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Abstract

The multistable processes are extensions of stable processes, where the index of stability
is replaced by a function ranging in (0,2). The aim of this article is to build a statistical
test which is able to detect a multistable behavior of a process belonging to the class of the
multistable Lévy processes. The properties are stated for a discrete observation scheme of
one trajectory.
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1 Introduction

Most of time, homogeneous processes are used for real datasets as first intention models. If one
deals with processes with jumps, one can use a Lévy process (or a transformation of it) as a basic
model. Various generalisations of this process have been introduced these last years in order to
overcome the lack of flexilibility of these models. We can mention for instance the introduction
of the Multifractional Brownian Motion (Peltier and Lévy-Véhel 1995; Benassi, Jaffard, and
Roux 1997; Ayache and Lévy-Véhel 2000; Herbin 2006), or the Linear Multifractional Stable
Motion (Stoev and Taqqu 2004, 2005) as models where the regularity of the observation is
tuned by a function H, which is playing the role of the local Hurst index. For these models,
one statistical challenge is to build a test in order to decide if the regularity H is constant or
not along the trajectory. One can see for instance (Biermé and Richard 2010; Richard and Vu
2019) where the authors deal with anisotropic multifractional Brownian fields. For processes
with jumps, for the same reason it is interesting to deal with stochastic processes whose local
Holder exponent changes in a controlled manner, it is convenient to consider models where the
jump intensity is allowed to vary in time.

Recall that a process is called a-stable (0 < o < 2) if all its finite-dimensional distributions
are a-stable (see Samorodnitsky and Taqqu 1994). A generalisation of these a-stable processes
has been introduced in Falconer and Lévy-Véhel (2008) in order to provide good models for
data containing a distribution of discontinuities which is varying. They are useful models for
financial records, EEG or natural terrains for instance. It is a practical way to deal with
non-stationarities observed in various real-data phenomena, since a multistable process X is
tangent, at each time u, to a stable process Z, in the following sense (Falconer 2002, 2003):
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for a suitable A(u) (the limit (1) is taken either in finite dimensional distributions or, when X
has a version with cadlag paths, in distribution - one then speaks of strong localisability).

Some properties of these processes has already been studied. We may mention for instance
the behaviour of their distribution (Ayache 2013), some regularity properties (Falconer and
Liu 2012; Biermé and Lacaux 2013; Le Guével and Lévy-Véhel 2013; Le Guével 2018) or
some semi-martingale representations (Le Guével, Lévy-Véhel, and Liu 2012). The multistable
subordinator provides also good models for processes in heterogeneous environments. We may
find some limit theorems for the subordinator and the multifractional Poisson processes in
Molchanov and Ralchenko (2015). The study of its generator and some related differential
equations for multistable Markov processes are also major subjects (see e.g. Beghin and Ricciuti
2018; Orsingher, Ricciuti, and Toaldo 2016; Ricciuti and Toaldo 2017).

The remainder of this paper is organized as follows: the next section is devoted to the
definitions of two versions of the Lévy multistable process, using their Ferguson-Klass-LePage
representation. In section 3, we introduce general notations. We specify some estimation tools
and we state some auxiliary properties about these tools. Section 4 presents the problem of
testing the multistability of a Lévy multistable model. We give in this section the main results
of convergence of our testing procedure. Section 5 is dedicated to technical lemmas, useful for
the proofs of the main theorems. Finally, we have gathered all the proofs in section 6.

2 Multistable processes

For o € (0,2], recall that the stochastic integral I(f) := [ f(z)M(dz) of a real function
f with respect to M exists if, for instance M is a symmetric a-stable random measure on
R, with the Lebesgue measure as the control measure, and if f is measurable and satisfies
Je | f(@)|*dz < +o0 (see Samorodnitsky and Taqqu 1994). Many symmetric stable processes
{Y(t),t € R} admit the stochastic integral representation

y(t) = / fu() M (dz).

Write S, (o, 8, 1) for the a-stable distribution with scale parameter o, skewness § and shift
parameter p. The marginal distribution of Y is therefore Y (t) ~ S,(0y,,0,0) where oy, =

a 1/a
(fi [fe(w)| o)
We will restrict our attention to the standard symmetric a-stable Lévy process on the
interval [0, 1], which may be defined as

Ly (t) := /R Lg(x)M(dx), te]0,1].

Since Ly (t) ~ Sq(t'/,0,0), the logarithm of the characteristic function of L,(t) is given by
log B, [e0Fe®] = —¢||°.

A well-known representation of the stable Lévy process is its Ferguson-Klass-LePage series
representation, based on the following sequences:

e (I';);>1 a sequence of arrival times of a Poisson process with unit arrival rate,

e (V;)i>1 a sequence of i.i.d. random variables with uniform distribution on [0, 1], indepen-
dent of (Fi)iZIJ



e (7i)i>1 a sequence of i.i.d. random variables with distribution P(y; = 1) = P(y; = —1) =
1/2, independent of (Pi)zZl and (‘/;)121

Consequently, the stable Lévy process {L,(t),t € [0, 1]} admits the series representation:
- —1/a
= Z 7iCal’; 1[0,t}(Vz‘)
i=1

where C, = ( fooo r~%sinw dm)_l/ “ . For more details about Ferguson-Klass-LePage representa-
tions, we refer the reader to Ferguson and Klass (1972), Rosinski (1990) or Samorodnitsky and
Taqqu (1994). The stable Lévy motion is therefore a cadlag process, jumping at time V; with
a jump of size CaFi_l/a, where the stability index o may be seen as a parameter regulating the
size of the jumps.

The multistable processes are more flexible models because they allow us to consider a
non constant index of stability a. The size of the jumps will be governed by a function «(t)
evolving with time. The first way to define such a process is to use the Ferguson-Klass-LePage
representation of the stable processes, as in Le Guével and Lévy-Véhel (2012), replacing « by
a function « : [0,1] — (0,2). The first definition of the multistable Lévy motion is then

Z’Y@ o 1/a )1[0,15}(‘/1)

Since we have replaced a by a(t) € (0,2), for each ¢t € [0,1], Y (¢) is a symmetric a(t)-stable
random variable S, (t7/%®,0,0) and log E,[e?L1®] = —¢|g]«®),

The second definition, developed by Falconer and Liu (2012), is inherited from the defi-
nition of multistable random measures M, (), where we have replaced again «a by a function
a(t). They defined the stochastic integral of f with respect to a multistable random measure
providing all its finite dimensional distributions. The Ferguson-Klass-LePage representation of
the multistable Lévy motion resulting from this definition is

Z’Y@ o 1/a )1[0,15}(‘/1')7

which satisfies log E,[e?72(*)] f 0|1*(®)dz. Tt follows that the two multistable processes have

quite different properties. In partlcular Ly is a Markov process with independent increments,
while L; has none of these two properties.

We already know that the two processes L; and Ly are linked by the following formula
(Le Guével, Lévy-Véhel, and Liu 2012, Theorem 8):

d(Cus Ffl/a(s)
where W (¢ f Z Vil (w) Lo, (V) du and K;(u) = %(u)
0 =1
In this paper, we will consider the case of L; as well as the case of L.



3 Notations

For the weak convergences, we will use the uniform metric, based on the Kolmogorov distance,
denoted by k. Recall that x is defined on the set of all probability measures on R by

(s o) = sup |Fpy (1) — Fuy ()]
xe

where F), is the cumulative distribution function with respect to . From now on, we make the
assumption that « is a C! function which is ranging in [a, o*], a subset of (1,2).

Given any a and b in (0,1) and any M > 0, we consider the subsets of continuously
differentiable functions

Qo = {a: [a,b] = [a., ] | V(t1,t2) € [a,b]? a(t) = a(ty)}

and
= {a:[a,b] = [a,,a*] | 3ty t2) € [a,b])?, alt) # alty) and |||l < M},

If a is not continuously differentiable, some results will no longer be valid, because we
can not apply the mean value theorem anymore. The proofs may be adapted if o is Hélder
continuous instead of Lipschitz. On the other side, the interesting case of change point detection
problem with a piecewise constant function « is rather more challenging. This would be an
interesting further development that would require new methods.

For simplicity of notation, we will write « instead of «(t) if & € ©y. If Z is a standard
symmetric a-stable random variable (Z ~ S,(1,0,0)), we know that if o € (1,2),

pla) = Eoflog |2 = /(1)1 - ) 2)
and
vara(log |Z|) = % + % (3)

Therefore we introduce the two functions v(x) = 6:02 + 5 and o?(z) = (v(z) Vv(2)) Av(l), and
we will denote

h(t) == —. (4)

We define X v to be the increment X (5:1) — X (£) of a process X, N € N\{0}, k=1,...,N
and we denote t, = % We also introduce the process

Uen(t Z% tk)l[ 4Vi) (5)
and its increments

Uiy = Upn(tit1) — U n(ty) = Z% _1/a tk)l(tk,tk+1](‘/i)- (6)



Note that for £ # j, since (tx,ti+1] N (¢,tj11] = &, Ugn is independent of U; y (see Le
Guével and Lévy-Véhel (2012, Proposition 6.1) for the expression of the characteristic function
of (Ug,n,U;n)). Since Uy n(t) is a standard symmetric a(t;)-stable Lévy process, we know that

NYetU, v~ Sy4,(1,0,0) and
var, (log |Uk n|) = var,(log |N1/°‘(t’f)Uk,N|) = aQ(a(tk)). (7)

In the sequel, for estimation and testing problems, (n(NN))yen will be a sequence taking even
integer values such that n(N) < N. Several rates of convergence will depend on the sequence
Env = /n(N)(I'(1)+log N). For t € [a,b] C (0, 1), with the observations (X ), we introduce
an estimator of h(t) by

n(N)

}AZ (t) B 1 LN?&J-&-Z2 -1 F/(1> . log |Xk,N| (8)
i n() k=|Nt]— (D P(1) +log N

where |.| is the floor function (see Le Guével (2013) for the properties of this estimator). We
will also consider a slight modification using the process U (which will not be observed) with

BU (t> B 1 LthJrZ2 -1 F/(l) . log |Uk,N| (9)
N n(N) I'(1) +log N '
k=| Nt]— )

and we shall write h(t) for its expectation Eq[RY (¢)], that is

. [N+ g i
h(t) = ). 1
M=y 2 MR (10)
k=| Nt |-
We also introduce a plug-in estimator of o?(«a/(t)) with
1

R (11)

hn(t)

Our test is based on straightforward properties, listed below, of the estimator of A which
are satisfied when the observed process is a standard stable Lévy motion, that is when « is no
longer varying («a € ©y):

o If a € Oy, for all N € N* and ¢, € [a, b],

Eulin(to)] = h = — and vara[h fo)] = (@) (12)
alfinvtto)] == ARG VAl T = 0 (N (D/(1) + 1og N )2
Furthermore, if lim n(N) = 400 and lim ”(]ffv) =0,
N—4o00 N—+o0o
IV(1) 4+ log N N) .
i T LB MV G ) gy £ o, )
N—+4oc0 0'2(&>



e There exists ¢y > 0 such that for all € > 0 and ¢¢ € [a, b],

(N)

~ Cg
o?él(go Pa(|hN(t0) B h’ - 26) < een(N)(I'(1)+log N)

(13)

whereby for every ¢y € [a,b] and a € Oy, if lim n(N) = +o0,

N——+oc0

. » [P’aﬂ.s. . l
Nl_l)filoo hN(to) =" h= Oz‘

Finally, in all the paper, K stands for an absolute positive constant, and K™ will be a positive
constant which depends on ©q or ©4, that is a, b, a,, a* and M.

4 Testing the multistability

We assume that the observation of X = L; or X = Ly consists of one realization of the points
X(%), N e N*, k=1,..., N. Our purpose is to solve the following testing problem

(Hp): €Oy wvs (Hy):a€ 0.

Set (to,t1) € (a,b)?, ty # t1, and assume that (to — %N, o+ "N A (¢, — UMD ¢, 4 ")) — o

(this is always available for N large enough as soon as Nlim "(]]VV) = 0). Our test is based on
—+00
the statistic

b
n(N()A;(zF(tSzbtlzg)N) / | (8) — v (to) . (14)

a

Ty =

According to the asymptotic distribution of T under the null hypothesis, we obtain an asymp-
totic consistent test with asymptotic size 5 € (0, 1) choosing the rejection region

Re := [gp, +0)

where ¢s is the 1 — 3 quantile of the distribution 1 + x?(1), and x?(1) is the x* distribution
with one degree of freedom.

The following statements are our main results. The first theorem exhibits the asymptotic
distribution of the statistic 7T under the null hypothesis, providing a uniform bound for the
size of the test.

Theorem 1 (Null hypothesis). Let P§ be the distribution of Ty and P2 be the distribution
of 14+ x2(1), where x*(1) stands for the x* distribution with one degree of freedom. There exists
a constant K* > 0 such that for all N > 1,

1/3
. L1 AN 1 1
sup wlPi Pe) S KO0+ e ( N e T /INo - [Nva) —n(N)) )

(15)



Thereby there exists a constant K* > 0 such that for every fized level 5 € (0,1) in the
testing problem and every N > 1,

1/3
1 1 n(N) 1 1

sup P,(Ty € R) <+ K'(— + —— + +—+ :
sup Polly € Ro) < S+ K50+ ( e ' JINb] - [Na] n(N)> )
(16)
Furthermore, if lim n(N) = +o00 and lim % = 0, then the following convergence in

N—4o00 N—+o00
distribution occurs for all o € Oy :

N];I)IEOO Ty £ 14 x2(1). (17)

The next theorem deals with the convergence of the test statistic T under the alternative
hypothesis. We obtain a consistent procedure under mild conditions on n(N).

Theorem 2 (Alternative hypothesis for L). Assume that the observed process is Ly (i.e.
X = Ly). Define

1
=— | T h(t) — h(tg)|*dt
XN n N — 02t1b—a/| 0|
and consider x, a random variable normally distributed N (0, O'X) with

o2 = 04(3;(751()0)5520? e ( / b(h(t) _ h(to))dt>2.

Let P, be the distribution of xn, Py be the distribution of x, and let n € (0, %) There exists
a positive constant Ky such that for all « € ©1 and N > 1,

n(N) nN)y 1
(P, B) It F\/ R D
Thereby if n(N) = N7 with v € (0, aga_l) then for any o € ©Oq,
lim XNiX (19)

N—+o0

and for a fized level B € (0,1) in the testing problem, there ezists a constant K> >0 such that
for alla € ©1 and N > 1,

2y B ] ) hieoan

P, (Ty € Re) > P to)|2dt —

En



If h(ty) = f h(t)dt, Nlim XN % 0 where the convergence is in probability. In fact it
—+00

appears in the proof of Theorem 2 that in that case the following convergence occurs

L), )
o £ 5= [y ey O

and we may obtain a similar bound for the Kolmogorov’s distance between the two distributions.
The last result deals with the multistable Lévy process with independent increments Lo
under the alternative hypothesis.

Theorem 3 (Alternative hypothesis for Ls). Assume that the observed process is Ly (i.e.
X = L), that (ﬂ)]\/ is bounded and n(N) > 256. Then there erists a constant K* > 0
such that for all « € ©1 and x > 0,

. h(t)—h(to)|dt
Py(Ty < 7) < K VE(KH)Wr e~ g2 fo-nconr (21)

Thereby for a fized level B € (0,1) in the testing problem, there exists a constant Kz > 0
such that for every a € Oy,

h( h d
Po(Ty € R) > 1— KY™ s fimo-nioae (22)

Comparing with Theorem 2, we see that the power is asymptotically greater if X = Lo
because we can take advantage of less correlated data in that case.

5 Technical lemmas

We set in this section a list of lemmas used in the proofs of the main theorems. The first one
is a combinatory result, given without the proof.

Lemma 4. For every sequence (Wk,j)(kyj)ezz,

[Nbj—1 i+ [Na|+ 301 ot 20 B e
22 W= > > W 3 > Wy
j=INaJ+1 = j_nN) k=|Na]+1 j=|Na]+1 k= Na)+ 20 jojp N 4y

INoJ+2 0 2 | Nbj-1

+ D > Wiy

k= Nb| - g () 4y

The next lemma provides a uniform upper bound of the moment of the logarithm of standard
a-stable random variables.



Lemma 5. Let n > 0 and [, o] C (1,2).

sup [, [[log [W| —Eq[log[[W]]|"] < +o0 (23)

a€lay,a*]
where W s a standard symmetric a-stable random variable.

In the next lemma, we provide a uniform upper bound of the moments of the inverse of the
increments for the three processes L1, Ly and U.

Lemma 6. For alln € (0, 1),

sup sup sup N 2R, [| X v| 72" < 400 (24)
N k=1,...,.N a€0,

where X = Ly, X = Ly or X =U, and h(t) = ﬁ

We set now a control of the variances of h{ (t) and hy(t).

Lemma 7. Assume that X = Ly. For alln € (0, 3),

sup sup sup B, |&[() = W (D] < +oo, (25)
N a€0; t€]a,b]

and

sup sup sup E, [N(lfi)"\fw(t) — }Az]UV(t)\Z} < +o0. (26)
N €01 t€(a,b]

The last lemma states that the estimator of the function h has exponential moments if the
observed multistable process is L.

Lemma 8. Assume that X = Ly and (”(N)#)N is bounded. Then

[N+ g
sup sup sup sup  Eo[N"W| X, ] < 400, (27)
N a€O1 tela,b] k:LNtJ,w

and if n(N) > 256,

log B, [e2Wn (@)
sup sup sup 08 Fale ] < +00 (28)
N a€®; tefab] n(N)

where Wi (t) = Ex(hn(t) — h(t)).

6 Proofs

Proof of Lemma 5 Let a € [, ], W be a standard a-stable random variable, and put
p(a) = Eqflog [W]] =T"(1)(1 - ).



+oo
E, [|log [W] — Eulogl|[W[]]"] = / B (| log [ W] — p(a)] > 2/)da
0

+o0 +o0o
<1+ /Pa(\m > " e d + /Pa(\W| < e ")) g,
1 1
Since the characteristic function of W is E,[e¥"] = e 1" Parseval’s inversion formula

provides an upper bound for the last term of the right handside of the previous inequality.
Moreover, the Markov inequality for the first term leads to

—+o00

Ea [log [ IW] = p(a)|") < 1+ ¢+, [IV] / gy 4 L / / oo Si0e

1/”6u(a) )

i dydx

—+00

<1+ e MIE W] / e " dx (e W + e ") e " dyda.
1

We obtain (23) since E,[|[W]] = 2I'(1—2) (see Samorodnitsky and Tagqu 1994, property 1.2.17)
and a € [, o]

Proof of Lemma 6 We begin the proof showing that for X = L;, X = Ly, or X = U,

sup sup /gb (N"))df < oo (29)

where ¢§ is the characteristic function of Xj, . Recall that ¢, = % and consider first the case
X = Ly. We know from Falconer and Liu (2012) that the characteristic function of X y is

thtl | plo(a
iven by ¢x(0) = e~ Jo T 161 )dx. Then we use the fact that o > 1 to obtain
g N

/Cbﬁ(Nh(tk)@)dH _ /e_ ftt:+1 |Nh(tk)0|a(w)dxd9
R

R
“+00

t tr)a(x
§2+2/ TN g

1

2
<24 f:Hl Nhte)a(@) oy
k

2
N [ Nht)a@-1dy

=2+

k)| < ol < M,

If @ € O, the mean value theorem yields |h(ty)a(z) — 1| = |2& Voo < N

Nhte)a(z)-1 > N—M/(New) and

a(tk
/¢)1§(Nh(tk)9)d9 <1+ 2sup NM/(NQ*)’
N

10



hence (29). We consider now the case X = Ly. Fort € [a, b], recall that Copy = (f;° 27 sinz dx)fl/a(t)
and write

Ca(tk+1) ( )

2y1/0&(tk+1) [tk7tk‘+1] x

Ay =

and . .
a(tk+1) Oé(tk)
le/a(tk+1) - 2y1/a(tk))1[07tk}(x)‘

B = (

We know from Le Guével and Lévy-Véhel (2012) that the characteristic function of X y =
Ly(tks1) — Ly (tg) is given by

1 o0
E[eiGXkA,N] B 6—2{ g sin? (6(Ap+By,))dzdy

bln

1+a Dy = aa ! C,“ that

It follows from the equality fo

“+00 tht1 +
-2 f j sin? (NP ()9 Ay ) dzdy

/ PN (NM9)de < 2 42 / f db
R 1
+oo

— 9242 / 0" g

1
+oo

<242 /(ee + e %)do,

1

a(ty)
which implies (29). Finally, the characteristic function of Uy x is ¢%(0) = e~ 25 S0 we derive

(29) since o € [ow, ).
Now we consider that X is either L;, Ly or U. Parseval’s inversion formula yields

Sln
R/ )

/Sln(N (t6)0y))
0

Po([Xkn| < y)

>1|+~

ox (N0 dp

3| =

R
NI tR)

y / X (NMg)de
R

.....

11



We obtain to conclude for 7 € (0, 3)

[ee]

Eo [| Xk = /Pa(|Xk,N| < N_h(t’“)vfﬁ)N%(tk)ndv

0
o0

< N2h(tk)77(1 +/]P)a<|Xk,N| < N*h(tk)v_zin)dv)

1

and
sup N8, X 2] < 14 Ksup sup [ XN 0)ap [ oo
a€0, N k=1,..., N]R 1

which is (24).

Proof of Lemma 7 Let a € ©; and t € [a,b]. From the definition (9) of A% (), we have

[Nt + 2 g
Bt — BY () = — 22 log |Us.v| — Eallog U]
n(N) I"(1) 4 log N
k=| Nt| V)

We use the independence of the random variables (U )i to obtain

that is (25). To prove (26), write for o« € ©1 and ¢ € [a, b],

. [Nt ]+ g 0
ha(t) — Y (¢) = log [—
~(t) N(t) n(N) an g Xn
k=|Nt) -
whereby
. ) |Vt + 2N U 1
Eq, ||An(t) = A5 (0)?]° < Ea[lo ﬂﬂ. 30
() = BOF] < o D B |l Y (30)
k=|Nt| -

Let n € (0,3) and fix K, > 0 such that for all z € R, (logz)*1,51 < K,|z — 1|7. We deduce

from the inequality
2 2 L,
|log [2[|" = [log 2["Lsz1 + |log — 115,

1
< Kyl =17+ ] =17

that |log |2 |[? < Ky [Usx — X |"(Ig5 " + |55 1") which implies

12



N

U 1 _ _
E, {‘ log ’Xi]]\;HZ} < K,E, [|Uk,N — Xk,N|2n] *E, [(’ijv’ T+ Uk N| ")2]

< K,E, HUkN — Xin|]" (E [1 Xk, N|_2ﬂ% + Eq [|Uk,N|_2n]%)
< K*Nh Eo [|Uen — Xenl]", (31)

where we have used (24) for the last inequality. Let us control E, [|Uxxy — Xj n|]- To this end,
thanks to the definition of L; and (6), we get

XkN _ UkN _ Z% ( a(tk+1)r—1/a(tk+1) . Oa(tk)r—l/a(tk)> 1[0,tk+1](vz‘)-

The mean value theorem yields that there exists a random variables ¢; € (a(tg), a(trs1))
(or ¢; € (a(tgs1), a(ty))) such that

Co(

tet1)

—1/altpas —1/a d e
r a(ter) ConT Va(ty) _ (atpsr) — Oé(tk))@(CuFi Y )(ci).

Note that ¢; is independent of ;. Then
Ea[[Xe,n = Uk n[] < |oltirr) — a(ty)|Ea IZ% (Cul7 ") (i) L0, (VA)].

Letp=1+ % € (a*,2). We use the fact that u — C,, is uniformly bounded which implies
that there exists K > 0 such that |%(CUF;1/U)(CZ)| < K(1+|logI'y|)(T e —1—171/&*) to obtain

C d —1/a* —1/ax
Ball 7 (Cul ) (€)1 (VDI < KEa[(L+ [log Da)(Iy 7 4 17%)]
i=1

+ KEq| IZ% (O () Lo (V)]

Moreover, since ¢; is independent of 7;, Theorem 2 of Von Bahr and Essen (1965) entails
- d —1/a* -1/
Bal] Y 7 (Ol ) (€)1 (V)] < KEa[(L+ [log Da)(Iy 7 4T %)]
i=1

+KZE (] Y () )M

whereby

o0

d —1/u —1/a* -1/«
Ball Y7 (Cul'y ™) (e0) Loy ) (VD)) < KEal(1 4 [log Dy (I 4 171

=1

+ K3 Eo[|(1+ [log ) (T 4 T; ey

13



which is finite. Gathering all these inequalities, we obtain

K*M
Eo[Xe,n — Urn|] < K (Ja(teyr) — alte)] < I

for some K* > 0. We derive from this last inequality and (31) that NU=aE, [| log |%H2}
is uniformly bounded (in k and N), and by (30), NU"aE, ||hy(t) — ﬁ%(t)ﬂ is uniformly
bounded in ¢ € [a,b], & € ©; and N, that is (26).

Proof of Lemma 8 Let us control P,(|X;n| > y) for any y > 1. We write ¢ n =

[min ]a(x). Using the truncation inequality (Loeve 1977, p. 209), one easily computes
TE|tk,trt1

1y
]P)CY(‘X]C,N‘ > y) S y/(l . e_ft:+l ‘9|a(u)du)d8

0
1/y trta

<y/ / 6] dudf

0
1/y .
Sy/ IQL\;’Nde
0
1

< .
— 2Ny~

This leads to

Nh®en-1 dy
E. [N"O|Xn]] <1+ /
)

2 Ck,N

1
+oo
dy kN 4
<14+ (| —=)N=t ",
Yy
1

Thanks to the inequality \2’% — 1] < M whenever k € {|Nt] — "N |Nt] +

Nao 2
@ — 1}, we obtain

+oo
d n(N)lo
E, [N"O|Xpn]] <1+ (/ Lysupe” ¥
yOt* N
1

which is finite under the assumptions of the Lemma. This being true for every N > 1, t € [a, 1],
a €O, and ke {[Nt] — "M |Nt| + 2% 1} (27) holds.

2

[N+ g
In order to prove (28), notice that W (t) = /n(N)u(a(t))— nl(N) > log(|N"® X}, n|).
k=| Nt]— M)

14



We use the following inequality for ¢ € [a, ]
2Wn (@) < e2Wn(t) | o—2Wn(?)

[N+ g . [Nt )+ ,

_ o2/ n(MW)n(a(t) — te? n(N)p(a(t)) H |Nh(t)Xk,N|W.

nv) | NRO X | V)
] ,

k=|Nt]— k=| Nt

Taking the expectation, the independence of the variables X 5 and the Holder inequality for
n(N) > 16 lead to

[N+ 2N ) [Nt 42N ,
EfMO) < (VO ] Rl ——+ ] BNz )
k=| Nt |- [NPO Zy |V | Nt|— 2N

[N+ 2N g » [N+ 2N g ,
< (V"] Ea[|Nh<t>Zk,Nr%1W+ [[ EN*0Z x| V")
k=| Nt)— ) =|Ne)-2D

N+ 7571 -

— (K*)V"N) H N Ve B [|NM) Z, y|~ s]m
k=| Nt
[N+ g ,

+(EV ] Ea[INMOZ )V )

k=| Nt]— M)

where K* is some positive constant. Thanks to (24), (27), and the inequality |h(tx) — h(t)]
M"( ) whenever k € {|Nt| — "(N) o [ IVE] + w — 1}, we obtain

IN

B, [e2WN O] < (for) /W) RN, /a0
(K*)\/n(N)(SL;}p QW)\/H(N) + (K*)\/n(N)

IN

which implies (28).

Proof of theorem 1 If a € O, we can rewrite for all ¢ € [a,b], h(t) = h = 1. Let Wy (¢)
be Ex(hn(t) — h) and recall that

TN: Eb / (Wi (t) — Wi(to)|“dt
1 b ) W (to 1
_W/ W ()] dt—262(tl—/ W (t)dt + pEe )IWN(toN :

15



In order to compute the Kolmogorov’s distance between Py and P;,2, we introduce the three
terms in the last equality:

1 b
WN::— W ()|?dt — 1
A =g WALl
WNto /
W .= — Wi (
2 Uztl b—a N

W3 = ——|Wy(to)]*.
3 62(t1)| N( U)|

Let z € R, o € ©p and Z ~ N (0,1). It is easy to see that

Po(Ty <) =P, (1 +|Z*<2)| S [Pa(Ty —1 <2 — 1) =P (WS <2 —1)|
+ P(WN <2 —1) =P, (|Z? <z —1)
< sup sup [P, (Ty — 1 < 2) — P, (W3 < 1) (32)

a€Bp TeR
Wi (t
+supsup B (V20N oy z1<0) (33)
a€Bp >0 02 (tl)
We first consider (33): since o € g and (g — Q(N),to + ”(N)) N (t — %,tl + %) =0,
Wy (to) and 62(t;) are two independent random variables. Write FY for the distribution of
6’2(t1

~

o%(a)
(W (to)] (W (to)| N
P, (NN oy = p (AN <y d R
i S0 = [Pl < anari)
and
Wa(to) Wl e
(T <o) Ru(7] < 0) = [Pu(CE < ay) P21 < )R )

+ [ [Po(1Z] < wy) — Po(|Z] < @)]dEY (y).

%\%

Let K > 0 be an absolute constant such that |P,(|Z] < xy) —P,(|Z| < z)| < K|y —1|. The
constant K may change from line to line in the following inequalitites. Using successively the
facts that a — (0%(a))~! is bounded, = + 1/02%(1/x) has a bounded derivative function and
(12), we obtain

sup [ [Pa(|Z] < 2y) - Pa((Z] < 0)ldFY(0) < KE,| Y220

x>0

16



This provides the existence of K* > 0 such that

K*
sup sup [ [P(2] < o) — Pul| 2] < 0)dF () < (34)
a€EBg x>0 é-N
R
Wi (to) 2 Vto) £ 2751 (@)—log | N X, x|
Now we get from (8) that 22U — &N (} o (¢)—h) = —= <ua—og k,N)
§ (B that Jstar = Vorm o) ~h) = 7 = [Vt |00 NE®

2
where the variables X y are independent under Hj, so the Berry-Esseen inequality (see e.g
Petrov 1995, Theorem 5.5) gives the existence of an absolute constante A such that

Wl _ = g Balli() — log WP
ol < ) — BallZ) < )] < A=

where W ~ S,(1,0,0), and thanks to (23),

Wa(t) o K
sup su P.(——= < zy) — P,(|Z] < zy)|dF} < )
sup sup / Pl <o)~ BullZ] S mlEY ) S s

Combining (34) and (35), we obtain an upper bound for (33) :

§N n(N) (36)

The second part of the proof deals with the term (32). Let G be the cumulative distribution
function of W, let gy (t) = ’

E.[e®"s'] and let fxy(t) = Eo[e™v=Y]. Set T > 0. Theorem 5.3
of Petrov (1995) leads to

t 1 1
sup sup|Pa(M§x) P.(|Z] <z)| < K* — .
a€Bp >0 0'2(t1)

T
sup [Pu(Ty — 1 < 2) — Pa(WY < 2)| < 1/ M‘ (1= g (37)
z€R 7 t T
soswp [ (GaGety) - Guldy (39
T zeR

C
‘y|§7

where C'is a positive constant which is not depending on 7. From (36), we know that

Gul+y) - Gu(a)| < 2K ( = nl(N)> 1 [Pa(12] < VZF5) — Pa(lZ] < V)|

1 1
< 2K <§N \/W>+K\/@

where K is an absolute constant. This gives an upper bound for (38)

17



T 1 1 K
- Gy(z + G dy < K* + + : 39
- Sup sup / |G (2 +y) — Gn(z)|dy (&V n(N)) Wi (39)

|yl

H\Q

Let us control (37). The inequality
i N N
Sn(t) — gN(t)‘ ]Ea[e W +:/2 ) - 1€th§V]

<2E,[[WY + W]

yields

1t o

(1— T)dt< R WY + W (40)

T
-/
™

Sn(t) — gn(t) ‘

t

Gathering (36), (39), (37) and (40), we obtain an upper bound for the Kolmogorov’s distance:
we may find a constant K* such that for any 7' > 0,

sup K + T sup E,[|W{ + WZNH) :

1
PY P.2) < K*
aE@o ( N 1+X ) ( \/ \/_ OéE@o

Minimizing (in 7') the right term, we deduce that

1 1
sup K(Py, Priye) < K + (sup Eo[[W¥ + WY [)Y/? 41
sp (P P (§N s+ Bl W (1)
for some constant K*. We finish the proof giving an upper bound for sup E,[|[W{¥ + W]
acO
Writing ’
2 1 b Wa(t) o?(a)
WN:?(O‘) / N 2dt— 1| + [ —1],
1 0'2(t1) b—a ‘\/m‘ [0'2<t1) ]
and using the boundness of the function o2, we obtain
B[] < K'Ea |52 / et = 1]+ B (1) = ]
Wi(t) I
< K'E, dt —1]| + 42
_|b_a/|m| |+5 (42

for some constant K*. Thanks to (12),

VO]

1P Wat) 4 1L v Wa(t) ,
a/a |\/m| dt—1|]§m+Ea[|m/W|m| dt — 1| . (43)

18



Making explicit W (t), one can computes

INbj—1 [j+200 -1

Y W) 1 WN(%)QI 1 pi(@) —log [IN" X v
Jog Vo =% X w2 | =@

J=|Na]+1 |p— j— n(N

—log |Nth’N|

Vo2 (@)

variables. Consequently we can rewrite the last sum

If @ € Oy, recall that the variables Uy, := ) are standard independent random

2

1 [Nbj—1 [i+"5 -1 INbj—1 j+2 1 INbj—1 j+200 1m0y
B INIDVICIIS i P IND DI ES 7 JD DD DI DRLAL
j=|[Na]+1 k:j—# ] [NaJ+1p—; n(N) j [NaJ+1 p—; n(N) k'=k+1

= Zl—f-ZQ,

whereby (42) and (43) lead to

B0 < K o+ iy ) + Elly=s 51— 1+ Eal1al (44)

We are left with the task of determining an upper bound for E,[|;=-%; — 1|] and E,[|Zs]].
For the first term >;, we invert the two sums to get:

1 LNaJ+"(2]V)—1 (N) |Nb|—1— n(N)
n
5= (>, (k+ — INa)UZ+ > a(N)UD)
Nn(N) 2
k=|Na|+1- "N k=|Na|+200)
L J 2+7L(N)

! nN) gy
+Nn(N)HN%;W(LNbJ+ 5~ — k= DU

For the computation of E,[|7%; — 1], notice first that

1 LNaJ+"(2N)_1 (N) L n(QN) (N) ) (N)
n n n
E, k+ —2~ — | Na|)U? Nb|+ ——~L —k—-1UD)| <
e (D DESRCER -SSR DENINO R | < =
k=|Na]+1-2N) k=| Nb)— 29
so we are reduced to consider
(Np) 120 b1 200
1 |Nb| — [Na] —n(N) 1
— U2 —1= -1 72
N(b—a) 2. i ( N )LNbJ — | Na] —n(N) 2 F
k=|Na |+ k=|Na |+ 20
| Nb) -1

! 2
i INb| — [Na| —n(N) Z (U; = 1).

_ (N)
kaNaJ—&—nT

19



|Nb|—|Na]—n(N) n(N)+2
5 1<

Since < No—a)

_1|

var, (U?)
E, E 1| < ———— 45
lp—g= — = b— \/LNb [Na| —n(N)’ 43)
For the second term 5, we invert the two first sums:
5 [NaJerfl e+ il |Nbj -1 AROC N Ol
ey X 0% S lhepen ©G Y S
k:LNaJJrlfn(N) j=|Na]+1 k'=k+1 =|Na J+n(N) j:k7w+l k'=k+1
LNb)—2+ 20 INbj—1 G+
U U
T 2 U 2. 2 U
k=|Nb| - o ) g K=kt
We define Si to be Z > Up if k € {|Na] o | Na| +
j=|NaJ+1 k'=k+1
ppn) om0 INbj—1 j+0
5 S Uy if k € {|Na| + SIND) =1 — M0y and Y S U it

jmhe ) g K=kt

ke {|Nb) — "N |INb|] -2+
5 | Nb)—24 2D
Y., —
>~ Nn(N) 2.
k=|Na|+1-20)
Si is a

E,[US;] = 0. Moreover, E,[S?] < n(N)3

| Nb) —24+ )

>

k=|Na|+1—

E

n(N)

| Vo) —24 7N

>
k=|Na|+1—
An(N)(N 4 n(N))
N2

P —
= N2n(N)2

n(N)
2

Combining (44), (45) and (47), we obtain

1
sup IEQHI/VlNH < K*

Uy Sk

(46)

sum of variables U; with indices greater than k so Sj is independent of Uy and
. Therefore it is easy to see that

a[Ul?]EOé[Slz]

n(N)?

(47)

1

n(N)
( N~ 7

20

£_N+

aEBq

VINb] -

(48)

) |

[Na| —n(N)



Let us conclude the proof giving an upper bound for E,[|[W3|]. Notice first that E,[Wx(t)] =
f Wi (t)dt] = 0. Then, if « € Oy,

\ | < K*y/var,(W(to)) \/vara/WN dt) = K*y\/o \/vara/WN dt).

It remains to control vara(fa W (t)dt).

|Naj+1 LNbJ b

/ W (t)dt — / v WN(t)dH—/W;HW (t)dt + o W (t)dt
LNb)
— (% — a)WN(%) -+ /WHl Wy (t)dt + (b — LJ;beJ Wi ( LJ;beJ>
INb| G+

=y ), ). U

j=|Na] k:jf%m

where Uy = p(a) — log(N" Xy n) and |en| <

done for >,

N so inverting again the sums as we have
n

b [Na]+240 2 () [ Nbj—20)
n
/GWN(t)dt:cN( > (k4 5~ — [Na| + 1)U + > (N
k=|Na]—2 k=|Na]+ 2 1
| Nb] 142N
n(N)
+ D (Vb + = YU
k=|Nb|+1- 2N
[NbJ+ ™M) g
= > Al
k=|Na|- "M
with |dy| < 220 Thus,
b |NbJ+ 2Ny
var( / Wadt) =o?(@) Y d?
“ k=| Na)— 2
4n(N)
< o*(a) vz (LVb] = [Na] +n(N))
n(N)
< K* .
= N

We obtain then

(49)



We thus derive (15) from (41), (48) and (49) m
PROOF OF THEOREM 2
Let x be a random variable distributed as 0, Z where Z ~ N(0,1) and Wy be equal to

_ En[h(to) — h¥ (to)]
Wy = oy (BN)1/2 ) (50)

| Nto]+ 200 1
where By = 5 3 o?(a(L)).
kil_]\”oj—@

Fix z € R and a € ©;. It is easy to see that

Po(xny <2) = Polx <2)] = [Po(xny <) = Po(Wn < 2) + Po(Wy <) —Po(x < )|

<sup [P, (Wy < z) —Po(x < 2)| (51)
z€R

+sup |Po(xny < ) — P (Wy < ). (52)
z€R

The proof falls naturally into two steps. We first compute an upper bound for (51):

sup [Pa (Wi < 7) — Pu(y < )] = sup [Py M) = Ivlto)]l v p 7oy,

z€R z€eR (BN)1/2

where Z ~ N(0,1). Since

LNt0J+w71
7 - > (10g|Uk,N| — E,[log |Uk n|])
§N[h(t0) - h%(to)] _ k:LNtOJ*w
(BN)1/2 LNtonrw,l
> var,(log |Uy,n1)

k=| Nto|— )

/2

we can use Theorem 5.4 of Petrov (1995) to obtain the existence of an absolute constant
A > 0 such that

| Nto)+ =) 1

> Eu[|log |Ukn| — Eqflog |Uk n|]|?]

k=|Nto)— M)
sup [P (Wy < ) — Po(y < )] < A -
z€R [ Nto)+ 20 1
> a*aly))
k=|Nto |-

Using Lemma 5 and the fact that inf; 0%(¢) is positive, we obtain

n(N)
P,(Wy < ) —Po(y < z)] < K*— 2
Sup [Po(Wiy < #) = Palx < )| n(N)P72

for some constant K*, whereby
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sup sup [Po(Wy < ) — Pa(x < 2)| < (53)

a€01 zeR - n(N) '

The second part of the proof deals with the term (52). Let Gy be the cumulative distribution

function of Wy, let gy (t) = Eo[e®™¥] and let fy(t) = E,[e®™¥]. Set T > 0. Theorem 5.3 of
Petrov (1995) leads to

T
Sup Po(xy <) = Po(Wy < z)| < % 4 M’ (1- g)dt (54)
s [ (Gaterg) - Gu@lty  (59)
T zeR
ly|<$

where C'is a positive constant which is not depending on 7. By (53) we get
2K* K* K
K ety -G <y B
n(N) n(N) Ox

where K is an absolute constant. This provides an upper bound for (55):

Gn(z+y) —Gn(2)] <

T K* K
—su Gn(r +y) — Gn(x)|dy < + . 56
o [ 1Gatr )~ Ga@ldy < it (50

C
|y‘§7

Let us control (54):

etOxv=Wn) _ 1

M' _ g [ eitWN]
t : t
=~ 2Ea[|XN - WNH

=T

We derive an upper bound for the Kolmogorov’s distance from (53), (56) and (57): there
exists K* > 0 such that for every 7' > 0,

1 1
P, P) <K~ + + T sup E, - W, :
W(Poy By) < ( o T s Bl Nu>

Minimizing (in 7") the right term, we deduce that there exists K* > 0 such that

(sup Eo[lxn — Wl])'/?

* 1 acO,
(Pay P S K (st =) ()
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We finish the proof giving an upper bound for sup E.[|xny — Wy|]. We use the equality

a€O1
f WY () — hY (to)[2dt = f 346 ) + h(t) — h(te) + h(te) — A% (to)|2dt and we expand the
square to obtain seven terms for xy — Wiy
) -y = / e (t) ~ hos(to)Pe — [ 1156) = W) Pae| (@)
e / RS (t) — h(t)|*dt (Q2)
[/ \h(t) — h(to)|*dt — / |h(t) — h(to)] dt] (Q3)
+ [(to) — hS (ko) (Q4)
b
4 [0 = RO)le) ~ ) (Q5)
Q[h(toz = Z%“O” / (WY (t) — h(t))dt (Q6)
20(to) = PR ()] [ (7 7s ar - O (1)
4 2hllo) 1 / (h(t) = (et = 2wy (Q7)

The end of the proof consists in computing an upper bound for each term ;. Let 7 be a fixed

number in (0, 3).

Upper bound for ); Write

Q= bia/ﬁw(t) — W5 (t)2dt + RS (to) — ha(to)]?
5 . o
by [ ) = B8 1) — B o

a

Using the fact that sup sup sup Eo[|h¥(£)?] < +oo, the Hélder inequality and (26) yield
N acO1 tela,b]
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B (@) €~y

cv*)2

for some positive constant K;.
Upper bound for @); and @), Thanks to (25),

Eaf|Qs + Quf) < 2.

2
N

Upper bound for Q5 Since |h(t)—h(t)| < K* n(]ffv) and (n(]]VV))2 < n(]ffv) for N large enough,

it is not difficult to see that )
W
E.[|Qs]] = |Qs] < K*—==

Upper bound for ()5 Lemma 7 leads to

|[Na]+1
N
2 - - - - K* |Na] +1 K*
sup E, K5 (t) — k(1)) (h(t) — h(to))dt|| < a) < 59
sup By (= [ (540 = BB ~ Rl | < (S5 —a) < 5 (59)
For the same reasons we get
b
sup B |52 [ (B0~ BO)(O) — hita))at]| < 5 (60)
wcor |b—a ) N VI = New
NG
N
LNb]
N _ _ _
Thereby, defining 1, as (R (t) — h(t))(h(t) — h(to))dt, we have
LN(}\;—H

INbj—1 j+252

[a,b Wk
vV (N N LNZa:ij ;;(N) ’

N _
where Wy, ; = (log |Ux n| — Eallog |Usn|]) [ (R(t) — h(ty))dt. We apply Lemma 4 in order to
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obtain

n(N)
1 [Naj+250 -1 b
Ipy=—F— VN / (h(t) — h(to))dt
\/ n(N)fN k=|Na|+1 INo| 41
N
L)
. |Nb] -2 g i
e Y [ G- R
n( )&V k:LNaH'@ k+17w
A
. |Nb)+ 2 2 e
+ N > Viw / (h(t) — h(to))dt
" Nk:LNbJ*nzN) ko 1— )

where Vi n = log|Ug n| — Eqllog |Ug n|]. Since E,[Vin] = 0, using the independence of the
random variables (Vj v)k, we get

@t (L) = o >0 G [ () ht)dr?
|Na|+1

2
n(N)Ex k=|Na]+1

)20 T
1 9 k - 7 2
b X el [ G0 - )

N n
k=|Na|+) 1 V)

[Nb| 42N o

| 0 IRV
o L et [ o= b))

k=|Nb|— 2N pr1— )
N

26



The two functions o2 and h are uniformly bounded so it is easy to obtain

| NaJ+2 Q)

K n(N) 2
vary (1op) < W kz%ﬂ (k + —5 | Na])

| Nb)— ™M) g

K
+ = § n(N)?
N2n(N)E3, o
k=|Na|+=5~

| Nb)+ 2 o

K
Fmg, 2,

k=| Nb|— 2D

k)?

n(N)
2

< g "+ (IVH — [Nan(V)? +n(N)')
Ko ()

_€ZQVN7

whereby

[ND]
N

~u _ . _ K* [n(N)
swp B || [ (50 - )0 - Rl | < 7"

|[Na|+1
N
Gathering (59), (60) and (61), we finally obtain

K*ﬂ

EallQsl] < 2

Upper bound for ()¢ The Holder inequality leads to

(=

o [1Q6]] < Eao[R(to) — W (to) IR () — h())[]dt

(=

E.[|h(to) — b (to) PE (RS (£) — h(t))|))2dt

| N

whence

Qs < &

thanks to (25).

Upper bound for (); From the definition (10) of h, we know that

b b

i oo < 2

27
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whereby Lemma 7 and (50) entail

E.Q) < K + B, || =2 / e - E
e Palt) o)
= K'ed + B |l — i} S - 20

Then we will use the following decomposition:

o) P(h) _ oa(h) —8%n) 8% Vo ali))).
(al)  (Bw)* Pal) << S el

Since inf; 0%(t) > 0, we may choose a constant K > 0 such that for all N, By > K, whence
o*(a(t)  o*(t)
2(alts) (By)?

Then we use the fact that ¢ — o2(«(t)) is a C* function to obtain a constant K* > 0 such that
|By — %(a(ty))] < K*"( ) Finally, applying Lemma 7 yields

< K |o*(a(ty)) — 6°(t)| + K* | By — 0*(alto))] -

) < K e+ K |1t~ a0 5) — o)
Consider now a constant K* > 0 which depends on «, and o* such that
Vo €[22 € (3.1 E R JP(5) — 0] < Ko =gl
We have o1 L1 * )
o (h(tl)) —0 (hN( 1))| < K*|h(t1) — hy(t1)]-

Using the inequality |h(t1) — hn(t1)] < [h(t1) — h(t1)| + |R(t1) — RY (t1)] + [hY (t1) — b (t1)], the
Holder inequality and Lemma 7 lead to

L[ n(N) 1 1
EaHQ?H < K (Ngj\[ + 5]2\[ +£N(—_a*)g> .

Upper bound for E,[|[xy — Wy|] Putting together all the bounds for Q;, j = 1,...,7
we obtain
n(N)
N

sup Eo[[xy — Wyl] < K { (1€N1)n + &N
a€®1 N ax’ 2

n(jifV));+§iN}

for some positive constant K. Thanks to (58),

P,)

K(P.

XN

71 7]+€N

Y =
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which is (18). Assume now that n(N) = N7 with v € (0, %) in order to prove (19) and (20).
Choosing n = 2“*7 , (18) becomes

K(Pey, P) < < e Yioe N

XN

7N7/4\/— (62)
hence (19). Writing [ = f |h(t)—h(to)|?dt, we deduce from the equality Ty = fNXN‘f‘ ( !
that

Po(Ty > q5) = Palxn > 22 — S I)—Pa(xzq—ﬁ—AéN N+P(x>L En I
Ev o 03(t) v 0%(t)

X2 ey T ()
> ]P) ( Q5 gN

= _§N O_Q(tl)I)_H(PXN7P)

(20) then follows from (62), noticing that 0 < 3 and that y has a symmetric distribution m

b
Remark: If - [(h(t) — h(ty))dt = 0 and lim (?_(Niy, =0, then Wy = 0. Moreover
a N—+4oco N

n(N N). 1
VL@ + @ Qs G @rl < Kyl g Mg (U,
and lim &(Q1+ Qs + Qs + Qs + Q1) 2 0. Furthermore,
1 b
Jim Q.= Jim / it~ hiofar = o= [ o a(o)
and

. . 7 2 d
Jim Q= Tim E[R(to) - W (to) P L o (alte))| 2P

where Z ~ N(0,1). Consequently we have the following convergence in distribution

L [ 2e®) ,  oPlalt)) »
TN_ b—a/|h to’dt—>b_a/a‘ 0’2<a(t1>)dt+0'

Proof of theorem 3  Recall that {5 = /n(N)(I"(1) 4+ log N) and for ¢t € [a,b], Wy (t)
Env(hn(t) — h(t)). From the definition (14) of Ty, we have

Ty = / W(t) — Walto) + Ex(h(t) — h(to)) .
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b
Therefore for any = > 0 and o € Oy, writing [ = bL [ 1h h(to)|dt, we compute

b

: /IWN(t) — Wi(to) + Ex(h(t) = h(to))ldt < (z]|0®]l)"/?

b—a

IP)04(7—‘N S :L') S ]P)oz

a

b
<P, (5N1 < KVT+ ﬁ/ W (t) — WN(t0)|dt)

(efo < SVIT f:|WN(t>—WN(to>\dt>

IN

=P,
P, <65N1 < KVEIWN ()l g7ta ff|WN<t>|dt) .

The Markov inequality combined with the Holder inequality yields

Pu(Ti < @) < eFVae 68T (B, @) (B, forts L 2mnow))

and the Jensen inequality leads to

1/2

b
P, (Ty < z) < fVEe=tn! (Ea[e2|WN(to)\])1/2 (b 1 / E,[e2WV® ]dt)
“a ),

The inequality (21) is finally deduced from (28) m
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