%0 Journal Article %T Lattice defects induce microtubule self-renewal %+ CytoMorphoLab %+ Institut de Génétique et Développement de Rennes (IGDR) %+ Centre de recherche en Biologie cellulaire de Montpellier (CRBM) %+ Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy) %A Schaedel, L. %A Triclin, S. %A Chrétien, Denis %A Abrieu, Ariane %A Aumeier, C. %A Gaillard, J. %A Blanchoin, L. %A Théry, M. %A John, Karin %Z French National Research Agency (ANR) ANR-16-CE11-0017-01 ANR-12-BSV5-0004-01 ANR-14-CE09-0014-02 ANR-18-CE13-0001; Human Frontier Science Program RGY0088; European Research Council (ERC) 771599 741773 %< avec comité de lecture %@ 1745-2473 %J Nature Physics %I Nature Publishing Group %V 15 %N 8 %P 830–838 %8 2019-12-20 %D 2019 %R 10.1038/s41567-019-0542-4 %M 31867047 %K Dissipative dynamics %K Defects %K Lattice vibrations %K Dynamics %K Structural defect %K Lattice structures %K Thermal forces %K Microtubules %K Model mechanisms %K Passive materials %K Self renewal %Z Life Sciences [q-bio]Journal articles %X Microtubules are dynamic polymers, which grow and shrink by addition and removal of tubulin dimers at their extremities. Within the microtubule shaft, dimers adopt a densely packed and highly ordered crystal-like lattice structure, which is generally not considered to be dynamic. Here, we report that thermal forces are sufficient to remodel the microtubule shaft, despite its apparent stability. Our combined experimental data and numerical simulations on lattice dynamics and structure suggest that dimers can spontaneously leave and be incorporated into the lattice at structural defects. We propose a model mechanism, where the lattice dynamics is initiated via a passive breathing mechanism at dislocations, which are frequent in rapidly growing microtubules. These results show that we may need to extend the concept of dissipative dynamics, previously established for microtubule extremities, to the entire shaft, instead of considering it as a passive material. %G English %2 https://univ-rennes.hal.science/hal-02181481/document %2 https://univ-rennes.hal.science/hal-02181481/file/Schaedel%20-%20Nature%20Physics.pdf %L hal-02181481 %U https://univ-rennes.hal.science/hal-02181481 %~ CEA %~ UNIV-RENNES1 %~ UGA %~ CNRS %~ INRA %~ CRBM %~ IFR140 %~ HERVETHERY %~ IGDR %~ IRTSV-PCV %~ LIPHY %~ STATS-UR1 %~ IGDR-TIPS %~ UR1-UFR-SVE %~ UR1-HAL %~ UR1-SDV %~ AGREENIUM %~ BS %~ UNIV-MONTPELLIER %~ TEST-UR-CSS %~ UNIV-RENNES %~ BIG %~ IRIG %~ CEA-GRE %~ INRAE %~ TEST-HALCNRS %~ UGA-COMUE %~ ANR %~ UR1-BIO-SA %~ UM-2015-2021