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Abstract

We report an experimental study concerning the capillary relaxation of a confined liquid droplet

in a microscopic channel with rectangular cross-section. The confinement leads to a droplet that

is extended along the direction normal to the cross-section. These droplets, found in numerous

microfluidic applications, are pinched into a peanut-like shape thanks to a localized, reversible

deformation of the channel. Once the channel deformation is released, the droplet relaxes back to

a plug-like shape. During this relaxation, the liquid contained in the central pocket drains towards

the extremities of the droplet. Modeling such visco-capillary droplet relaxation requires considering

the problem as 3D due to confinement. This 3D consideration yields a scaling model incorporating

dominant dissipation within the droplet menisci. As such, the self-similar droplet dynamics is fully

captured.
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The relaxation dynamics of liquid interfaces towards equilibrium induced by surface ten-

sion has been studied for many decades [1–7]. The gradient of capillary pressure determined

by the interface curvature along the deformed surface generates a flow, which in turn is

limited by viscous stresses. In practical microfluidic systems, emulsions, foams or porous

media, droplet interfaces are constantly deformed and relax [8–12], in particular owing to

the complex topography of real systems [13, 14]. In the context of droplet relaxation, exper-

imental, theoretical and numerical studies considered a droplet immersed in an infinite bath

[2, 15, 16] or confined by two parallel walls [12, 17, 18]. As such, droplet relaxation could be

reduced to one of its planes of invariance [2, 6, 12]. Such simplifications aid in the analytic

resolution of dynamical relaxation problems. However, for microfluidic droplets confined

in both width and height, those symmetries cannot be invoked. In this Letter we instead

propose a model that accounts for the intrinsic 3D nature of the observed microfluidic flow.

We study the relaxation of a plug-like droplet forced out of equilibrium in a rectangular

geometry, representing a large number of microfluidic applications [19]. Typical deformations

are shown in Fig. 1. The interface has a pocket-like profile composed of a reservoir followed

by what resembles a thin film in an equatorial observation plane. Critically though, a

meniscus runs along the contour of the droplet, and gutters are formed at the four corners

of the channel cross-section. Our analysis shows that these gutters play a key role in the

observed relaxations. Despite the complexity of the 3D geometry of such droplets, we find

that a scaling model balancing the capillary driving force with the viscous dissipation in the

gutters and menisci allows us to collapse all experimental relaxation data.

In our experiments the outer liquid is a solution of sodium dodecyl sulfate (SDS, pur-

chased from Sigma Aldrich) at concentration 2.94 g·L−1 in ultrapure water (MilliQ). The

surfactant concentration is above the critical micellar concentration (ccmc = 1.92 g·L−1)

ensuring a constant surface tension, γ = 11 ± 1 mN·m−1 measured by the pendant drop

method (Krüss DSA30). The outer phase of viscosity η = 10−3 Pa·s contains fluorescein

at ppm concentration and imaging is done in fluorescence in order to clearly identify the

mineral oil droplet interfaces. These oil droplets, with viscosity ηi = 25 × 10−3 Pa·s, were

prepared using a microfluidic T-junction. The flow rate of both phases is set by a pressure

controller (Fluigent MFCX-Flex), which enables the control of both the droplet length and

positioning within order 10 µm. In particular, this positioning ensures that the middle of

the droplet is aligned with the resistance. These non-wetting droplets, with lengths in the
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range 500 ≤ L ≤ 4000 µm, were confined in the rectangular channel (width W = 200 or

400 µm, and thickness 20 ≤ e ≤ 60 µm) of a poly(dimethylsiloxane) microsystem (PDMS,

RTV). As such, menisci and gutters have characteristic radii e/2 (Fig. 1a).

The lower surface of the microchannel is a 30 µm-thick PDMS layer, spin coated over a

50 µm-wide micropatterned resistance [20] crossing the channel at right angles. Given the

geometry of the channel and the volume of the oil phase, the droplets adopt a flattened,

plug-like shape. To ensure the presence of a lubricating water film at z = ±e/2, PDMS

was rendered hydrophilic using oxygen plasma (FemtoScience). This treatment gives rise to

thin films of water between the oil and PDMS stabilised by electrostatic forces [21]. The

lubrication films are so thin, and the volume they contain is so small, that their contribution

to liquid drainage will be henceforth considered negligible ; a precise justification of this

assumption can be found in [22] noting that we are in the regime 1� ηi
η
� Ca−1/3 constantly

for our experiments.

In order to prepare the well-controlled, out-of-equilibrium droplet interfaces shown in

Fig. 1, we first center the droplets over the heating resistance. Then the lower PDMS wall

is deformed by applying a potential of 5 V across a 300 Ω resistance. The associated Joule

heating expands the lower PDMS layer. This local deformation creates a droplet confinement

gradient, with the channel thickness e varying along the x-direction as sketched in Fig. 1a).

Such a confinement profile is accompanied by a corresponding gradient in the out-of-plane

interface curvature, which, through the Laplace law, generates a pressure gradient. In order

to equalize the capillary pressure along the droplet interface, an opposing in-plane curvature

is developed in the vicinity of the resistance as described by Dangla et al. [23]. We refer to

this outer-phase confined region as the pocket. The droplet thus adopts a peanut-like shape

(Fig. 1). In this study, we avoided large deformations leading to droplet breakup; although,

in practice this, or any other, channel deformation can be used as an on-demand droplet

breakup mechanism.

When the heating resistors are switched off at time t = 0 ≡ toff , the PDMS relaxes and

the droplet then returns to equilibrium over a few tens of seconds. A sequence of droplet

relaxation profiles is shown in Fig. 1b). The distance between the channel side wall and the

deformed interface is denoted w(x, t); the maximal value of the profile at x = 0, the pocket

center, w(0, t) = w0(t) is called the pocket width, cf. Fig. 1. In Figs. 2a) and b) are shown

a spatio-temporal evolution of the channel intensity cross-section at x = 0 for two different
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FIG. 1: a) [top] 3D sketches of: the droplet geometry shaped by the confinement in height, e, and

width, W ; and the fully relaxed droplet at long times. The inset schematically shows the form of

the gutters, and the meniscus of radius e/2. [bottom] The thermo-mechanical channel actuation

leading to the droplet deformation is sketched in the (x, z) plane, respectively before and soon

after the voltage is extinguished at t = 0 ≡ toff . (b) Snapshots of the relaxation of the droplet.

The pocket full-width half-maximum is σ, and w(x, t) is the distance between the channel wall and

the deformed interface, of maximal value w0(t) = w(0, t); we define Lg as the gutter length and L

as the undeformed droplet length. The location of the heating element is marked by the starred

arrows.

droplet lengths. Two regimes are observed. First, the pocket relaxes abruptly over a typical

time of hundreds of milliseconds. Afterwards, the relaxation proceeds much more slowly

and the droplet approaches equilibrium under the constraints of the confining walls.

The first temporal regime corresponds to the thermal relaxation of the dilated PDMS. In
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FIG. 2: Spatiotemporal evolution of the pocket for two droplets in a channel of section e×W =

30× 200 µm2 with lengths a) L = 510 µm and b) L = 1025 µm; the scale applies to both a) and

b). The inset of part a) shows the experimental temperature versus time for the highlighted 1.4 s

interval; the dashed vertical line of part b) indicates toff . c) Plot of w0 vs. time for three droplet

lengths and d) the corresponding time dependence of the horizontal extent of the pocket, σ.

the inset of Fig. 2a), the green line shows a temperature profile taken with an infrared cam-

era (Flir Camera, SC7000), along with a zoom of the early-time relaxation; both relaxations

take place over the same period of order 100 ms, consistently with previous works reporting

a similar temperature relaxation timescale [24] for similar microchannels. Over this initial

period, the channel thickness e(x) relaxes such that the gradient of confinement disappears

and the volume available within the channel suddenly increases. As shown in the Supple-

mentary Materials, a custom calibration method is used to quantify this newly available

volume. It is therein shown to be dominantly occupied by the inner phase and is equivalent

to the best measurement we can make of the channel deformation volume at t = toff . The

experimental verification of this volume conservation allows us to conclude that: i) the in-

ner phase flows more easily than the outer phase despite the larger viscosity of the former,

consistently with related experiments, theoretical and numerical works [6, 22, 25, 26]; ii)

the PDMS underlayer is fully relaxed after this initial stage; and consequently iii) thermal

inertia is negligible. The observation that the inner phase flows to complete the short-time

relaxation suggests furthermore that the later dynamics is in turn limited by the outer phase.
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Lastly, the deformation volume of the lower channel wall is relatively small compared to the

total droplet deformation and the droplet remains out of equilibrium after the fast substrate

relaxation. This is how the droplet interface is set out of equilibrium in our experiment.

The second temporal regime is due to capillary-driven flow. In Figs. 2c) and d) we show

the time evolution of the geometric features describing the neck: first, the pocket width

w0(t) and second, the pocket extension, σ(t), as shown schematically in Fig. 1b), defined as

the full-width half maximum of the pocket profile. For all our droplets, we observe that the

pocket width, w0(t), varies linearly with time over a significant period, and extrapolates to

zero thickness at a time denoted as t0, of order ten seconds. We note also that the relaxation

time increases with the droplet length for a given channel geometry as demonstrated in

Fig. 2c). Despite the small range of variation that is attainable with these experiments, the

time evolution of the pocket extension σ(t) is compatible with a power-law scaling (t0− t)n,

with n = 1/3 providing a good description of the data. In the Supplementary Materials, the

robustness of this exponent is discussed in more detail.

In Fig. 3a) we show the time evolution of the full profiles in the pocket region. Based

on the temporal evolutions of the pocket features found in Fig. 2b) and c), we apply the

scalings describing w0(t) and σ(t) to the entire profiles of Fig. 3a). Fig. 3b) depicts the

rescaled curves of w(x, t)/τ as a function of x/τ 1/3 ≡ u, where τ = t0 − t. Remarkably,

the measured profiles for each time collapse onto a single master curve; the evolution of

the water/oil interface profile is self-similar [7, 27–29]; all of our experimental observations

show self-similar relaxations with same scaling exponents.

The driving force stems from the Laplace pressure gradient that drives the outer phase

from the pocket to the droplet extremities through the gutters. The dynamical process

is mediated by viscous dissipation in the outer phase. We showed in previous works that

for interfaces driven using a temperature gradient in a 2D-confined foam, SDS interfaces

display no surface tension gradient, contrary to dodecanol [30]. Therefore, even during

the deformation stage, there are no Marangoni effects. Since thermal inertia is negligible,

surface tension gradients are safely neglected when the heaters are turned off.

We now propose an interpretation compatible with the observed self-similar exponents,

and based on confinement effects: we account for the fact that the droplet is highly confined

over the cavity thickness, especially near the moving menisci where the outer phase thickness

approaches just a few nanometers. Four such menisci are advancing at the pocket location,
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at the top and bottom walls, and for the two sides of the droplet [35] Due to the symmetry

along the center of the channel, we only consider a single pocket. Bretherton showed that

a large viscous dissipation arises in the dynamical meniscus [31, 32], which connects the

flat lubricating film and the static meniscus with characteristic curvature of roughly 2/e

(neglecting the local in-plane curvature which is small by comparison here). The viscous

drag force per unit length of the dynamical meniscus scales with the capillary number,

Ca = ηV/γ with V a typical meniscus velocity. Cantat showed that Fdiss ≈ γCa2/3 [32][36].

The liquid velocity in the meniscus at the top of the pocket is V = ∂tw and the subsequent

dissipative force in the dynamical meniscus writes Fdiss ≈ γ (η|∂tw|/γ)2/3 .

The driving force is generated by the gradient of curvature along the interface, and writes

in the limit of small slopes, and per unit length of the meniscus: Fcap ≈ γe2∂3
xw. Written

in this way, in a Brinkman approach [33], we consider that the fluid set into motion by this

capillary force extends over a typical length scale e away from the meniscus. By balancing

w
w

FIG. 3: a) Interface profile w(x, t) in the pocket region. Blue plots illustrate the pocket profiles

at early stages and green plots show the later stages; the total elapsed time is 6.9 s and the droplet

length was L = 800 µm, with e = 30 µm and W = 200 µm. b) The same profiles of the central

droplet interface with w rescaled by t0 − t, and x by (t0 − t)1/3.
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driving and dissipation forces: (
η

γ
|∂tw|

)2/3

∼ e2∂3
xw . (1)

Inserting the self-similar form suggested by our experiments, w(x, t) = ταf(u), and requiring

the resulting form of Eq. (1) to be time-invariant leads to α − 9β + 2 = 0. This relation is

compatible with the observed experimental self-similar exponents.

In order to close the problem, we consider the flow from the pocket towards the droplet

extremities through the gutters. The volume Ω(t) of the external phase contained in the

pocket can be written Ω(t) = e
∫
w(x, t) dx. Using the self-similar expression of w(x, t),

Ω(t) = eτα+β
∫
f(u) du. Hence ∂tΩ = −e(α + β)τα+β−1

∫
f(u) du. By volume conservation,

∂tΩ equals the volumetric flux Q in the gutters. Assuming a Poiseuille-like flow in the gutters

of cross-section of order e2, Q ≈ e4∆P (ηL̃g)−1, where L̃g is the effective gutter length defined

by L̃−1
g =

(
L

′
g

)−1
+
(
L

′′
g

)−1
, cf. Fig. 4a), assuming parallel resistances. We checked that

1/Lg remains constant throughout the evolution within 12% for all droplets. The pressure

difference is difficult to estimate precisely, but since the flow is overall driven by the bulging

pocket of central curvature −∂2
xw|0, it is reasonable to assume ∆P ≈ −γ∂2

xw|0 [37]. Hence,

Q ≈ −e4γ(ηL̃g)−1∂2
xw|0. Imposing volume conservation between the gutters and the pockets,
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FIG. 4: a) A 1300 µm long droplet in a 200 µm wide channel showing the two gutter lengths

used to calculate L̃g. b) Dimensionless pocket width w̃0 = w0/e as a function of dimension-

less time τ̃ = ττ−1
d for different sets of experiments: for {∗, ∗, �, �, �, •, •, � } we have

[L, e,W ] = {[1150, 20, 400], [950, 20, 400], [800, 20, 400], [1025, 30, 200], [750, 20, 200], [540, 20, 200],

[350, 20, 200], [804, 59, 200]} all in µm.
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−∂tΩ = Q, and the observed self-similarity on Q then leads to

e(α + β)τα+β−1

∫
f(u) du ≈ −γτ

α−2βf ′′(0)

ηL̃g

e4 . (2)

In Equation (2) all the terms, except the ones with τ , are time independent giving α−2β =

α + β − 1. By coupling the self-similar form of Equation (1) and Equation (2), we find:

α = 1, β = 1/3. These model predictions agree quantitatively with our experimental

observations, demonstrating the dominating effect of the menisci and gutters located at the

confining walls on the drainage dynamics, which emphasizes the 3D nature of the flows

considered here.

Finally, it is possible to define a characteristic drainage time to rescale all of the experi-

mental pocket widths w0(t). Mass conservation consideration gives a relation between the ve-

locity of the meniscus at the center of the pocket and the flux in the gutters w∂tw ≈ Q/e. As

a result, the mean velocity of the pocket meniscus can be written w
e

∆w
τd

= −γ(ηL̃g)−1e2∂2
xw,

where the time τd is the typical drainage time during which the pocket width reaches the

channel width ∆w ≈ W with constant velocity. Fig. 1 suggests that ∂2
xw is of the order of

W−1; this is shown more quantitatively in the Supplementary Material. We therefore define

τd = WηL̃g/γe. The time evolution of the pocket width w0(τ) can thus be represented using

the dimensionless variables w̃ and τ̃ with τ = τdτ̃ and w = ew̃. In Fig. 4, all the rescaled

data remarkably collapse onto a single linear curve, whatever the droplet length, channel

width or cavity thickness. As such, momentum conservation in the advancing pocket menis-

cus coupled to a volume conservation in the gutters captures faithfully the experimental

observations of the relaxation of the droplet for a wide range of length, channel height and

width.

To conclude, we have predicted the relaxation dynamics of an intrinsically three-

dimensional flow with a scaling analysis considering capillary driving forces and viscous

dissipation. Critically, this dissipation is dominated by that in the gutters and in the

menisci. Such confined relaxation, ubiquitous in real systems, allowed us to go beyond

symmetry-based models on interface relaxation. In the context of studying confined multi-

phase flows [13, 14], we believe this approach opens the way to study the effect of topographic

inhomogeneities on the deformation and relaxation of drops or bubbles.
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