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Reduced-Order Models for Fast Antenna

Characterization
Benjamin Fuchs, Senior Member, IEEE, and Athanasios G. Polimeridis Senior Member, IEEE

Abstract—A reduced order model (ROM) for antenna charac-
terization problems is proposed. It exploits the outer dimensions
of the antenna under test (AUT) and the geometry of the
measurement surface scan and leads to a significant reduction of
the required number of field sampling points and therefore time
to measure antenna radiation patterns. The inputs of the ROM
are the equivalent currents enclosing the AUT and the outputs are
their corresponding radiated fields on the measurement surface.
By performing the singular value decomposition (SVD) of the
radiating operator, we derive the minimal order model of the
system and thereby numerically construct the basis of the fields
radiated by the AUT. The evaluation of the so-reduced model
is expedited by using a discrete empirical interpolation method
(DEIM) that returns the sampling positions of the radiated field.
The approach is tailored to the antenna characterization problem
and specifically the antenna shape and the measurement surface
scan. The proposed methodology is general, it can be easily
adapted to any type of radiating structures and shape of the
field measurement scans. Two experimental results of complex
radiating structures measured in near and far field demonstrate
the interest and potentialities of the approach.

Keywords: antenna measurements, antenna radiation pat-

terns, reduced order systems, non uniform sampling.

I. INTRODUCTION

The aim of model order reduction is to lower the compu-

tational complexity of mathematical models describing real-

life processes. Reduced-order models (ROMs) are typically

used to replace complex systems, e.g. dynamical or control

systems, by a simpler one while preserving the input-output

relationship. In electromagnetics, ROMs have been recently

successfully applied for scattering problems to quickly analyze

the interaction of a scatterer with other scatterers or antennas

[1]–[3]. The idea is to model a scatterer by precomputing

(offline) the response to a set of excitations. The response to

an arbitrary excitation boils down to a weighted summation of

these precomputed responses. For electromagnetic scattering

problems, the ROM can be seen as a generalization of the

spherical waves used for spherical scatterers [4] and shares

some similarities with the characteristic modes approach for

arbitrarily shaped scatterers [5]. The complete methodology

to construct and evaluate ROMs for scattering problems is de-

scribed in [1]. The ROM is built by computing the randomized

singular value decomposition (RSVD) of the interaction matrix

between the radiator and the scatterer. Its evaluation is then

expedited using the discrete interpolation method (DEIM).
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In this paper, we apply the ROM scheme proposed in [1]

and adapt it to antenna characterization problems and more

specifically antenna radiation pattern measurements. The in-

vestigated scenario is represented in Fig. 1. The inputs and

outputs of the ROM are, respectively, the equivalent currents

(Jeq and/or Meq) surrounding the antenna under test (AUT)

on a surface S′ and the radiated near or far field (ENF or EFF)

on a surface S. They are tailored to the antenna measurement

setup at hand since S′ surrounds the AUT and S corresponds

to the measurement surface scan. From this geometry, we

build the matrix that maps any current distribution on S′

to the radiated field on S. We perform the singular value

decomposition (SVD) of this matrix in order to extract a

low rank approximation of the radiation operator and get the

ROM of the antenna characterization problem. The discrete

empirical interpolation method (DEIM) is then applied to

identify the dominant equivalent currents from a reduced

number of measurement points.

The proposed ROM approach enables a fast characterization

of antennas by interpolating their radiated (near or far) field

from a small number of measurement points. It exploits only

readily available data, the outer dimensions of the AUT and

the geometry of the measurement surface scan. This approach

differs radically from previously proposed fast antenna charac-

terization strategies. In [6] the insertion of a-priori information

on the AUT combined to the suitable use of advanced numer-

ical modeling tools enables to achieve an important under-

sampling and therefore speed up the measurement time. In

[7]–[9], the sparse representation of the electromagnetic field

on general purpose basis functions, spherical harmonics, leads

to a significant reduction of the required sampling points and

a reduction of measurement time.

PSfrag replacements
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Fig. 1: Illustration of the antenna characterization problem.

Equivalent electric and/or magnetic currents (Jeq and/or Meq)

are placed on a surface S′ enclosing the antenna under test

(AUT). The near or far field (ENF or EFF) is measured on a

surface S.

Acc
ep

ted
 m

an
us

cri
pt



2

The paper is organized as follows. The antenna characteri-

zation problem is formulated in Section II. The computation of

the ROM and its evaluation are detailed in Section III and IV.

The proposed ROM is applied in Section V to both near and

far field experimental data in order to show its potentialities

and interests.

II. PROBLEM FORMULATION

The electric field radiated by the AUT can be expressed

as a function of electric and/or magnetic equivalent currents

(denoted Jeq and Meq respectively) according to the surface

equivalence theorem [10]. Later, a formulation of the equiv-

alence theorem based on the use of only electric (magnetic)

equivalent currents has been proposed [11]. The electric field,

at a position r on the measurement surface S, is given from

only the equivalent electric currents on S′ by:

E(r) =

∫
S′

GEJ(r|r
′) · Jeq(r

′)dS′ (1)

where GEJ is the electric field free space dyadic Green

function for electric sources. The expression of this dyadic

can be found in many textbooks, for instance in [10]. Note

that these equivalent electric currents Jeq are tangential to the

surface S′.

After a proper discretization of the surfaces S′ and S, the

electric field can be expressed in the following matrix-vector

form:

e = Gjeq (2)

where the vector e is the discretized electric field tangential

to S, the vector jeq gathers the discretized equivalent electric

currents tangential to S′ and G is the radiation matrix.

III. ROM COMPUTATION - NUMERICAL BASIS

GENERATION

The input and output regions of our antenna characterization

problem, S′ and S respectively, are readily available. The

equivalent current surface S′ surrounds the AUT whereas S is

the surface where the field is measured, see Fig. 1. These two

surfaces are distinct which implies that the radiating operator

G in (2) is compact. As a consequence, it is possible to

compute the SVD of G [12]. This matrix can be approximated

with a controlled accuracy by keeping only the singular

vectors associated to the largest singular values and dropping

those below a predefined error tolerance. The radiation matrix

is, in general, not full rank since there are several sets of

current distributions jeq on S′ can generate the same field

e on S. The truncation of the SVD factorization enables to

build a compressed representation, aka. ROM, of our antenna

characterization problem:

G ≈ UΣV† (3)

where only the R largest singular values σr are kept and V†

is the Hermitian matrix of V. The corresponding singular

vectors are the R first columns of U and V, denoted Ur

and Vr, they form the orthonormal basis of the equivalent

current surface S′ and the measurement surface S respectively.

These singular vectors depends on the shape of the surfaces S′

and S, they can be seen as the characteristic modes radiated

by the apertures defined by these two surfaces. The singular

values σr quantify the amount of power that is coupled

from one characteristic mode of S′ to S. This procedure

enables to generate numerically the basis associated to the

characterization problem geometry.

The application of the SVD factorization can be computa-

tionally expensive for large matrices. The radiation matrix G

is large when the surfaces and S and/or S′ are electrically

large. To overcome this limitation and avoid having to form

the full matrix G explicitely, the randomized SVD (RSVD)

algorithm can be used [13]. It enables to obtain a predefined

order approximation of the SVD factorization by taking (only)

a collection of random input vectors (here current distribu-

tions) {Ω1,Ω2, · · · } to estimate the range of G, ie. to span

the range of fields radiated by the AUT. By increasing the

number of random input vectors, the approach is proven to

converge to the SVD [13]. The RSVD algorithm is used to

efficiently compute the leading singular vectors of G and

thereby numerically build the basis vectors of our problem.

Details about the RSVD algorithm are provided in [13].

IV. ROM EVALUATION - SAMPLING POINT

DETERMINATION

The goal of fast antenna characterization is to approximate

the field radiated by the AUT on S from a small number

of field samples. We know that the field e is a weighted

combination of the previously constructed orthonormal basis

formed by R vectors, ie. the columns the matrix Ur:

e ≈ Urα (4)

where α is a vector of complex coefficients (α ∈ CR). The

best approximation of α in the least square sense is α = U†
re.

The length of e, denoted M , is the number of measurement

points that we want as small as possible so as to reduce the

characterization time.

One way to reduce the number of field sampling points from

M to R is to apply the discrete empirical interpolation method

(DEIM) [1], [2], [14], [15]. This algorithm provides, from the

basis Ur ∈ CM×R, a set of R interpolation points er ∈ CR

to determine an approximation of α. The DEIM is explained

and described in [1], it provides a matrix Q that selects R
(among M ) field samples to be measured: er = QTe. The

coefficients α are then:

α = (QTUr)
−1

er (5)

Note that the DEIM is guaranteed to yield an invertible QTUr

as shown in [15]. Finally, the field radiated by the AUT can

be approximated from a small number R of sampling points

as follows:

e ≈ Ur(Q
TUr)

−1

er. (6)

The steps of the DEIM are given in [15].
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V. EXPERIMENTAL VALIDATIONS

The ROM procedure has been experimentally validated to

speed up the characterization in both near and far fields of

many antenna prototypes in various frequency bands. The

examples of two radiating structures are here exposed.

A. Far Field Characterization

The AUT is a reflectarray of 193 cells (see Fig. 2(a)) of

maximum dimension 8.8λ at 12 GHz that radiates a beam

tilted in both planes as shown in 3(a). This antenna has been

designed by Thales Alenia Space in the framework of the

project R3MEMS.

(a) (b)

Fig. 2: (a) Picture of the reflectarray of maximum dimension

8.8λ at 12 GHz. (b) Far field sampling points (total number of

353) selected by the DEIM and distributed on the measurement

surface S (half a sphere).

(a) (b)

(c) (d)

Fig. 3: 3D far field patterns (co- and cross- polarization) of

the reflectarray at 12 GHz: (a,c) measured patterns and (b,d)

patterns reconstructed using the ROM approach from a small

number of sampling points.
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Fig. 4: 2D far field patterns (co- and cross- polarization) of

the reflectarray at 12 GHz in the cutting planes corresponding

to the maximum radiated field.

Equivalent electric currents are placed on a rectangle S′

above the reflectarray aperture with a step size of 0.25λ. The

reference radiation far field is measured with a very dense

sampling (elevation and azimutal step of 0.5 ˚ and 1 ˚ respec-

tively) on half a sphere (see Fig. 3(a,c)).

The RSVD is applied on the radiation matrix and the singular

vectors associated to singular values above σmax/10, which

corresponds to the “knee” in the singular value distribution,

are kept to construct the numerical basis composed of 353

vectors.

The DEIM algorithm is then applied to select the 353 mea-

sured points that are plotted in Fig. 2(b). As a compari-

son, more than 800 measurements points were necessary to

properly characterize the reflectarray radiation pattern with

the sparse spherical harmonics approach proposed in [9].

This significant reduction, and therefore important gain in

measurement time, is made possible because the proposed

approach encompasses information about the geometry (a flat

rectangular aperture) of the AUT. A more accurate description

of the AUT, for instance a surface S′ having the shape of an

hexagon, would enable to even further reduce the number of

required measurement points.

The agreement between the reference and the interpolated far

field is very good despite the very small number of sampling

points, as shown in Fig. 3 and 4. In terms of computation

time, note that the whole procedure including the RSVD and

DEIM takes less than 5s with a biprocessor 2.79 GHz-CPU

64 GB-RAM Xeon.

B. Near Field Characterization

The AUT is a metal-only metasurface that has been designed

to generate a circular polarization in Ka band. All details about
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Fig. 5: Picture of the circularly polarized metasurface [16] of

diameter 10λ at 32 GHz.
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Fig. 6: Planar near field mappings (left (a,c,e) magnitude and

right (b,d,f) phase) radiated by the metasurface at 32 GHz at a

height of 5 λ. Near field mappings of (top (a,b)) the measured

data, (middle (c,d)) the samples selected by the DEIM and

(bottom (e,f)) the reconstructed field using the ROM approach.

the design and manufacturing of this radiating structure, shown

in Fig. 5, are provided in [16].

Equivalent electric currents are placed on a square surface
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Fig. 7: 2D far field patterns (RHCP and LHCP) of the

metasurface at 32 GHz derived from the measured near field

and the near field reconstructed using the ROM approach. (a,b)

show the RHCP component for the planes φ = 0 and φ = π/2
respectively. (c,d) show the LHCP component for the planes

φ = 0 and φ = π/2 respectively. The vertical dashed lines

represent the limits of validity of the far field reconstruction.

(a) (b)

(c) (d)

Fig. 8: 3D far field patterns (RHCP and LHCP) of the

metasurface at 32 GHz derived from the measured near field

(a,c) and the reconstructed near field (b,d).

S′ of side 10λ above the metasurface with a step size of

0.25λ. The metasurface is measured each 0.5λ at 32 GHz
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on a square surface S of side 20λ located at a height of 5λ.

Considering the geometry of S and S′, the far field patterns

can be derived accurately from the near field measurements

for angles between ±45˚.

The RSVD is applied and the singular values above σmax/10
3

are kept to construct the numerical basis that is composed of

358 vectors. The DEIM algorithm is applied to select only 358

measurement points, see Fig. 6(c,d). The number of near field

points then drops from 1681 (with a standard 0.5λ step) to 358.

Considering a regular distribution over the near field surface,

it means that the average distance between the field samples

is now of only 1.1λ. With our near field scanner, it takes

1h02min to measure both components of the field with a 0.5λ
sampling step (Fig. 7(a,b)) whereas only 24min are necessary

to collect the 358 selected measurement points (Fig. 7(c,d)).

It means that a reduction of 60% of the field acquisition time

is achieved in this case. The computation time of the whole

procedure, RSVD and DEIM, takes less than 8s.

To assess the proposed ROM procedure, we reconstruct the

near field radiated by the metasurface from selected mea-

surements points and compare it to the measured complex

near field. The mappings of the near field, magnitude and

phase, are shown in Fig. 6(a,d) and (c,f) respectively. They

are in very good agreement. To better estimate the quality

of the field reconstruction from the ROM procedure, we

derive the far field and, more specifically, right and left hand

circular polarizations, denoted RHCP and LHCP respectively.

An excellent agreement is obtained between the measured and

reconstructed far field as shown in Fig. 7 and 8 despite the

coarse near field sampling which validates the proposed ROM

procedure.

VI. CONCLUSION

A reduced order model (ROM) is proposed for antenna

characterization problems enabling a significant acceleration

of antenna radiation pattern measurements. The AUT is en-

closed by equivalent currents and the operator that maps these

currents to the radiated field on the measurement surface is

built. By computing the RSVD of this operator and keeping

only the leading singular vectors, the ROM and specifically

the orthormal basis tailored to our antenna characterization

problem is constructed numerically. Note that the left and right

singular vectors can be seen as the characteristics modes of the

AUT and the measurement surface, respectively, whereas the

singular values represent the coupling between these modes.

The DEIM is then applied to select a small number of field

sampling points from which the field radiated by the AUT

can be properly interpolated. Two complex radiating structures

have been characterized to demonstrate the efficiency and

potentialities of the proposed approach. It has been found that

the required number of sampling points, both for near and far

field measurement configurations, can be significantly reduced

as compared to previously proposed antenna characterization

strategy. The ROM concept exploits only readily available

information about the antenna characterization, the outer di-

mensions of the AUT and the measurement surface geometry.

It is directly applicable to any kind of radiating structures and

geometry of measurement scans and works both for near and

far field characterization. Our procedure paves the way to a

more efficient use of antenna near and far field measurement

facilities.
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