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Abstract 

Why can hosts coexist with conspecifics or phylogenetically proximate neighbours despite sharing 

specialist enemies? Do the hosts evolve increased enemy resistance? If so, does this have costs in 

terms of climatic-stress resistance, or in such neighbourhoods does climatic-stress select for 

resistances that are multifunctional against climate and enemies? We studied oak (Quercus petraea) 

descendants from provenances of contrasting phylogenetic neighbourhoods and climates in a 25-

year-old common garden. We found that descendants from conspecific or phylogenetically 

proximate neighbourhoods had the toughest leaves and fewest leaf miners, but no reduction in 

climatic-stress resistance. Descendants from such neighbourhoods under cold or dry climates had 

the highest flavonol and anthocyanin levels, and the thickest leaves. Overall, populations facing 

phylogenetically proximate neighbours can rapidly evolve herbivore resistance, without cost to 

climatic-stress resistance, but possibly facilitating resistance against cold and drought via 

multifunctional traits. Microevolution might hence facilitate ecological coexistence of close relatives 

and thereby macroevolutionary conservatism of niches.  
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Introduction 

Coexistence among conspecific or phylogenetically proximate plants (“phylogenetically proximate” 

from here on) has been suggested to be difficult due to increased herbivore pressure, but plant 

populations might respond to such coexistence by evolving increased herbivore resistance. 

Specifically, individuals of phylogenetically proximate plant species tend to share similar traits (Burns 

& Strauss 2011; Peterson 2011; Violle et al. 2011) and can be attacked by the same herbivore species 

(Brändle & Brandl 2006). This effect of phylogenetic proximity on herbivory is likely to be strongest 

in highly specialized herbivores (Nyman et al. 2006, Vialatte et al. 2010). Consequently, in 

phylogenetically proximate neighbourhoods, a focal host plant could be attacked by the herbivores 

of its neighbours, increasing  herbivory on the focal plant (Yguel et al. 2011). It has been suggested 

that such increased herbivore pressure prevents coexistence of phylogenetically proximate 

individuals and leads to coexistence among phylogenetically distant species (Janzen 1970; Liu et al. 

2012; we use the term “coexistence” sensu largo, i.e. including coexistence with conspecifics, Jiang 

et al. 2018). However, such neighbourhoods might also select for increased herbivore resistance. In 

phylogenetically proximate neighbourhoods, more resistant plants will survive better, have more 

chances to reach maturity and reproduce more, leading to a higher fitness than non-resistant plants. 

Plant resistances are often genetically determined and hence heritable, e.g. levels of flavonoids or 

anthocyanins or leaf morphology (e.g. Stevens & Lindroth 2005; Johnson et al. 2009). Overall, a 

phylogenetically proximate neighbourhood should select for genotypes that are resistant against 

herbivores, in particular against specialist herbivores. These selection pressures are particularly 

powerful in trees (Ersoz et al. 2010), where natural selection can shift frequencies of traits across a 

population within a fraction of a generation time (even if selection pressures might change even 

more rapidly, Rellstab et al. 2016). This rapid shift of the frequencies of traits is possible due to large 

population sizes (seeds and seedlings included), 99.9999 % mortality depending on heritable 

resistance traits, and a very high genetic variability among trees and among seeds of each tree (Shaw 

1968; Zanetto & Kremer 1995; Klaper et al. 2001; Petit & Hampe 2006). Overall, our first hypothesis 
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is that tree species are not passively suffering from increased pressure by specialist herbivores in a 

phylogenetically proximate neighbourhood, but rather local populations are adapting to herbivory as 

a result of selection for herbivore resistance (Fig. 1).  

If phylogenetically proximate neighbourhoods select for higher herbivore resistances they might 

indirectly select against capacities that are traded off against herbivore resistances such as the 

resistance to extreme climatic conditions. Specifically, resistance against herbivores might invoke 

multiple types of costs for the tree (Baldwin & Hamilton 2000; Koricheva 2002; Siemens et al. 2009). 

Investment in resistance against herbivores might hence be traded off against other capacities of 

trees. For instance, genotypes with increased energy investment into traits conferring herbivore 

resistance might have less energy available to invest into traits conferring other functions including 

competitiveness or climatic-stress resistance (Siemens et al. 2012; Alsdurf et al. 2013). Our second 

hypothesis is hence that phylogenetically proximate neighbourhoods indirectly select for reduced 

climatic-stress resistance due to a combination of two mechanisms: direct selection for genotypes of 

increased herbivore resistance (above hypothesis), and a trade-off between herbivore resistance 

and climatic-stress resistance of genotypes (Fig. 1). We expect this indirect selection to involve 

particular resistance traits that are energetically costly to a tree because they are produced in high 

quantities, such as anthocyanins or flavonols or morphological resistance traits (Feeny 1976). 

Alternatively, the same traits might confer resistance against herbivores and climatic-stress and 

selection for these traits by a phylogenetically proximate neighbourhood might either prevent or 

reinforce selection by climatic-stress. Anthocyanins and flavonols, for instance, have been shown to 

increase under both herbivore attack and climatic-stress due to frost or drought (Treutter 2006; 

Korn et al. 2008). Also tough, thick leaves rich in dry matter might resist both herbivores and 

climatic-stress. In such a case, two scenarios are possible. First, the double benefits from such 

multifunctional traits might reduce the costs of adaptation to climatic-stress in a neighbourhood that 

increases herbivore pressure, i.e. a phylogenetically proximate neighbourhood (Fig. 1). Second, the 
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signal of selection by climatic-stress might be obscured by selection of the same traits by herbivore 

pressure, i.e. in a phylogenetically proximate neighbourhood. Simply, climatic-stress is not needed 

for the evolution of such traits in a phylogenetically proximate neighbourhood, and herbivores from 

phylogenetically proximate neighbours are not needed in a stressful climate. To our knowledge, it 

has been little studied how selection due to climatic-stress interacts with selection due to herbivore 

pressure (Suzuki et al. 2014), or even conditions favouring herbivory. Our third hypothesis is hence 

that a phylogenetically proximate neighbourhood either prevents or reinforces the selection by 

climatic-stress for traits promoting climatic-stress resistance.  

We tested the above hypotheses for sessile oak (Quercus petraea), one of the major forest trees 

across much of Europe, often growing with phylogenetically proximate neighbours, and suffering 

from climatic-stress (Cheaib et al. 2012). We used a 25-year common garden experiment from 

provenances of different phylogenetic neighbourhoods and climates (Appendix S1), permitting us to 

identify selection of genotypes in the provenances by characterising phenotypes of descendants in 

the common garden. Specifically, our hypotheses predict: (1) Descendants from provenances 

dominated by phylogenetically proximate neighbours experience little attack from specialist 

herbivores due to high levels of herbivore resistances (Fig. 1). (2) Provenances whose descendants 

have high levels of such herbivore resistances tend to have particularly low climatic-stress 

resistance, and these are the provenances dominated by phylogenetically proximate neighbours (Fig. 

1). (3) Descendants from provenances of particularly harsh climates have tough and thick leaves rich 

in chemical resistance compounds – and the strength of this relationship is modified in provenances 

dominated by phylogenetically proximate neighbours (Fig. 1).  
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Methods 

Sessile oak (Quercus petraea) 

Sessile oaks are among the dominant late-successional tree species in forests across temperate 

Europe, often forming monospecific stands or growing together with other Fagaceae species 

(Ellenberg 1988). Sessile oaks suffer from a diverse and abundant herbivore fauna (Brändle & Brandl 

2001), including both specialist species, such as miners and galls, and less specialised species such as 

ectophageous lepidoptera often capable of using multiple plant genera or even families (Gaston et 

al. 1992; Giffard et al. 2012). Southwood et al. (2004) show that all three groups are abundant on 

oaks, the ectophages mainly in May, galls and mines in August to October. Moreover, sessile oak is 

predicted to strongly suffer from future climate change towards the hot and dry range edge (Cheaib 

et al. 2012), while towards its continental and northern limit, it appears to be limited by cold and 

long winters (Sáenz-Romero et al. 2017). Vulnerability of a genotype to herbivores should be visible 

from increased damage, vulnerability to cold and long winters or hot and dry summers from a late 

bud burst, or from bud burst or growth that strongly responds to changes in ambient climate, as 

detailed below. Traits that may confer protection from herbivores, frost, heat or drought include 

leaves that are thick or tough, or rich in dry matter, in anthocyanins, flavonols, or tannins (Thomas et 

al. 2002; Cornelissen 2006; Korn et al. 2008; Nakabayashi et al. 2013).  

 

The provenance experiment 

We profited from a common garden experiment created by the French National Institute for 

Agricultural Research (INRA) in 1990 (Ducousso et al. 1996, Sinclair et al. 2015) and described in 

Appendix S2. We used phylogenetic distances in Yguel et al. (2011, details in Appendix S2) multiplied 

by the relative abundance of each trees species in each provenance (equivalent to abundance 

weighting in phylogenetic diversity measures) resulting in a gradient from zero to 48 million years. 
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We note that phylogenetic distance to Q. petraea does not always equal to phylogenetic diversity of 

the forest. For instance, a forest composed of 90% of Q. petraea and 10% Fagus sylvatica has 

identical phylogenetic diversity but much lower phylogenetic distance to Q. petraea than a forest of 

the inverse composition. We also characterised provenances by annual minimum and maximum 

temperatures and summer hydric deficit (Appendix S2).We selected 25 provenances, maximizing the 

variation in phylogenetic distance, while minimizing the geographic distance, hence mostly choosing 

pairs of provenances with contrasting phylogenetic distance that were geographically close. Also, in 

the common garden, we sampled trees from different provenances in spatial proximity. Each 

provenance is a replicate along a gradient of phylogenetic distances of parental neighbourhoods and 

parental climate, and trees were averaged within provenances to avoid pseudoreplication. 

 

Sampling 

In the common garden we sampled leaves from two trees from each of 21 provenances, and one 

tree from each of the remaining 4 provenances. Sampling was done in October 2015. We harvested 

leaves from branches of intermediate height of about 7-9 m. From each tree, we stored 40 leaves in 

a freezer at minus 18°C, and dried 50 flat leaves at ambient room temperature.  

 

Measurements of herbivory 

We assessed herbivory, using frozen leaves out of which we randomly selected 15 to 30 (variation 

imposed by technical constraints). As in Giffard et al. (2012), we discriminated three types of 

herbivory based on the feeding guild: (i) galls (ii) mines, i.e. galleries formed between the upper and 

the lower epidermis by insect larvae, and (iii) ectophagy, i.e. the partial or complete loss of leaf 

including epidermis. To quantify herbivory we first approximately quantified the surface of the leaf 

prior to damage by reconstructing the initial leaf shape before herbivory on a photocopy of the leaf. 
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We traced the drawing on a grid of points of 1x1cm² (Yguel et al. 2011). Then, we laid the grid on the 

leaf to quantify the area lost through ectophagy or leaf mines. Throughout, “area” was the number 

of points covering a given damaged or undamaged part of the leaf. We also counted the number of 

galls and leaf mines. For each leaf we calculated (i) the density of galls per cm² (ii) the proportion of 

area damaged by leaf mines, and (iii) the proportion of area damaged by ectophagy (we note that 

relationships observed for proportion of mined surface were consistent with numbers of mines per 

surface and average size of mines – the mined proportion of leaf surface integrates mine abundance 

and mine growth, appendix S3). 

 

Proxies of climatic resistance  

Climate is widely considered as a major control of the budburst of trees (Menzel 2000; Morin et al. 

2010). Genotypes that are more resistant to cold winter temperatures burst buds earlier. Moreover, 

such resistant genotypes should also burst buds more independently of the ambient climate, 

resulting in low variation of budburst across the four common gardens. We thus used the budburst 

advancement, and coefficient of variation (CV) of budburst advancement across the four common 

gardens, as proxies of climatic-stress resistance. Budburst was recorded on a 0-5 ordinal scale where 

0 is a dormant bud and 5 is a fully open bud (details in Sinclair et al. 2015, similar approaches in 

Crawley & Akhteruzzaman 1988; Tack et al. 2010). Budburst was surveyed already in 1995, but 

results were still applicable as relative budburst-rank of individual oak trees remains constant across 

years (Koenig et al. 2012). We calculated the CV of budburst for each provenance as the standard 

deviation of the budburst among the four common gardens divided by the mean.  Climate is also 

considered to affect growth. Genotypes that are more resistant to climate grow independently of 

the ambient regional climate (Thomas et al. 2002). Growth was recorded as the height of trees  after 

10 years (starting from seeds) within each common garden in 2001, and we calculated the CV of 

growth across common gardens. 
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Measurements of leaf traits 

We measured leaf chemical traits in the field. We measured an index of anthocyanins, flavonols and 

nitrogen status with an optical sensor based on the absorbance proprieties contained in the 

epidermis (Dualex 4 Force A; Louis et al. 2009; Cerovic et al. 2012). These measures are non-

destructive and much more rapid than quantifying the within-leaf concentrations, but nevertheless 

strongly correlated to within-leaf concentrations (Goulas et al. 2004). Moreover, anthocyanins and 

flavonols reflect well overall polyphenol concentrations under comparable conditions (Scogings 

2014). We measured three leaves per tree, between leaf veins on both leaf faces. 

We measured leaf morphological traits in the laboratory. We assessed leaf thickness on four 

randomly selected leaves among the leaves studied for herbivory, i.e. using material that had been 

deep-frozen. We used a precision calliper (Thickness gauge glorythai, model number: BY01, Shantou, 

China). For each leaf, we measured the thickness at eight points between the main veins as 

recommended by Pérez-Harguindeguy et al. (2013). We averaged values per leaf, per tree and per 

provenance.  

To assess leaf toughness we randomly selected five leaves per tree. Because Pérez-Harguindeguy et 

al. (2013) discourage the use of frozen leaves we used dried leaves which we rehydrated by letting 

them soak for 24 hours in tap water. Once rehydrated, we used a durometer to measure the 

resistance to punching (ATG-50 Dial Tension Gauge Gram Force Meter Dual point 50 g, Wenzhou, 

China) at eight points per leaf between the main ribs. Again, we averaged values per leaf, tree, and 

provenance. 

To asses leaf dry matter content (LDMC) we used the five rehydrated leaves per tree having served 

for toughness measurements. We weighed them together, dried to weight-constancy during 48 

hours in an oven at a temperature of 65 ° C and then reweighted to obtain dry weight (Pérez-
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Harguindeguy et al. 2013). We calculated the LDMC dividing the dry weight by the wet weight of the 

five leaves. Then we averaged the LDMC across trees within provenances. 

 

Statistical analyses 

Throughout our analyses, information on descendants in the common garden was averaged within 

provenances. For our analyses, except for the exploratory analyses, we did corrections for multiple 

comparisons using the method of the false discovery rate, following Benjamini & Hochberg (1995), 

applied to each of the four groups of dependent variables (pressure by specialist herbivores, 

pressure by generalist enemies, morphological resistances, or chemical resistances).  

 

Exploratory analyses 

Soil types in provenances might influence phylogenetic distance of neighbourhoods, and select for 

different capacities of nitrogen acquisition. We therefore checked if the soil type of the provenances 

had an effect on leaf nitrogen status of the descendants or on the phylogenetic distance of the 

provenance neighbourhood. As there was no effect of soil type and as soil types were only known 

for 19 provenances we did not integrate soil type into our below models (Appendix S4).  

Our measure of phylogenetic distance of the provenance neighbourhood is dependent on the 

abundance of different tree taxa in the provenances. We therefore checked with simple regressions 

the effect of abundances of individual taxa in the provenances on each variable of herbivory or 

herbivore resistances. We found that taxon abundances were always less significant than 

phylogenetic distance (Appendix S5). We hence used only phylogenetic distances in our models. 
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Relationships between the phylogenetic distance of provenance neighbourhoods and the herbivory or 

resistances against herbivores of descendants from these provenances 

We performed multiple regressions to study the effect of phylogenetic distance of neighbourhood 

on herbivory or traits related to herbivore resistances (leaf toughness, leaf thickness, LDMC, 

anthocyanins and flavonols). We took into account multiple co-variables that might relate to 

phylogenetic distance in the provenance or nutritional quality of the descendants for herbivores: 

annual minimum and maximum temperatures, and summer hydric deficit in the provenances, 

budburst and the leaf nitrogen status of the descendants (Crawley & Akhteruzzaman 1988; 

Minkenberg & Ottenheim 1990). 

 

Relationships between resistance against herbivores and climatic-stress resistance 

We performed multiple regressions to study the effect of herbivore resistance (low proportion of 

ectophagy, low gall density, low proportion of leaf mines, leaf toughness, leaf thickness, LDMC, 

anthocyanins and flavonols) on climatic-stress resistance (bud-burst advancement, CVs of bud-burst 

and growth).  We used leaf nitrogen status as a co-variable to avoid bias due to differences of 

nutrient availability for descendants from different provenances, as suggested by Koricheva (2002).   

 

Relationships between phylogenetic distance of provenance neighbourhoods and climatic-stress 

resistance or resistance-related traits 

We performed multiple regressions to study the effect of phylogenetic neighbourhood on climatic-

stress resistance of descendants. We took into account the annual minimum and maximum 

temperature, summer hydric deficit in the provenances, and leaf nitrogen status of the descendants 

in the common garden as co-variables as explained before. 
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We performed multiple regressions to study the effect of phylogenetic neighbourhood and climate 

in the provenances, and the interaction between both, on traits potentially increasing climatic-stress 

resistance (anthocyanins, flavonols, leaf toughness, leaf thickness and LDMC), using the 

advancement of budburst and leaf nitrogen status as a co-variables as before. Again, we included all 

three climatic variables into the model, together with corresponding interaction term. In order to 

not overload the model we applied a selection of the variables using the R function “step()”. This 

function uses a stepwise selection procedure, based on Akaike Information Criterion (Burnham & 

Anderson 2002). A positive interaction means that descendants from climatically stressful 

provenances have higher levels of a resistance-trait if neighbourhoods in these provenances are 

phylogenetically distant. Finally, we explored the indirect effect of phylogenetic neighbourhood on 

climatic-stress resistance mediated by resistance traits, using techniques from pathway analyses. 

This indirect effect is a compound path composed of two direct paths. Direct paths are usually 

characterised by standardized regression coefficients but these coefficients are inflated in models 

with interaction terms due to inevitable multicollinearity (Fletcher 2012). As t-values are not inflated 

(Friedrich 1982) we used them to quantify for each direct path its explained variance Pearson R² (as 

in Rosenthal 1991), and the compound paths as the product of the R² of the two direct paths. We 

applied the same procedure for the indirect effects of the interactions between phylogenetic 

neighbourhood and provenance climate on climatic-stress resistance mediated by resistance traits. 

We focused on explaining the climatic-stress resistance that was most strongly related to resistance 

traits, the coefficient of variation of budburst. 

 

All statistical analyses were performed using R version 3.4.1. We verified assumptions of normality 

and variance homogeneity as follows. We identified residual outliers graphically checking for the 

normality of the residuals with the QQ plots and the weight of the residuals with the Cook’s 

distance. A maximum of three outliers were excluded per analysis. 
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Results 

Descendants from phylogenetically proximate neighbourhoods had increased resistances 

against leaf miners 

Proportion of leaf-mines was highest in descendants from provenances with phylogenetically distant 

neighbourhoods but independent of climate. Attack by galls was independent of parental 

neighbourhood but highest in descendants from warm climates. Proportion of ectophagy was 

independent of parental environment (Tab. 1 and Fig. 2A). Leaves were softest in descendants from 

phylogenetically distant neighbourhoods and mildest temperatures (Tab. 1 and Fig. 2B). 

Consistently, soft leaves had particularly high proportion of leaf mines (T=-2.146, p=0.0466, 

adjustedR²=0.20, df=17, same co-variables as in above models). Leaves tended to be thinnest and 

poorest in dry matter in descendants from mildest temperatures. Anthocyanins or flavonols did not 

depend on parental environment (Tab. 1). Note that the effect of phylogenetic distance on 

proportion of leaf-mines might be driven by the phylogenetic distance of the heterospecifics: this 

effect was maintained after including conspecific abundance into the model (which only had a weak 

effect; Appendix S6). In contrast, the effect of phylogenetic distance on leaf toughness might be 

driven by both heterospecific distance and conspecific abundance: taken into account together 

these variables showed roughly similar, non-significant, effects (Appendix S6). 

Resistances against leaf miners did not relate to climatic-stress resistance 

Descendants with advanced budburst within the studied common garden, or with constant budburst 

across common gardens, had low gall density (Tab. 2, Fig. S7A and B). No relationships were 

observed for climatic-stress resistance as inferred from among-common-garden CV of growth of 

descendants, or for physical or chemical resistances, or the proportion of leaf mines (Tab. 2). 
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Descendants from phylogenetically proximate neighbourhood were no less resistant to 

climatic-stress than descendants from other neighbourhoods 

The phylogenetic distance of the parental neighbourhood had no effect on the budburst 

advancement (T=0.598, p=0.557, adjusted R²=0.08, df=18), the CV of budburst (T=-0.178, p=0.861, 

adjusted R²=0.47, df=17) or the CV of growth (T=0.417, p=0.682, adjusted R²=-0.08, df=18), nor did it 

change the relationship between temperature extremes in provenances and proxies of climatic-

stress resistance (interaction terms in Appendix S8).  

 

A phylogenetically proximate neighbourhood reinforces the selection by harsh climates on 

anthocyanins, flavonols and leaf thickness. 

We observed significant interactions between phylogenetic distance of the parental neighbourhood 

and the parental climate on anthocyanins, flavonols and leaf thickness (Tab. 3). Specifically, stress 

due to high summer hydric deficit corresponded to an increase of anthocyanins concentration and 

leaf thickness of descendants from phylogenetically proximate but not distant neighbourhoods (Tab. 

3, Fig. 3A and C). Stress due to low minimum annual temperatures corresponded to a strong 

increase of flavonols concentration and leaf thickness of descendants from phylogenetically 

proximate but not distant neighbourhoods (Tab. 3, Fig. 3B and D), albeit the effect on flavonols 

became marginally significant after correction for false discovery rate. Compound paths never 

exceeded R²=0.018 suggesting no mediation by resistance traits between provenance 

neighbourhoods and climatic-stress resistance of descendants. (Note that direct effects of 

provenance climate on climatic-stress resistance did exist, Appendix S8).   Acc
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Discussion 

Overall, we found that descendants from phylogenetically proximate neighbourhoods differ from 

descendants from phylogenetically distant neighbourhoods in multiple ways. We acknowledge that 

our study has a number of limitations. First, there were no gymnosperms in the provenances used 

for this study. Castagneyrol et al. (2014) show that specialist-herbivore abundance on angiosperms 

starts to decrease when the phylogenetic distance of the neighbourhood differs from zero, while 

generalist abundance remains constant until the phylogenetic neighbourhood includes 

gymnosperms. Our results are hence appropriate mainly for specialist herbivores. Secondly, we do 

not have information about the pressure of herbivores in the provenances. Explaining herbivore 

resistances of a genotype from a phylogenetically proximate neighbourhood by herbivore pressure 

remains an interpretation. Such interpretation is a plausible one given that herbivore pressure does 

reflect phylogenetic composition of a forest (Brändle & Brandl 2006; Nyman et al. 2006; Yguel et al. 

2011). Moreover, we inferred climatic-stress resistance from a limited number of proxies, i.e. 

budburst and growth and their coefficients of variation, proxies that certainly do not reflect all 

aspects of climatic-stress resistance. Nevertheless, budburst and growth are sensitive to factors 

limiting the distributional range of our study species, i.e. extreme winter and summer temperatures 

and drought (Menzel 2000; Morin et al. 2010). Finally, a trade-off between resistance against 

climatic-stress and against herbivores might be masked by other trade-offs such as between 

resistance to climatic-stress and pathogens. However, in our study, visible fungal pathogens covered 

only less than one percent of the leaves. A trade-off between resistance against bacteria and against 

climatic-stress cannot be excluded but should hide a trade-off between herbivore resistances and 

climatic-stress resistance only if bacteria attack oaks mainly in a phylogenetically distant 

neighbourhood, which should be tested in future studies. 

Coexistence with phylogenetically proximate neighbours selects for genotypes that are 

morphologically resistant against one type of specialist herbivore. We had hypothesized that plants 

Acc
ep

ted
 m

an
us

cri
pt



16 
 

from phylogenetically proximate neighbourhoods have evolved increased herbivore resistance 

because of the increased pressure of herbivores in such neighbourhood (Yguel et al. 2011).  

Consistent with the hypothesis we found that genotypes from such neighbourhoods are particularly 

resistant against leaf miners. Gaston et al. (1992) show that leaf miners are mostly specialists, 

probably because they are internal feeders and hence have to adapt to the specific leaf morphology 

and chemistry of their host plant (Cornell 1989). A major resistance against several miner species are 

tough leaves: tough leaves prevent adult females from piercing the leaf epidermis to oviposit their 

egg inside the leaf, or they prevent larvae that hatch on the leaf surface from entering inside the 

leaf. Cornelissen (2006) indeed shows that tougher leaves exhibited lower density of leaf miners. 

Consistently, we found that genotypes from phylogenetically proximate neighbourhoods have 

tougher leaves and that tough leaves are particularly little attacked by leaf miners. Equally 

consistently, we found that genotypes from phylogenetically proximate neighbourhoods are not 

particularly strongly resistant against ectophages, being usually less specialized due to their external 

feeding mode (Gaston et al. 1992). Low specialization permits the use of relatively distantly related 

host plants across Angiosperms, and consistent with that, Grandez-Rios et al. (2015) show that 

ectophages are not affected by the phylogenetic neighbourhood. Selection for plant defences 

against ectophages should hence not differ among phylogenetic neighbourhoods. Inconsistent with 

the hypothesis we found that genotypes from phylogenetically proximate neighbourhoods are not 

particularly resistant against another type of specialist enemies: galls (itself consistent with Yguel et 

al. [2014] showing that gall abundance does not depend on host phylogenetic isolation). Possibly, 

any effect of parental neighbourhood is overridden by the observed effect of parental temperatures 

on gall resistance. Finally, inconsistent with the hypothesis we found that genotypes from 

phylogenetically proximate neighbourhoods are not particularly resistant in terms of chemical 

compounds. Neilson et al. (2013) have suggested that chemical compounds are multifunctional - in 

the absence of herbivores they might serve other purposes than herbivore resistance. Herbivory in a 
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phylogenetically proximate neighbourhood hence might not increase selection for the chemical 

compounds. 

Coexistence with phylogenetically proximate neighbours does not indirectly select against climatic-

stress resistance because resistances against specialist herbivores are not traded off against climatic-

stress resistance. We had hypothesized that if phylogenetically proximate neighbourhoods select for 

higher herbivore resistances they might indirectly select against capacities that are traded off against 

herbivore resistances such as climatic-stress resistance. The first part of this hypothesis, on selection 

of herbivore resistances, is equal to hypothesis 1 and has been treated before. We will here discuss 

the second and third part, i.e. a trade-off between resistances against herbivores and climatic-stress, 

and an indirect selection against climatic-stress resistance by phylogenetically proximate 

neighbourhoods. Consistent with the trade-off part of the hypothesis we found a tendency of 

delayed budburst in trees that are more resistant against ectophages, albeit other proxies of climate 

resistance did not respond. Delayed budburst represents an opportunity cost by delaying 

photosynthesis (Koricheva 2002). However, this trade-off might not lead to an indirect selection 

against climatic-stress resistance in a phylogenetically proximate neighbourhood as such 

neighbourhood did not select for increased resistance against ectophages. Inconsistent with the 

trade-off part of the hypothesis we found no negative relationships between resistances against leaf 

miners, including leaf toughness, and climatic-stress resistance. There might be no trade-off because 

resistance to leaf miners and to climatic-stress occur at different moments: Leaf toughness – a 

resistance against leaf miners - develops in a climatically favourable period for oaks in spring and in 

early summer. In contrast, climatic-stress limiting budburst operates in late winter. Oaks might 

therefore invest into the resistance against leaf miners in spring and summer and later on invest in 

climatic-stress resistance, without any direct trade-off among them. In addition, inconsistent with 

the trade-off part of the hypothesis we found no trade-off between chemical compounds and 

climatic-stress resistance. Neilson and al. (2013) have suggested that the multifunctionality of 

chemical resistances such as anthocyanins can offset the cost of plant chemical resistance. Also, 
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opposite to the trade-off part of the hypothesis, we found a positive relationship between 

resistances against galls and against climatic-stress in terms of early budburst. Crawley & 

Akhteruzzaman (1988) have shown that some gall species prefer oaks that burst buds late, possibly 

because such oaks are more favourable for adult female gall wasps. Finally, we found no evidence in 

favour of the third part of the hypothesis, i.e. an indirect selection against climatic-stress resistance 

in phylogenetically proximate neighbourhoods. This is consistent with the absence of trade-offs 

between resistances against miners and against climatic-stress, and with the absence of selection for 

resistance against ectophages in such neighbourhoods.  

Coexistence in phylogenetically proximate neighbours can reinforce the selection by climate for 

biochemical compounds and one morphological trait, possibly reflecting increased pressure from 

herbivores. We had hypothesized that in phylogenetically proximate neighbourhoods, the increased 

herbivore pressure can reinforce or prevent the selection pressure by climatic-stress on particular 

traits conferring multiple resistances. As mentioned above, we found no supporting results for the 

“prevent” version of the hypothesis. Consistent with the “reinforce” version of the hypothesis we 

found that genotypes from cold-winter provenances have high levels of flavonols and thick leaves 

(known to increase frost resistance, Korn et al. 2008; González-Zurdo et al. 2016) - provided that the 

neighbourhood in the provenances was phylogenetically proximate. We found that genotypes from 

dry summer provenances had high levels of anthocyanins and thick leaves (known to increase water 

stress resistance, Chalker-Scott 1999; Ennajeh et al. 2010) – provided that the neighbourhood in the 

provenances was phylogenetically proximate. White (1984) suggests that climatic-stress increases 

the availability of nitrogen in leaves of stressed plants, which will increase herbivory and reinforce 

their selection pressure on plants. Resistance traits against cold stress and drought stress should 

hence be particularly important in plants exposed to high enemy pressure in a phylogenetically 

proximate neighbourhood. 
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Our results may have implications for understanding coexistence among phylogenetically proximate 

individuals (Prinzing et al. 2017, Gerhold et al. 2018). It has been suggested that coexistence of 

phylogenetically proximate individuals is prevented by increased herbivore pressure and 

competition, leading to coexistence among phylogenetically distant species (Janzen 1970; Webb et 

al. 2002; Liu et al. 2012). Our study shows that another response to coexistence among 

phylogenetically proximate individuals might be an adaptation to increased herbivore pressure. This 

adaptation to neighbourhoods seems to be no less important than adaptation to climates (Tab. 1), 

and seems to come without costs, at least in terms of climatic tolerance. We might hence 

hypothesize that adaptation to phylogenetically proximate neighbours facilitates their coexistence. 

Future studies should try to identify the importance of multifunctionality of chemical compounds 

possibly enabling plants to be jacks‐of‐all‐trades and to coexist among phylogenetically proximate 

individuals. Our results also imply that while the response to coexisting close relatives has no costs 

for climatic-stress resistance, it might change the evolutionary response of one trait to climate. 

Future studies should identify what exactly causes this change, e.g. whether rather the action of 

enemies or of mutualists changes the selection pressure by climate. 
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Tables 

Table 1. Effect of phylogenetic distance of parental neighbourhood and of climate (annual minimum and maximum temperatures, summer hydric deficit) in 

provenances on herbivory and herbivore resistances of oak descendants in the common garden. Linear regressions with co-variables (advancement of 

budburst and leaf nitrogen status of the descendants in the common garden). LDMC= leaf dry matter content. Significant values are in bold (an asterisk 

indicates the p value that stay significant after correction using the false discovery rate). “Proportion” refers to the proportion of the entire leaf surface 

affected by a type of herbivory. Data points are means across descendants within provenances. 

Phylogenetic distance of 
parental neighbourhood 

Tmin Tmax 
Summer hydric 

deficit 

Dependent 
variables 

Adj. R² of 
entire model 

df T p T p T p T p 

Specialist herbivores 

Gall density 0.53 18 0.923 0.3681 1.132 0.2725 2.490 0.0228* -1.282 0.2160 

Proportion of leaf 
mines 

0.57 15 4.005 0.0012* 0.916 0.3743 -1.681 0.1135 -0.807 0.4325 

Generalist herbivores 
Proportion of 
ectophagy 

0.13 16 0.045 0.9643 -0.150 0.8829 0.682 0.5050 -0.705 0.4911 

Chemical compounds 

Anthocyanins 
concentration 

0.41 17 -0.548 0.5907 -1.316 0.2058 0.927 0.3669 0.751 0.4632 

Flavonols 
concentration 

-0.09 16 0.128 0.9001 -1.009 0.3280 -0.397 0.6969 0.911 0.3757 

Morphological traits 

Leaf toughness 0.63 16 -2.832 0.0120* -2.256 0.0384 3.372 0.0039* -0.969 0.3469 

Leaf thickness 0.48 18 -1.716 0.1034 -1.976 0.0637 1.836 0.0829 1.080 0.2943 

LDMC 0.17 17 0.007 0.9948 -1.863 0.0799 0.930 0.3653 0.749 0.4641 
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Table 2.  Effect of herbivory or herbivore resistances of the descendants on their climatic-stress resistance. Climatic-stress resistance is represented by 

advancement of budburst of descendants in the Petite Charnie common garden, coefficient of variation (CV) of budburst advancement and CV of growth across 

four commons gardens. Multiple linear regression analyses accounting for leaf nitrogen status of the descendants in the common garden. LDMC= leaf dry matter 

content. Significant values are in bold (an asterisk indicates the p value that stay significant after correction using the false discovery rate). “Proportion” refers to 

the proportion of the entire leaf surface affected by a type of herbivory. Data points are means across descendants within provenances.   

    Specialist herbivores 
Generalist 
herbivores 

Chemical compounds Morphological traits 

    
Gall 

density 
Proportion of 

leaf mines 
Proportion of 

ectophagy 
Anthocyanins 
concentration 

Flavonols 
concentration 

Leaf toughness Leaf thickness LDMC 

Advancement 
of budburst 

T  -4.083 0.838 2.569 0.039 -0.092 -1.380 -0.883 0.713 

p 0.0005* 0.412 0.0175 0.9690 0.9270 0.1820 0.3874 0.4836 

Adj. R² of 
entire model 

0.42 -0.006 0.27 -0.04 0.06 0.09 -0.005 0.07 

df 21 20 22 21 20 22 21 22 

CV of budburst 

T  5.614 -0.926 -1.453 0.327 -0.798 1.719 0.993 -0.362 

p <0.0001* 0.3660 0.1604 0.7470 0.4342 0.1002 0.3320 0.7211 

Adj. R² of 
entire model 

0.61 0.004 0.13 -0.03 0.10 0.09 0.008 -0.03 

df 22 20 22 21 20 21 21 21 

CV of growth 

T  -0.690 0.251 0.442 0.098 -0.397 -0.478 0.272 -0.379 

p 0.4982 0.8040 0.6630 0.9230 0.6952 0.6373 0.7880 0.7080 

Adj. R² of 
entire model 

-0.01 -0.088 -0.034 -0.07 -0.03 0.05 -0.07 -0.06 

df 20 18 21 21 20 21 21 21 
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Table 3. Effect of phylogenetic distance of parental neighbourhood, the parental climate (summer hydric deficit, annual minimum and maximum 

temperature), and the interaction between them on traits of the descendants conferring resistance against climatic-stress, accounting for the advancement 

of budburst and leaf nitrogen status of the descendants in the common garden. Multiple linear regression analyses across data points that are means across 

descendants within provenances. The variables of the models have been selected by multiple-step AIC procedure. Significant values are in bold (an asterisk 

indicates the p values that stay significant after correction using false discovery rate with α=0.05 and a cross for α=0.1). 

 

  
  

 
Phylo dist Summer hydric deficit 

Summer hydric 
deficit:phylo dist 

Tmax Tmax:phylo dist Tmin Tmin:phylo dist 

C
h
e
m

ic
a
l 
c
o
m

p
o
u
n
d
s
 

Anthocyanins 
concentration 

T  -1.586 2.715 -2.736 0.994 1.718 -3.472  

p  0.133 0.016* 0.015* 0.336 0.106 0.003*  

Adj. R² of entire model 0.65 

df 15 

Flavonols 
concentration 

T 2.052     -1.993 2.190 

p  0.055+     0.062+ 0.042+ 

Adj. R² of entire model 0.19 

df 18 

M
o

rp
h
o
lo

g
ic

a
l 
tr

a
it
s
 

Leaf toughness 

T 0.882 0.0328 -1.563 3.723  -2.068  

p 0.392 0.747 0.139 0.002*  0.056+  

Adj. R² of entire model 0.51 

df 15 

Leaf thickness 

T 3.122 3.787 -3.288 3.068  -4.893 2.741 

p 0.007* 0.002* 0.005* 0.007*  0.0002* 0.014* 

Adj. R² of entire model 0.70 

df 16 

LDMC 

T    4.022  -5.684  

p    0.0008*  0.00002*  

Adj. R² of entire model 0.67 

df 18 
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Figure legends 

Figure 1. Our hypotheses. A conspecific or phylogenetically proximate neighbourhood (broadleaf 

trees as opposed to needle trees) increases pressure by specialist herbivores (caterpillar size) on a 

focal tree (broadleaf tree). Hypothesis 1 states that such neighbourhood selects for increased 

investment into resistance against specialist herbivores (thick arrows towards caterpillars). 

Hypotheses 2 states that traits conferring resistance to herbivores are distinct (red arrows) from 

those conferring resistance to climate (blue arrows), resulting in a trade-off between both (arrow 

size) and an indirect selection against resistance to climatic-stress in a conspecific or phylogenetically 

proximate neighbourhood (bottom graph). Hypothesis 3 suggest that traits are multifunctional and 

confer resistance against both, herbivory and climatic-stress (yellow arrows). In the illustrated case, 

resistance to climatic-stress is less costly in a conspecific or phylogenetically proximate 

neighbourhood as here the resistance trait also serves to resist herbivore pressure, facilitating 

selection by climatic-stress for this multifunctional resistance trait (bottom graph).   

Figure 2. Effect of phylogenetic distance of parental neighbourhood in provenances on (A) the 

proportion of leaf surface covered by leaf mines, and (B) the leaf toughness of the descendants in 

the common garden. Y values give partial residuals, accounting for co-variables (annual minimum 

and maximum temperatures and summer hydric deficit in the provenances, advancement of 

budburst and leaf nitrogen status of the descendants in the common garden), as explained in Tab. 1. 

Data points are means across descendants within provenances. 

Figure 3. Interaction between the phylogenetic distance of the parental neighbourhood and the 

parental climate on traits conferring resistance against climatic-stress. Presented are significant (full 

lines) or marginally significant (dashed lines) interactions after correction for false discovery rate 

from Table 3: phylogenetic distance (below vs above median) x (A) summer hydric deficit affecting 

anthocyanins, (B) minimum annual temperature affecting flavonols, (C) summer hydric deficit 

affecting leaf thickness and (D) minimum annual temperature affecting leaf thickness. The values on 

Y-axis are the partial residuals, i.e. accounting for the advancement of budburst and leaf nitrogen 
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status of the descendants in the common garden, as explained in Tab. 3. Data points are means 

across descendants within provenances.  
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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