycles $\mathbf{4}$ with an excess of AuCl_{3}. In the base presence the dimerization of $\mathbf{4}$ was observed leading to $\mathbf{5}$. If NaAuCl_{4} was used as gold(III) source a ligand exchange was observed leading to the complexes $\mathbf{6}$. Nucleophilicity of both nitrogen atom and alkyne function as well as imine-enamine tautomerism were involved to explain the formation of $\mathbf{3}$.

Key words

Gold(III) complexes, vinylgold complexes, aurocycles, cyclic imine.

1. Introduction

The interest in gold(III) complexes is ever increasing due to their optical (1) and catalytic properties (2). It is interesting to note that most of these complexes have aryl or hetero-aryl CAu (III) bonds where the introduction of gold(III) was mainly achieved by trans-metalation (3) or oxidative addition (4). The design of complexes involving Au(III) and alkenes remain poorly explored although they were frequently proposed as reaction intermediates. The first vinylgold complex characterized using X-ray crystallography has been proposed by Hashmi et al. (5). and obtained by Ahn et al. (6). More recently the groups of Bochmann et al (7) and Tilset et al (8) have obtained $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\right.$ olefin $\left.)\right]$ complexes that were characterized by X-ray crystallography. We have previously published the synthesis of 5 -alkynyl-3,4-dihydro- 2 H -pyrroles (9) and in this current work we report the preparation of gold(III) vinyl complexes with AuCl_{3} and how their cyclization led to $\left[\left(\mathrm{C}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{X})(\mathrm{Y})\right]$ complexes (aurocycles) that are able to dimerize. To the best of our knowledge such aurocycles are rare (10) and only described with a biphenylligand type (3a, 4a, 7b). When NaAuCl_{4} was used, classical ML or ML2 type gold (III) com-
plexes were obtained. After the ligands description, their reactivity versus AuCl_{3} and NaAuCl_{4} will be reported. Crystallographic data are given for each type of gold(III) complex obtained.

2. Results and discussion

2.1. Synthesis of the ligands 2a-c.

For this study three 5-alkynyl-3,4-dihydro-2H-pyrroles 2a-c were prepared in moderate yields (60-67\%) (Scheme 1) from the N-Boc protected ynones $1 \mathbf{a - c}$ using a $1 \mathrm{M} \mathrm{ZnCl}_{2}$ solution in diethylether (9). In all compounds the alkyne in position 5 was bearing an aryl group (Ar). It should be noted that on the infra-red spectra obtained with solid samples the compounds $\mathbf{2 a - c}$ exhibited an intense NH vibration (see Sup info) attributed to the enamine tautomers \mathbf{E}.

Scheme 1. Synthesis of imines 2a-c (ligands)

2.2 Synthesis of vinylgold(III) complexes 3a-c.

If AuCl_{3} in halogenated solvent was employed the vinylgold(III) complexes 3a-c were obtained from the cyclic imines 2a-c (Scheme 2). The yields were always < 50% even though all starting material was consumed in the reaction (see Sup info).
The complexes were yellow-green (3a) or orange (4b-c) solids and were stable for several weeks at room temperature in air presence. It was observed that $\mathbf{2 b}$ and $\mathbf{2 c}$ formed precipitates quicker than 2a probably because of the electrodonating effect of the methoxy substituent. By slow evaporation of the solvent $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ crystals suitable for X-ray study were obtained with 3a. Protodeauration was never observed even after water addition.

Scheme 2. Synthesis of vinylgold(III) complexes 3a-c

The $[\mathrm{M}-\mathrm{H}]^{-}$ions were observed in HRMS (ESI) attesting the addition of AuCl_{3} and HCl to the cyclic imines $\mathbf{2 a} \mathbf{- c}$. In the crystal structure of $\mathbf{3 a}$ (Figure 1) the $\mathrm{Au}^{\mathrm{III}}$ atom, coordinated with three chloride ligands, presented a square-planar geometry like in the vinylgold complexes previously described (6a) showed in Scheme 3.

Figure 1. Molecular structures of vinylgold complex 3a
ORTEP view of 3a (50\% probability). Key bond lengths (\AA): $\mathrm{Au}-\mathrm{C} 1=2.030(7)$, $\mathrm{Au}-\mathrm{Cl} 3=$ $2.2864(18), \mathrm{Au}-\mathrm{Cl} 1=2.2856(18), \mathrm{Au}-\mathrm{Cl} 2=2.343(2), \mathrm{C} 1-\mathrm{C} 7=1.335(10)$.

The C-Au bond length $[2.030(7) \AA$] was close that of the vinylgold complex (6a) [2.004(19)]. The pyrrolidine, Ar and AuCl_{3} were twisted with the following angles (degrees): Au1-C1-C2-N3 $=-54.4(9)$, Cl1-Au1-C1-C7 $=-83.1(6)$, C1-C7-C8-C9 $=138.7(8)$. The transformation of the alkyne moiety was clearly attested in ${ }^{13} \mathrm{CNMR}$ (disappearance of the sp carbon signals) and in IR (disappearance of the $2200 \mathrm{~cm}^{-1}$ vibration). A broad signal near 12.5 ppm in ${ }^{1} \mathrm{HNMR}$ was in accordance with the imine protonation as well as the broad band near $3200 \mathrm{~cm}^{-1}$ in IR. The ${ }^{13} \mathrm{CNMR}$ shifts of the new sp^{2} carbons were similar for the three compounds: $\mathrm{C}-\mathrm{Au}$: near 120 ppm and C -Cl: unshielded near 130 ppm .

2.3. Probable mechanism for the formation of the vinylgold(III) complexes

As shown below (Scheme 3) a vinylgold(III) complex was previously postulated by Hashmi et al. (5) and isolated by Ahn et al. (6a) in order to explain the preparation of oxazoles from acetylenic amides. The alkyne activation was mediated by AuCl_{3} which enabled the nucleophilic attack of the oxygen atom of the amide moiety and finally cyclisation. In our case, a similar mechanism (Scheme 4) could be envisaged but the origin of HCl remained to be explained.

Scheme 3. Formation of vinylgold (III) complex from acetylenic amides
When the reaction was performed in CHBr_{3} the addition of HBr was not observed. In this case, the solvent did not provide HBr ((HCl). When the reaction was performed in anhydrous
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or laboratory grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the yields were close: 47% with anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 43% with laboratory grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yields with $\mathrm{CHBr}_{3}, \mathrm{CHCl}_{3}$ or CDCl_{3} under argon or air atmosphere were always close to 45%. That excluded a reaction between $\mathrm{H}_{2} \mathrm{O}$ and AuCl_{3} inducing HCl liberation. Therefore, we concluded that HCl was generated by a reaction between the imines and AuCl_{3} as reported in Scheme 4. Addition of the dissolved part of AuCl_{3} to the imine 2 gave the complex 6 (observed by ${ }^{1} \mathrm{H}$ NMR). Then, imine-enamine tautomerism enabled formation of the postulated intermediate 7 acting as HCl source. This mechanism could also explain the trans addition which was also recently reported with ethynylpyridines and HX (11). As AuCl_{3} was both acting for alkyne activation ($\mathbf{2 b}, \mathbf{2 c}>\mathbf{2 a}$) and Cl^{-}source, the yields were always $<50 \%$ and the conversion of the starting material was complete. Two complementary experiments were in favor of this mechanism. First, $\mathbf{6 a}$ (vide infra) did not react with AuCl_{3}. Moreover the use of HAuCl_{4} as possible gold and HCl source resulted in the formation of a mixture impossible to analyze.

Scheme 4. Formation of vinylgold (III) complex from imines
Some others alkenyl gold(III) complexes have been prepared by Bochman et al by insertion of allenes or alkynes into their $\left[\left(\mathrm{C}^{\wedge} \mathrm{N}^{\wedge} \mathrm{C}\right) \mathrm{Au}(\mathrm{H})\right]$ complexes (12). In this case, the regio- and stereoselective trans-auration process was mediated by a radical. A diene-diylgold(III) complex prepared by Helaja et al (13) has been obtained by H migration. One can also notice that the AuCl_{3} addition on dimethylacetylen was previously reported and discussed by R. Hüttel and H . Forkl (14).

2.4. Synthesis of aurocycles $\mathbf{4 a}, \mathbf{4} \boldsymbol{c}$ and of dimer $\mathbf{5 a}$.

During our reactivity study of $\mathbf{2 a}$ with AuCl_{3} the reaction has been performed with two equivalents of AuCl_{3}. In this condition a mixture of $\mathbf{2 a}, \mathbf{3} \mathbf{a}$ and a new compound $\mathbf{4 a}$ was obtained. In fact, the excess of AuCl_{3} did not improve the formation of 3a but induced its cyclisation into the aurocycle $\mathbf{4 a}$. Then the complexes $\mathbf{3 a} \mathbf{- c}$ were allowed to react with one equivalent of AuCl_{3} in CDCl_{3} over 48-72h at RT. With 3a and $\mathbf{3 c}$ a $50 / 50$ mixture of the complexes $\mathbf{3}$ and $\mathbf{4}$ was obtained (scheme 5). The cyclisation of $\mathbf{3 b}$ did not occur because of the steric hindrance
between Cl and OCH_{3}. The yields of this cyclisation were always $<50 \%$ and the aurocycles were quite difficult to separate from the starting vinylgold complexes (see experimental part) by crystallization.

Scheme 5. Synthesis of aurocycles 4a and 4c

Figure 2. Molecular structure of aurocycle 4a
ORTEP view of $\mathbf{4 a}$ (50% probability). Key bond lengths (Å) and angles (deg) : Au1-C1 = $2.022(10), \mathrm{Au} 1-\mathrm{C} 8=2.067(11), \mathrm{Au} 1-\mathrm{Cl} 2=2.346(3), \mathrm{Au} 1-\mathrm{Cl} 1=2.410(3), \mathrm{Cl} 3-\mathrm{C} 7=1.733(11)$, $\mathrm{C} 1-\mathrm{C} 6=1.406(15), \mathrm{C} 6-\mathrm{C} 7=1.436(17), \mathrm{C} 7-\mathrm{C} 8=1.381(15), \mathrm{C} 8-\mathrm{C} 9=1.445(15) ; \mathrm{C} 1-\mathrm{Au} 1-\mathrm{C} 8=$ 81.6(4), $\mathrm{C} 1-\mathrm{Au} 1-\mathrm{Cl} 2=93.0(3), \mathrm{C} 8-\mathrm{Au} 1-\mathrm{Cl} 2=173.0(3), \mathrm{C} 1-\mathrm{Au} 1-\mathrm{Cl} 1=176.8(3), \mathrm{C} 8-\mathrm{Au} 1-\mathrm{Cl} 1=$ $100.5(3), \mathrm{Cl} 2-\mathrm{Au} 1-\mathrm{Cl} 1=85.01(10), \mathrm{C} 7-\mathrm{C} 8-\mathrm{Au} 1=110.9(8), \mathrm{C} 6-\mathrm{C} 1-\mathrm{Au} 1=114.7(8)$.

The HCl elimination was attested in MS and ${ }^{1} \mathrm{H}$ NMR by the disappearance of one aromatic proton and confirmed by the X-ray structure of $\mathbf{4 a}$ (Figure 2) and $\mathbf{4 b}$ (see supplementary information). The bond lengths measured for $\mathbf{4 a}$ are very close to those reported for aurocycles with to aryl ligands (3b, 7b): Au-C1 and Au-C8 (2.022, 2.046) versus 1.97(3), 2.00(2) and $2.028,2.046$). The aurocycle and the pyrroline ring were twisted around chirality axis C8-C9. The ${ }^{13} \mathrm{C}$ NMR spectra (15) were particularly modified with the transformation of one CH into quaternary carbon. One could also notice that the ${ }^{1} J \mathrm{CH}$ values $(167-169 \mathrm{~Hz})$ of the carbon in ortho position of Au were modified by the $\mathrm{C}-\mathrm{Au}^{\text {III }}$ bond formation.

In the presence of D_{5}-pyridine or $\mathrm{K}_{2} \mathrm{CO}_{3}$ the loss of HCl induced the formation of the neutral homodimer 5a (Fig 3) which showed distinct internal and external methylene shifts. This type of dimer was previously reported with $\mathbf{2 a}$ and PdCl_{2} (9). The formation of heterodimers was not observed.

Figure 3. Molecular structures of complex dimeric aurocycle 5a
ORTEP view of $\mathbf{5 a}$ (50% probability). A molecule of CHCl_{3} has been omitted for clarity. Key bond lengths (\AA) and angles (deg): Au1-C8 = 2.000(4), Au1-C1 $=2.030(5)$, Au1-N33 = 2.105(5), Au1-Cl1 = 2.3568(12), $\mathrm{C} 6-\mathrm{C} 7=1.467(7) ; \mathrm{C} 8-\mathrm{Au} 1-\mathrm{C} 1=77.6(2), \mathrm{C} 8-\mathrm{Au} 1-\mathrm{N} 33=$ $99.24(19), \mathrm{C} 1-\mathrm{Au} 1-\mathrm{N} 33=176.61(19), \mathrm{C} 1-\mathrm{Au} 1-\mathrm{Cl} 1=95.80(15), \mathrm{C} 8-\mathrm{Au} 1-\mathrm{Cl} 1=172.57(13)$, $\mathrm{N} 33-\mathrm{Au} 1-\mathrm{Cl} 1=87.45(13), \mathrm{C} 6-\mathrm{C} 1-\mathrm{Au} 1=114.1(4)$.

2.5. Mechanism for the formation of 4a, 4c.

The intramolecular formation of this new type of aurocycle was favored by the spatial proximity of the gold(III) and the nucleophilic phenyl ring. Then, AuCl_{3} activated the cyclisation and trapped the hydrochloride acid which was formed (Scheme 6). This auration reaction has been previously reported (16) but, as it was difficult to control, exchange (3) or oxidation (4) reactions were preferred to prepare arylgold compounds.

Scheme 6. Proposal of synthesis mechanism of $\mathbf{4 a}, \mathbf{4 c}$

2.6. Synthesis of the ML (and ML2) complexes $\mathbf{6 a}, \mathbf{6 c}$ (and $\mathbf{6}^{\prime} \boldsymbol{a}, \mathbf{6}^{\prime} \boldsymbol{c}$)

In a previous study, we demonstrated the excellent ability of $\mathbf{2 a}$ to give complexes with ZnI_{2} and PdCl_{2} (9). With these divalent metal complexes of ML2 type were obtained. In the case of PdCl_{2} both cis and trans complexes were crystallized. In the presence of one equivalent of $\mathrm{NaAuCl}_{4}, 2 \mathrm{H}_{2} \mathrm{O}$ the cyclic imine 2a gave the corresponding gold(III) complexes $\mathbf{6 a}+\mathbf{6} \mathbf{\prime} \mathbf{a}$ (70/30) in a 70% yield (Scheme 7). The ligand exchange reactions were performed in $\mathrm{CH}_{3} \mathrm{OH}$ (or $\mathrm{CD}_{3} \mathrm{OD}$) at room temperature and the ML type complex was obtained in good yield. A yellow precipitate was observed which was dissolved in CDCl_{3}. When $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was used, the presence of another compound $\mathbf{6 a}$ ' was noted. As $\mathbf{6 a}$ ' was insoluble in CDCl_{3} (see experimental section) pure 6a suitable for X-ray study (Fig 4) was obtained as pale-yellow crystals by slow evaporation of solvent. A small amount of $\mathbf{6 a}$ ' was obtained after complete elimination of $\mathbf{6 a}$ using CDCl_{3} and some crystals obtained by slow evaporation in the NMR tube enabled us to establish the ML2 structure of $\mathbf{6 a}{ }^{\prime}$ (Fig 4). The low solubility of $\mathbf{6 a}$ ' can be explained by its ionic structure with $\mathrm{AuCl}_{4}{ }^{-}$as anion. The spatial structure of $\mathbf{6 a}$ and $\mathbf{6}^{\prime} \mathbf{a}$ were similar to those reported for other neutral gold (III) trihalide complexes involving nitrogen (17), arsenic (18), phosphorous (18,19), or for complexes with amino acids (20). The same structure was also founded in NHC complexes (21). A NHC complex with trans geometry like 6a' was also previously described (22). With $\mathbf{2 c}$ a $80 / 20$ mixture of $\mathbf{6 c}$ and $\mathbf{6}^{\prime} \mathbf{c}$ was also obtained in 77% yield. The complex $\mathbf{6 c}$ was a yellow-orange solid less soluble than $\mathbf{6 a}$. The separation of these two complexes remained difficult because of their low solubility.

Scheme 7. Synthesis of complexes ML and ML2

Figure 4. Molecular structures of complex ML 6a and ML2 6a'
ORTEP view of 6a (ML) (50% probability). Key bond lengths (\AA) : Au1-N1 $=2.015(3)$, Au1$\mathrm{Cl} 2=2.2662(11), \mathrm{Au} 1-\mathrm{Cl} 1=2.2716(11), \mathrm{Au} 1-\mathrm{Cl} 3=2.2810(11), \mathrm{N} 1-\mathrm{C} 5=1.288(6), \mathrm{C} 5-\mathrm{C} 6=$ $1.429(6), \mathrm{C} 6-\mathrm{C} 7=1.198(6), \mathrm{C} 7-\mathrm{C} 8=1.432(6), \mathrm{C} 8-\mathrm{C} 9=1.391(7)$. ORTEP view of 6a' (ML2) (50% probability). A molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ has been omitted for clarity. Key bond lengths (\AA): $\mathrm{Au} 2-\mathrm{N} 1=2.005(3), \mathrm{Au} 2-\mathrm{N} 1 _\# 2=2.005(3), \mathrm{Au} 2-\mathrm{Cl} 3=2.2674(13), \mathrm{N} 1-\mathrm{C} 5=1.283(5), \mathrm{C} 5-\mathrm{C} 6=$ $1.412(6), \mathrm{C} 6-\mathrm{C} 7=1.191(6), \mathrm{C} 7-\mathrm{C} 8=1.434(7)$.

3. Conclusion

In conclusion, we have shown that some types of gold(III) complexes were obtained from 5-alkynyl-3,4-dihydro-2H-pyrroles and fully characterized. The particularly interesting reactivity of this ligand with $\mathrm{Au}(\mathrm{III})$ can be explained by the addition of three chemical properties: the alkyinophilicity of the gold(III), the basicity of the imine and the imine-enamine tautomerism. Introduction of chirality in the aurocycles is now in progress.

4. Experimental section

4.1. Materials and instrumentation

All reagents were of high quality and were purchased from commercial suppliers; they were either used without further purification or were purified/dried according standard procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded at 300 and 75 MHz or 500 and 100 MHz respectively (using TMS as an internal standard); shifts (δ values) are given in parts per million (ppm), coupling constants (J values) are given in Hertz (Hz), and multiplicity of signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quadruplet), quint (quintet), sext (sextet), m (multiplet), * (broad signal), dt (doublet of triplet), td (triplet of doublet).UV spectra were recorded using a Specord 205 (Analitkjena) and IR spectra with a Perkin-Elmer (Spectrum 2) apparatus using a Universal ATR Sampling Accessory. HRMS analyses were obtained with a Waters QTOF 2 or a Micromass ZABSpec TOF or a Bruker MicrO-TOF QII or a LTQ Orbitrap XL instrument for ESI. X-ray crystallographic data were collected with an APEXII crystal diffractometer. Thin-layer chromatography was performed using pre-coated silica gel plate (0.2 mm thickness). Numerous reactions were performed in deuterated solvent to check the reactions.

4.2. Ynones 1a-c

The preparation and the structural data of the ynone 1a were described in ref 9 .

4.2.1. tert-Butyl [6-(2-methoxyphenyl)-4-oxohex-5-yn-1-yl]carbamate 1b

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right): \delta=7.50(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69\left(\mathrm{~s}^{*}, N \mathrm{H}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.95 (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=187.4,161.5,156.0$, 135.0, 132.6, 120.6, 110.8, 109.0, 91.9, 88.6, 79.3, 55.8, 42.7, 39.8, 28.4, 24.6. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}$ calc. 340.15193 , found. 340.152 . IR v-alkyne: $2197 \mathrm{~cm}^{-1}$

4.2.2. tert-Butyl [6-(4-methoxyphenyl)-4-oxohex-5-yn-1-yl]carbamate 1c

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.53(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.67\left(\mathrm{~s}^{*}, N H\right), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.20(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92$ (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (CDCl_{3}): $\delta=187.2,161.7,156.0,135.1,114.4,111.6,92.3,87.7,79.3,55.4,42.6,39.9$, 28.4, 24.5. HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}$ calc.340.15193, found. 340.1519. $\mathrm{F}^{\circ} \mathrm{C}: 91$. Infra-red: v-alkyne: $2194 \mathrm{~cm}^{-1}$

4.3. Imines 2a-2c

4.3.1. General Procedure for the Preparation of Imines 2a-c from Ynones 1a-c

Ynone 1 (4 mmol) was dissolved in a 1 M solution of ZnCl_{2} in diethyl ether (5 eq) under a nitrogen atmosphere. The solution was stirred for 15 h at room temperature and then a 1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ was added and stirring was maintained for 30 min . The white precipitate of ZnCO_{3} was filtered off and washed with diethyl ether (5 x 40 mL). Combined organic were washed with 0.1 M aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ then with a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ saturated aqueous solution. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to give the crude product, which was purified by chromatography over silica gel. Remark: a 2 M solution of $\mathrm{NH}_{4} \mathrm{OH}$ can be used in place of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ but the yields are lower.

The preparation and the structural data of the imine $\mathbf{2 a}$ were described in ref 9 .

4.3.2. 5-[(2-Methoxyphenyl)ethynyl]-3,4-dihydro-2H-pyrrole 2b

Yield from 1b: 62\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.48$ (dd, $\left.J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34(\mathrm{td}, J=8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (txt, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, 2.77 (txt, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.95 (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=160.6,159.8$, 134.1, 130.9, 120.5, 111.0, 110.7, 89.1, 88.7, 62.0, 55.8, 39.9, 22.5. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}$ calc.200.10699, found. 200.1065. IR: v-alkyne: $2197 \mathrm{~cm}^{-1}$ and $v-\mathrm{NH}: 3375 \mathrm{~cm}^{-1}$ (enamine).

4.3.3. 5-[(4-Methoxyphenyl)ethynyl]-3,4-dihydro-2H-pyrrole 2c

Yield from 1c: $67 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.04$ (txt, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.75$ (txt, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.98 (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=160.5,159.8,133.9,114.1,113.7,92.9,83.9,61.9,55.3,39.9,22.5$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}$ calc.200.10699, found. 200.1071. Infra-red: v-alkyne: 2195 cm^{-1} and v-NH: $3359 \mathrm{~cm}^{-1}$ (enamine).

4.4. Vinylgold(III) complexes 3a-c

The yields were very depending on the work-up and on the quantities of imines ($<100-150 \mathrm{mg}$ was the best).

4.4.1. (E)-Trichloro[2-chloro-1-(3,4-dihydro-2H-pyrrol-1-ium-5-yl)-2-phenylvinyl] aurate (III) 3a

To a suspension of $\mathrm{AuCl}_{3}(101.2 \mathrm{mg} ; 0.33 \mathrm{mmol})$ in 3 mL of halogenated solvent (not anhydrous, deuterated or not) 56.4 mg (1eq) of 2 a were added. This suspension was agitated during 48 h and the formation of a yellow-green solid was observed. After filtration and washing with 1 mL of solvent this solid was dissolved in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ and the solution again filtered on Celite in order
to eliminate a little black residue. With CDCl_{3} a 43% yield was obtained. By slow evaporation of the NMR solvent suitable crystals for X-ray were obtained. With anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ a 47% yield was obtained and with usual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the yield was reduced to 41%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=12.15\left(\mathrm{~s}^{*}, 1 \mathrm{H}\right), 7.86(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{tt}, J=7.8,2.2$, $2 \mathrm{H}), 3.72(\mathrm{tt}, J=8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.61$ (quint, $J=8,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=189.1,139.7$, 131.5, 131.0, 129.6, 129.3, 120.7, 55.2, 39.7, 21.1. HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{-} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}^{35} \mathrm{Cl}_{4} \mathrm{Au}$ calc. 505.93167 found. 505.9319 . UV: $\lambda 302 \mathrm{~nm}(\varepsilon=10252), \lambda: 212 \mathrm{~nm}(\varepsilon=23665)$. IR: $v-\mathrm{NH}^{+}$: $3197 \mathrm{~cm}^{-1}, v-\mathrm{C}=\mathrm{N}: 1590 \mathrm{~cm}^{-1}$
4.4.2. (E)-Trichloro[2-chloro-1-(3,4-dihydro-2H-pyrrol-1-ium-5-yl)-2-(2methoxyphenyl] vinyl)aurate(III) 3b

To a suspension of $\mathrm{AuCl}_{3}(32 \mathrm{mg}$; 1.05 mmol$)$ in 3 mL of $\mathrm{CDCl}_{3} 56.4 \mathrm{mg}$ (1eq) of $\mathbf{2 b}$ were added. This suspension was agitated during 48 h and the formation of a yellow-green solid was observed. After filtration and washing with 1 mL of solvent this solid was dissolved in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ and the solution again filtered on Celite. Yield: 35%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=12.15\left(\mathrm{~s}^{*}, 1 \mathrm{H}\right), 7.60(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{txd}, J=7.5,1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{txt}, J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, 3 H), 3.70 (txt, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.59 (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=$ 188.7, 158.3, 132.5, 131.6, 131.4, 128.8, 121.8, 120.9, 112.9, 56.1, 55.0, 39.9, 21.2. HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{-} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}^{35} \mathrm{Cl}_{4} \mathrm{Au}$ calc.535.94224 found. 535.9429 .
4.4.3. (E)-Trichloro[2-chloro-1-(3,4-dihydro-2H-pyrrol-1-ium-5-yl]-2-(4-methoxyphenyl)
vinyl) aurate (III) 3c
To a suspension of $\mathrm{AuCl}_{3}(152 \mathrm{mg} ; 0.5 \mathrm{mmol})$ in 3 mL of $\mathrm{CDCl}_{3} 100 \mathrm{mg}$ (1eq) of $\mathbf{2 c}$ were added. This suspension was agitated during 48 h and the formation of an orange solid was observed. After filtration and washing with 1 mL of solvent this solid (140 mg) was dissolved in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ and the solution again filtered on Celite. After solvent evaporation 130 mg of $\mathbf{4 c}$ were obtained. Yield: 48%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=10.80\left(\mathrm{~s}^{*}, 1 \mathrm{H}\right), 7.84(\mathrm{dd}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{td}, J=8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{txt}, J=7.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.70$ (txt, $J=7.8,2.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.59 (quint, $J=8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=187.8,161.2,131.0,130.4,118.1,113.7$, $54.9,54.0,38.9,20.3$. On a 100 MHz spectrum recorded in $\mathrm{CD}_{3} \mathrm{CN}$ signals at 130.5, 131.2, 133.3 could be observed. HRMS (ESI): [M-H] $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}^{35} \mathrm{OCl}_{4} \mathrm{Au}$ calc.535.94224 found. 535.9428. UV: $\lambda: 295 \mathrm{~nm}(\varepsilon=12967), \lambda: 200 \mathrm{~nm}(\varepsilon=40733)$. IR: $v-\mathrm{NH}^{+}: 3179 \mathrm{~cm}^{-1}, v-\mathrm{C}=\mathrm{N}$: $1633,1601 \mathrm{~cm}^{-1}$

4.5. Aurocycles 4a, 4c

4.5.1. (E)-Dichloro[2-chloro-1-(3,4-dihydro-2H-pyrrol-1-ium-5-yl)-2-phenylvinyl] aurate(III) 4a

To a suspension of 140 mg of AuCl_{3} (0.46 mmoles) in 5 mL of CDCl_{3} were added 235 mg of $\mathbf{3 a}$ (1eq). After 72 h of stirring out of light the mixture was filtered giving 345 mg of a solid which was dissolved in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ and filtered again in order to eliminate a black residue. This solu-
tion was constituted by a 50/50 mixture of $\mathbf{3 a}$ and $\mathbf{4 a}$ (see sup info). By slow evaporation 40 mg of creme $\mathbf{4 a}$ was formed (yield: 17%). The separation of $\mathbf{3 a}$ and $\mathbf{4 a}$ remained extremely difficult. Crystals of $\mathbf{4 a}$ were obtained by slow evaporation in the NMR solvent.
${ }^{1} \mathrm{H}$ NMR $500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=8.03(\mathrm{dd}, J=8.7,1.1,1 \mathrm{H}), 7.25(\mathrm{td}, J=8.5,1.1,1 \mathrm{H}), 7.11$ $(\mathrm{td}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{tt}, J=7.8,2.1,2 \mathrm{H}), 3.49(\mathrm{tt}, J=7.8,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.53 (quint, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $500 \mathrm{MHz}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta=189.0,140.5,132.3$, 131.7, 130.4, 130.1, 121.5, 55.9, 40.4, 21.9. ${ }^{1} \mathrm{~J}$ of the carbon near Au: 167Hz. HRMS (ESI): [M$\mathrm{H}]{ }^{-} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}^{35} \mathrm{Cl}_{4} \mathrm{Au}$ calc.469.95499 found. 469.9549. UV $\lambda: 315 \mathrm{~nm}(\varepsilon=1635), \lambda: 229 \mathrm{~nm}$ $(\varepsilon=24318), \lambda: 200 \mathrm{~nm}(\varepsilon=27528)$.

4.5.2. (E)-Dichloro[2-chloro-1-(3,4-dihydro-2H-pyrrol-1-ium-5-yl)-2-(4-methoxyphenylvinyl] aurate(III) 4c

To a suspension of AuCl_{3} ($140 \mathrm{mg}, 0.46 \mathrm{mmoles}$) in 5 mL of CDCl_{3} were added 235 mg of $\mathbf{3 c}$ (1eq). After 72 h of stirring out of light the mixture was filtered giving 345 mg of a solid which was dissolved in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ and filtered again in order to eliminate a black residue. This solution was constituted by a $50 / 50$ mixture of $\mathbf{3 c}$ and $\mathbf{4 c}$ (see sup info). By slow evaporation 40 mg of orange $\mathbf{4 c}$ was formed (yield: 17%). The separation of $\mathbf{3 c}$ and $\mathbf{4 c}$ remained extremely difficult. Crystals of $\mathbf{4 c}$ were obtained by slow evaporation in the NMR solvent.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.79(\mathrm{~d}, J=2.5,1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7,1 \mathrm{H}), 6.73(\mathrm{dd}, J=2.5,8.7,1 \mathrm{H}), 4.01$ (qt, $J=8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{tq}, J=8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (quint, $J=8,2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $500 \mathrm{MHz}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=183.0,161.1,151.6,139.7,133.6,130.1,116.8,113.5,55.8,50.4,39.9$, 21.95. HRMS (ESI): [M-H] ${ }^{-} \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}^{35} \mathrm{Cl}_{4} \mathrm{Au}$ calc.499.96556 found. 499.9552 . UV $\lambda: 343 \mathrm{~nm}$ $(\varepsilon=4320), \lambda: 240 \mathrm{~nm}(\varepsilon=24866), \lambda: 200 \mathrm{~nm}(\varepsilon=40303)$.

4.6. Dimer 5a

The dimer 5a was obtained using two procedures.
a) The dimer $5 \mathbf{5}$ could be quantitatively prepared in the NMR tube by addition of some drops of D5-pyridine on a solution of 10 mg of $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$. This complete formation of $\mathbf{5 a}$ was attested by the separation of the protons of the three CH_{2} groups.
b) $5 \mathbf{a}$ can also be prepared by agitation of $\mathbf{4 a}(10 \mathrm{mg})$ in a mixture of CDCl_{3} (1 mL and $\mathrm{D}_{2} \mathrm{O}+\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$. Neutralization of $\mathbf{4 a}$ induced the complete formation of the dimer 5 a and its dissolution in CDCl_{3}. Crystals of 5a suitable for X-ray analysis were obtained by slow evaporation in the NMR tube.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right): \delta=7.86(\mathrm{dd}, J=7.7,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.5,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $500 \mathrm{MHz}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=182.6,148.5$, 144.0, 143.9, 138.4, 131.9, 129.0, 128.1, 125.5, 60.8, 38.9, 22.5.

4.7. Complexes ML and ML2

4.7.1. Dichloro-N,N'-di[5-(phenylethynyl)-3,4-dihydro-2H-pyrrole]tetrachloroaurate(III) 6a

To a solution of 130 mg of $\mathrm{NaAuCl}_{4}, 2 \mathrm{H}_{2} 0\left(0.33 \mathrm{mmol}\right.$) in $\mathrm{CH}_{3} \mathrm{OH}$ (or $\mathrm{CD}_{3} \mathrm{OD}$) 65 mg of 2 a (1eq) were added. After some minutes a yellow solid precipitated. The reaction was allowed to react for 4 hours with stirring and then filtrated. The yellow precipitate was washed with 1 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and dried under vacuum. 110 mg of solid were obtained. It was a $73 / 27$ mixture of $\mathbf{6 a}$ and 6'a with a 58% yield. This solid was dissolved in $\mathrm{CDCl}_{3}(3+1 \mathrm{~mL})$ and after evaporation of the solvent 54 mg of pure $\mathbf{6 a}$ were obtained (Yield: 29\%).
${ }^{1}{ }^{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.73(\mathrm{dt}, J=7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{tt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{tt}, J=7.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{tt}, J=7.65,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{tt}, J=8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{qt}, J=8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta=168.0,133.5,132.6,129.0,118.6,110.8,81.8,61.7,39.9,21.6$. Infra-Red: v -alkyne: $2201 \mathrm{~cm}^{-1}$ HRMS (ESI): $\mathrm{C}_{12} \mathrm{H}_{11}{ }^{35} \mathrm{NCl}_{4} \mathrm{Au}$ calc.505.93167, found. 505.9321. UV: $\lambda=$ $319 \mathrm{~nm}(\varepsilon=21788), \lambda=303 \mathrm{~nm}(\varepsilon=23051), \lambda=233 \mathrm{~nm}(\varepsilon=30300)$.

Remark: If the precipitate solid was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ the presence of another compound 6a'was noted with similar NMR data (mixture of 6a and 6'a): ${ }^{1} \mathrm{H}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ of the fraction insoluble in CDCl_{3}): $\delta=7.51(\mathrm{dt}, J=7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{tt}, J=7.5,1 .(\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{tt}$, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.42(\mathrm{tt}, J=8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{tt}, J=8.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ (quint, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (mixture in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=133,0,132.5,129.3,81.8,62.1,39.7,21.6$. HRMS (ESI): $\left[\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{35} \mathrm{Cl}_{2} \mathrm{Au}\right]^{+}$calc. 605.08201, found. 605.0818.

Crystals of 6a and 6'a were obtained by slow evaporation of the NMR solvent.
4.7.2. Dichloro-N,N'-di[5-(4-methoxyphenylethynyl)-3,4-dihydro-2H-pyrrole] tetrachloroaurate(III) 6c

To a solution of 160 mg of $\mathrm{NaAuCl}_{4}, 2 \mathrm{H}_{2} 0(0.4 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{OD}(3 \mathrm{~mL}) 79 \mathrm{mg}$ of 2 c (1eq) were added. After some minutes an orange solid precipitated. The reaction was allowed to react for 3 hours with stirring and then filtrated. The yellow precipitate was washed with 1 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and dried under vacuum. 173 mg of solid were obtained. It was a $80 / 20$ mixture of $\mathbf{6 c}$ and $\mathbf{6}^{\prime} \mathbf{c}$ with a 86% yield. This solid was dissolved in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ and after evaporation of the solvent 96 mg of pure 6a were obtained (Yield: 48%). The ML2 complex $\mathbf{6 c}{ }^{\text {' }}$ was only obtained as mixture.

ML complex 6c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.72(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{tt}$, $J=7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{tt}, J=7.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38$ (quint, $J=8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=163.2,133.7,114.8,110.3,82.1,61.6,55.7,39.8,21.7$. Infra-Red: v alkyne: $2198 \mathrm{~cm}^{-1}$ HRMS (ESI): $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}^{35} \mathrm{Cl}_{4} \mathrm{NaAu}\right]^{+}$, calc. 523.96205, found 523.9621. UV: $\lambda=$ $346 \mathrm{~nm}(\varepsilon=14848), \lambda=231 \mathrm{~nm}(\varepsilon=18975)$.

ML2 complex 6c': ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=7.49(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~m}$, $2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H})$.

5. Accession codes

CCDC 1871903, CCDC 1871904, CCDC 1871905, CCDC 1871906, CCDC 1871907, CCDC 1871908 contain the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Acknowledgements

The authors acknowledge S. Ferron for UV Data.

Supporting information

NMR Spectra, X-ray data (4a, 4c, 5a, 6a, 6'a), Infra-red spectra ($\mathbf{2 c}, \mathbf{3 a}, \mathbf{4 a}, \mathbf{6 a}$) and UV spectra (3a, 3c, 4a, 4c, 6a, 6c).

References

(1) For a recent example: Tang, M.-C., Lee, C.-H., Ng, M., Wong, Y.-C., Chan, M.-Y., Yam, V. W.-W. Angew. Chem. Int. Ed., 57 (2018) 5463-5466 and references cited.
(2) Some examples: a) Alcaide, B., Almendros, P. Accounts of Chemical research, 47(2014) 939-952. b) L. Fensterbank, L., Malacria, M. Accounts of Chemical research, 47 (2014) 953965. c) Zhang, Y., Peng, H., Zhang, M., Cheng, Y., Zhu, C. Chem. Com., 47 (2011) 2354-2356. d) Kung, K. K.-Y., Lo, V. K.-Y., Ko, H.-M., Li, G.-L., Chan, P.-Y., Leung, K.-C., Zhou, Z., Wang, M.-Z., Che, C.-M., Wong, M.K. Adv. Synth. Catal., 355 (2013) 2055-2070. e) Zhukhovtskiy, A. V., Kobylianskii, I., Wu, C.-Y., Toste, D. J. Am. Chem. Soc., 140 (2018) 466-474
(3) a) David, B., Monkowius, U., Rust, J., Lehmann, C.W., Hyzak, L., Mohr, F. Dalton Trans., 43 (2014) 11059-11066. b) Price, G.A., Flower, K.R., Pritchard, R.G. Brisdon, A.K., Quayle, P. Dalton Trans., 40 (2011) 11696-11697. c) Usón, R., Vicente, J., Cirac, J.A., Chicote, M.T. J. Organomet. Chem., 198 (1980) 105-112. d) Ball, L.T., Lloyd-Jones, G.C., Russell, C. J. Am. Chem. Soc., 136 (2014) 254-264.
(4) a) Guenther, J., Mallet-Ladeira, S., Estévez, L., Miqueu, L.K., Amgoune, A., Bourissou, D. J. Am. Chem. Soc., 136 (2014) 1778-1781. b) Joost, M., Estévez, L., Miqueu, K., Amgoune, A., Bourissou, D. Angew. Chem. Int. Ed., 54 (2015) 5236-5240. c) Wu, C.-W., Horibe, T., Jacobsen, C.B., Toste, D. Nature, 517 (2015) 449-454.
(5) Hashmi, A.S.K., Weyrauch, J.P., Frey, W., Bats, J.W. Org. Lett., 6 (2004) 4391-4394.
(6) a) Egorova, O.A., Seo, H., Kim, Y., Moon, D., Rhee, Y.M., Ahn, K.H. Angew. Chem. Int. Ed., 50 (2011) 11446-11450. b) Seo, H., Jun, M.E., Egorova, O.A., Lee, K.-H., Kim, K.-T., Ahn, K.H. Org. Lett. 14 (2012) 5062-5065.
(7) a) Savjani, N., Roşca, D.-A., Schormann, M., Bochmann, M. Angew. Chem. Ed. Int., 52 (2013) 874-877. b) Chambrier, I., Rocchigiani, L., Hughes, D.L., Budzelaar, P.M.H., Bochmann, M. Chem. Eur. J., 24 (2018) 11467-11474.
(8) a) Langseth, E., Scheuermann, M.L., Balcells, D., Kaminski, W., Goldberg, K.I., Eisenstein, O., Heyn, R.H., Tilset, M. Angew. Chem. Ed. Int., 52(2013) 1660-1663. b) Langseth, E., Nova, A., Tråseth, E.Aa., Rise, F., Øien, S., Heyn, R.H., Tilset M. J. Am. Chem. Soc., 136 (2014) 10104-10115.
(9) Vu, H.-D., Renault, J., Roisnel, T., Robert, C., Jéhan, P., Gouault, N., Uriac, P. Eur. J. Org. Chem., 2015, 4868-4875.
(10) Kumar, R., Nevado, C. Angew. Chem. Ed. Int., 56 (2017) 1994-2015.
(11) Muragishi, K., Asahara, H., Nishiwaki, N. ACS Omega, 2 (2017) 1265-1272.
(12) a) Pintus, A., Rocghigiani, L., Fernandez-Cestau, J., Budzelaar, P.H.M., Bochmann, M. Angew. Chem. Ed. Int., 55 (2016) 12321-12324. b) Roşca, D.A., Smith, D.A., Hughes, D.L., Bochmann, M. Angew. Chem. Ed. Int., 51 (2012) 10643-10646.
(13) Melchiomma, M., Nieger, M., and Helaja, J. Chem. Eur. J. 16 (2010) 8262-8267.
(14) Hüttel, R., Forkl, H. Chem. Ber., 105(1972) 2913-2921.
(15) Pazderski, L., Pawlak, T., Sitkowski, J., Kozerski, L., Szlyk, E. Magn. Reson. Chem., 47 (2009) 932-941.
(16) a) de Graaf, P.W.J., Boersma, J., van der Kerk, G.J.M. J. Organomet. Chem., 105 (1976) 399-406. b) Karash, M.S., Isbell, H.S. J. Am. Chem. Soc. 1931, 3053-3059.
(17) a) Schouteteen, S., Allen, O.R., Haley, A.D., Ong, G.L., Jones, G.D., Vicic, D.A. J. Organomet. Chem., 691 (2006) 4975-4981. b) Gibson, C.S., Colles, W.M. J. Am. Chem. Soc., 53 (1931) 2407-2415.
(18) Godfrey, S.M., Ho, N., McAuliffe, C.A., Pritchard, R.G. Angew. Chem. Ed. Int. Engl., 35 (1996) 2344-2345.
(19) Teets, T.S., Nocera, D.G. J. Am. Chem. Soc., 131 (2009) 7411-7420.
(20) Glišić, B.Đ., Ryschlewska, U., Djuran, M. Dalton Trans., 41 (2012) 6887-6901.
(21) a) Gaillard, S., Slawin, A.M.Z., Bonura, A.T., Stevens, E.D., Nollan, S.P. Organometallics, 29 (2010) 394-402. b) Schuh, E., Werner, S., Otte, Monkowius, U., Mohr, F. Organometallics, 35 (2016) 3448-3451. c) Orbisaglia, S., Jacques, B., Braunstein, P., Hueber, D., Pale, P., Blanc, A., de Frémont, P. Organometallics, 32 (2013) 4153-4164.
(22) Rodriguez, J., Bourissou, D. Angew. Chem. Ed. Int., 57 (2018) 386-388.

