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ABSTRACT 

1. Janzen’s hypothesis (1967; American Naturalist) predicts that tropical habitats with

reduced thermal seasonality would select for species with narrow thermal tolerance, thereby 

limiting dispersal among sites of different elevations showing little overlap in temperature. 

These predictions have so far been tested by confronting tropical and temperate mountain 

communities, leaving unresolved the question of their generalization to habitats with low 

thermal seasonality outside the tropics. 

2. We provide the first extension of Janzen’s hypothesis to temperate habitats, by testing for

differences in thermal tolerance and elevational range among congeneric alpine spiders 

(Araneae: Linyphiidae: Troglohyphantes) occurring along a steep gradient of decreasing 

thermal seasonality with increasing cave depth. Using species from the same temperate 

region rather than from distinct biogeographic regions, avoids confounding the effects of 

short- and long-term climatic variability on thermal tolerance and elevational range extent. 

3. Following Jansen’s assumptions, we predicted that cave habitats with low thermal

seasonality would select for narrow thermal tolerance. Also, specialized subterranean 

species would exhibit both narrower elevational range extents and smaller realized thermal 

niche breadths. Initially, we showed that thermal seasonality and the overlap in temperature 

across caves were considerably lower in deep than in shallow cave habitats. Then, we 

measured thermal tolerance and used morphological traits to quantify the degree of 

specialization to subterranean life of eleven spider species. 

4. We found that thermal tolerance decreased with increasing subterranean specialization.

Deep subterranean species reached their critical temperature at 1 to 4 °C above their habitat 

temperature, whereas shallow subterranean species withstood a two-fold larger temperature 

increase. At last, we demonstrated that a species’ elevational range extent and the variation 
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Janzen’s hypothesis is compelling because it brings together the habitat features, the 

physiology, and the dispersal capacity of species, thereby providing a conceptual foundation 

for achieving a mechanistic understanding of diversity patterns across space and 

time . 

of temperature encountered across its range decreased with increasing specialization to 

deep subterranean life. 

5. Our integrative work, being grounded in organismal and habitat measures, represents the

first generalization of Janzen’s framework to caves and provides a conceptual framework to 

disentangle the effect of long-term climate variability on subterranean biodiversity patterns. 

Extending Janzen’s thoughts to a broader range of ecosystems is key to understanding how 

the ecological specialization-dispersal tradeoff may constrain the response of species to 

climate change. 

INTRODUCTION 

Understanding the role of climate in determining species geographical distribution is a pivotal 

research topic in biogeography, macroecology and climate change biology (Deutsch et al., 

2008; Mittelbach et al., 2007; Muñoz & Bodensteiner, 2019; Shah et al., 2017; Sunday, 

Bates, & Dulvy, 2011). Janzen’s mountain passes hypothesis (Janzen, 1967) is a core 

contribution to understand how climatic variability influences a species thermal tolerance 

and, through this, its dispersal and elevational range. This hypothesis was originally 

developed to explain biodiversity patterns in tropical mountains. Janzen began by assuming 

that the degree to which a topographic barrier limited dispersal depends on the temperature 

gradient across that barrier. Then, he assumed that a greater seasonal stability of 

temperature, like in tropical mountains, would select for species with narrow thermal 

tolerance over time. By linking together these two assumptions, he predicted that tropical 

species would have greater difficulty than temperate species to disperse across mountain 

passes, because they would be more likely to encounter unsuitable climates. Consequently, 

Janzen concluded that mountain passes were figuratively “higher” in the tropics. 
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(Ghalambor, Huey, Martin, Tewksbury, & Wang, 2006; Sheldon, Huey, Kaspari, & Sanders, 

2018). Yet, the challenge of comparing thermal tolerance, range size and dispersal ability of 

geographically-distant animal communities occurring in tropical and temperate mountain 

systems emphasizes the difficulty of rigorously testing this framework. Indeed, a 

comprehensive test of Janzen’s hypothesis—i.e. a research tackling simultaneously all of its 

empirical assumptions—was proposed only after five decades from its original formulation 

(Polato et al., 2018; Smith, 2018). By studying invertebrate assemblages in tropical versus 

temperate mountain rivers, Polato et al. (2018) recently demonstrated that the mountain 

passes hypothesis might hold true for riverine communities. Building upon this milestone 

result, it should be theoretically possible to generalize Janzen’s hypothesis more broadly, by 

testing whether it can be used to explain biodiversity patterns in non-tropical ecosystems 

with reduced climatic seasonality.  

Caves represent unique experimental arenas for testing the assumptions of Janzen’s 

hypothesis. Deep terrestrial subterranean habitats—deep caves and the maze of fissures 

and voids inaccessible to humans—are among the terrestrial habitats with the greatest 

climatic stability (Badino, 2010). In temperate caves, there are steep gradients in thermal 

seasonality from the outer (annual temperature variations comparable to the outside; Pipan, 

López, Oromí, Polak, & Culver, 2011) to the inner sectors (annual variations in the order of 

few tenths of degrees; Badino, 2010; Cigna, 2002). This provides a unique opportunity to 

test for relations among habitat specialization, thermal tolerance and dispersal capacity in 

animal communities at a very local, rather than a continental, scale. Indeed, comparing 

geographically-distant communities such as temperate and tropical communities bears the 

risk of confounding the influence of short- and long-term climate variability on specialization 

and dispersal (Jansson & Dynesius 2002; Stevens 1989). This confounding factor has long 

been debated when it comes to explaining the mechanisms causing an increase in species 

range size at higher latitudes (Morueta-Holme et al., 2013; Rohde, 1996; Veter et al., 2013), 

i.e. the Rapoport’s rule as described by Stevens (1989).  
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Here, we provide the first explicit test of Janzen’s hypothesis in subterranean habitats, 

by measuring the thermal tolerance of the widest sample of congeneric subterranean 

organisms to date, and relating thermal tolerance to the degree of subterranean 

specialization and to the extent of the elevation range. We used spiders of the genus 

Troglohyphantes (Araneae: Linyphiidae) as experimental model organisms (Fig. 1). 

Troglohyphantes spiders show different levels of subterranean habitat specialization, thus 

representing multiple replicates of the ecological transition along a gradient from shallow and 

thermally variable to deep and thermally stable subterranean habitats (Isaia et al., 2017; 

Mammola et al., 2018a). We tested eleven congeneric species distributed in the restricted 

biogeographic area of the Western Alps (Isaia et al., 2017; Mammola, Goodacre, & Isaia, 

2018), hence evaluating differences in thermal tolerance and dispersal among species 

sharing a common biogeographic history but occurring in habitats of contrasted thermal 

seasonality.  

We initially explored the upper thermal tolerance of these species via thermal test 

experiments in a climatic chamber. Subsequently, we estimated the subterranean 

specialization of each species using a quantitative approach based on morphological traits 

(Mammola et al., 2018a), and related this specialization to their thermal tolerance. We 

predicted that increasing levels of subterranean specialization would result in narrower 

ranges of thermal tolerance, because the more specialized subterranean species colonize 

the deeper, seasonally stable cave habitats. Then, we related thermal tolerance to the 

elevational range extent as well as to the variation in temperature across that range 

(hereafter ‘realized thermal niche breadth’). We predicted that more specialized 

subterranean species would exhibit both narrower elevational ranges and smaller realized 

thermal niche breadths. Corroborating the two predictions would provide an extension of 

Janzen’s hypothesis to habitats with reduced thermal seasonality other than to tropical 

mountains (Polato et al., 2018), by linking a subterranean species’ morphological and 

thermal specialization to its dispersal potential across elevation gradients.
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Figure 1. Distribution of Troglohyphantes spiders in the Western Italian Alps. For each species, 

localities and centroid of the distribution are reported. For visual presentation, the Minimum Convex 

Polygon (MCP) encompassing all localities of each species is drawn. Shades of gray in the 

background represent mean annual temperature, as derived from Bioclim 2 (Fick & Hijmans, 2017).
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We collected live specimens of eleven species of Troglohyphantes from subterranean sites 

(caves, mines, subterranean military bunkers; hereinafter ‘caves’) across the Western Italian 

Alps (Table 1). With the exception of a very rare species inhabiting interstitial subterranean 

habitats of difficult access (T. giachinoi Isaia & Mammola), we sampled all known 

Troglohyphantes species occurring in this region. Samplings were conducted from early fall 

to late winter, which in our experience (Isaia & Mammola, personal observations) 

corresponds to the period where Troglohyphantes spiders are generally mostly available 

in . 

MATERIALS & METHODS 

Thermal overlap for deep and shallow cave habitats 

To test whether thermal gradients are less overlapping for spiders inhabiting deep cave 

sectors, we used best available thermal records in the Western Italian Alps to compare the 

overlap in temperature at shallow and deep cave sectors. We used thermal data collected 

between 2012 and 2014. Temperature measurements were taken every 3 h through the 

whole sampling period, using HygrochronTM dataloggers (accuracy: ±0.5°C) placed both at 

the cave entrance (1–10 m from the surface) and deeper inside the cave (>100 m or at the 

deepest point when caves were less than 100 m in length). Data were taken in multiple 

caves across our study region, covering an elevational range from 400 to over 2,000 m a.s.l. 

(full details in Mammola et al., 2018b). Following Scheffers et al. (2017), we plotted the 

range of thermal regimes and determined daily overlap values between the superficial and 

deep subterranean temperature regimes across caves opening at different elevations. We 

showed thermal overlap during only 2.5 months, because this was a timeframe for which all 

dataloggers were properly and simultaneously working in all caves (see details in Mammola 

et al., 2018b). The reported temperature patterns remain roughly the same for the whole 

period in which temperatures were recorded.  

Sampling protocol 
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caves. Due to the reduced detectability and generally low density of individuals, for a few 

species it was necessary to sample multiple caves to obtain a sufficient number of 

specimens (from 11 to 36) for the analysis (Table 1). In each cave, we collected spiders by 

hand and placed them in individual Eppendorf Tubes® of 5ml. We stored all vials in a cool-

bag and transported it the same day to the laboratory at the University of Turin (Italy), where 

we conducted the experiments. In the laboratory, we placed specimens in a IPP 30 Peltier 

Memmert climatic chamber, each specimen in individual Petri dish, and acclimated them for 

one day at the temperature of the cave. Air humidity was kept at 100% during the 

acclimation and during the experiments, by placing two Petri dishes filled with water inside 

the climatic chamber. During acclimation, small insects collected on the cave walls during 

sampling were offered ad libitum to each specimen tested. Owing to the high resistance to 

starvation of subterranean spiders (Mammola & Isaia, 2017), specimens were not fed 

throughout the experiments.  

For each sampled cave, we derived the internal mean annual temperature from 

continuous temperature measurements taken between 2012 and 2013 (Mammola et al., 

2018b), or unpublished temperature records taken via the same methodology (Grotte della 

Maissa). For two caves lacking field-collected temperature records (indicated with an 

asterisk in Table 1), we downloaded annual temperature series from the same period from 

the nearest thermo-hygro-pluviometric weather station. After correcting the data with the 

standard environmental lapse rate (0.57°C/100m; Rubel, Brugger, Haslinger, & Auer, 2017), 

we calculated the mean annual temperature and used this value as a direct proxy of the 

cave temperature (Badino, 2010; Sánchez-Fernández et al., 2018). 

We conducted experiments to determine the upper critical temperature with the 

climatic chamber, starting from the mean annual cave temperature, with an increasing slow 

temperature rate of 1°C/day. We evaluated the individual critical temperature (CT) as the 

total paralysis, that is the temperature at which the individual was immobile and no 

appendage movements were visible (Le Lann et al., 2011). We observed that after the 
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heating process, the spiders never recovered after being removed from the climatic 

chamber, a typical pattern when the temperature at which heat stupor occurs is close to the 

lethal temperature (Wu & Wright 2015). We expressed the CT50 as the measure of 

temperature at which 50% individuals experienced total paralysis. The experiment continued 

until all the specimens had stopped moving (CT100). For each species tested, we kept 

approximately 10% of the specimens as controls in stable climatic conditions, to exclude the 

confounding effect of causes of mortality other than temperature alteration (e.g., starvation, 

stress). No mortality was recorded in controls during the experiments.  

After the experiments we sexed each specimen (male, female or juvenile), confirmed 

species identity under a stereomicroscope, and acquired morphological measures to 

quantify the degree of subterranean specialization. 

Morphological measures 

For estimating the degree of subterranean specialization of each species tested, we 

measured three morphological traits, namely leg elongation (sum of leg I articles divided by 

body size), eye regression (sum of eye diameter divided by length of the ocular area) and 

profile reduction (cephalothorax height divided by cephalothorax width). The reliability of 

these measures to represent specialization to deep subterranean habitats in 

Troglohyphantes species is provided in Mammola et al. (2018a). To standardize 

measurements and obtain comparable estimations, we considered only adult females in the 

estimation, thereby avoiding problems related to sexual size dimorphism. We acquired 

measures in millimeters (mm) from digital pictures made with a Leica EC3 digital camera 

installed on a Leica M80 stereoscopic microscope (up to 60x magnification), and with the 

Leica LAS EZ 3.0 software (Leica Microsystems, Switzerland). 

Elevational range extent and realized thermal niche breadth 
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We assembled a database of occurrence localities of each Western alpine Troglohyphantes 

species, using recent literature geo-referenced records (Isaia et al., 2017; Mammola, Isaia, & 

Arnedo, 2015; Mammola et al., 2018a, 2018b) (Fig. 1). We overlaid elevation and mean 

annual temperature rasters at 30 arcsec resolution (1970–2000; Fick & Hijmans, 2017) to 

the occurrence records of each species. We calculated the elevational range as the 

difference between maximum and minimum elevations and the realized thermal niche 

breadth as the difference between maximum and minimum temperatures experienced by 

each species across its localities.  

Statistical analyses 

All statistical analyses were conducted using R software (R Core Team, 2017). We used the 

internal mean annual temperature of the caves as the baseline to calculate the delta with the 

species critical temperatures (∆T, a measure of thermal tolerance expressed as the 

difference between the CT and the mean temperature of the natural habitat of each 

specimen). We tested for differences in ∆Ts between sexes (males, females or juveniles) 

with separate ANOVA, via the formula (R notation): 

 ∆T ~ sex * species 

For the four species collected in multiple caves (T. konradi, T. lucifer, T. lucifuga, T. vignai), 

we also used separate ANOVA to test for differences in ∆Ts across populations and taking 

into account the sex, via the formula:  

∆T(species) ~ cave + sex 

We constructed standard survival curves with binomial Generalized Linear Models (GLM), 

whereby we modeled the percentage survival rate of each species as a function of ∆T 

(response variable). 



A
cc

ep
te

d
 A

rt
ic

le

The use of annual mean temperature to calculate ∆T may bias results for low 

specialized species because air temperature can vary substantially across seasons 

in . 

We performed a cluster analysis for grouping Troglohyphantes species into 

homogeneous classes of subterranean specialization, using the morphological traits 

measured on adult females. Using standardized values of traits, we estimated clusters via 

Euclidean distances and the Ward2’s hierarchical clustering method (Murtagh & Legendre, 

2014), with the R package ‘fastcluster’ (Müllner, 2013). We relied on the Gap statistic for 

determining the optimal number of clusters k (Tibshirani, Walther, & Hastie, 2001), allowing 

for a maximum k equal to the number of species tested and performing 500 bootstraps. 

To verify if the shape of the survival curves varied in response to the degree of 

subterranean specialization of each species, we modeled the survival rate of all individuals 

tested as a function of ∆T in interaction with the class of subterranean specialization, with a 

binomial Generalized Linear Mixed Model (GLMM) The mixed part of the model was 

designed to account for data dependence, using species identity as random factor. We fitted 

the models in R package ‘lme4’ (Bates, Mächler, Bolker, & Walker, 2015), with the formula:  

Survival rate ~ ∆T * Class of subterranean specialization + random factor (Species) 

We tested the relationships between ∆T and both the elevational range and the realized 

thermal niche breadth of each species with Phylogenetic Generalized Least Squares (PGLS) 

models, hence accounting for phylogenetic non-independence among species. We 

introduced the latest Troglohyphantes phylogeny (Mammola et al., 2018a) into the PGLSs 

via a Pagel correlation structure, with the R package ‘nlme’ (Pinheiro et al., 2017). Prior to 

this analysis, ∆T was log-transformed to account for one outlying observation (T. lucifer). We 

tested for differences in elevation range extent and realized thermal niche breadth between 

species belonging to different classes of subterranean specialization with ANOVA. 
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superficial cave sectors (Fig. 2).  Therefore, we explored whether the results of our analysis 

would change if we computed ∆T using the cave temperature values at the time when the 

specimens were collected in the caves, rather than the mean annual cave temperaturte 

(Appendix S1 in Supporting Information). 

Table 1. Overview of the species of Troglohyphantes tested and summary statistics. Cave [cadastre 
code] (Coordinates)= sampling locality, cadastre code in square brackets ("Art." denotes artificial 
sites) and approximate geographic coordinates in WGS84 decimal degrees; CaveT= mean annual 
temperature of the sampling locality; Spec.= subterranean specialization according to the cluster 
analysis; n= number of specimens tested (controls are included in the count); CT50/100= temperature at 
which 50% or 100% individuals experienced total paralysis; ∆T50/100= temperature at which 50% or 
100% individuals experienced total paralysis relative to the mean annual cave temperature at which 
the specimens were sampled. 

Species 

Cave 

[cadastre code] 

(Coordinates)

CaveT Spec. n 
CT 

mean±sd 
(range)

CT50 CT100

∆T 
mean±sd 
(range)

∆T50 ∆T100

T. konradi 

Brignoli

Grotte della Maissa 

[Pi 1214, 1215, 1219] 

(44.26 N, 7.40 E)

8.5  

High  32 10.69±1.76
(8–15) 

11 15 1.92±1.23 
(1–5)

1 5 

Sotterranei di Vernante [Art.] 

(44.25 N, 7.52 E)
9* 

T. lanai 

Isaia & Pantini

Grotta delle Arenarie 

[Pi 2509] 

(45.71 N, 8.31 E)

9.2 High  14  10.02±0.75
(9.2–11.2) 

11 12 1.82±0.75 
(1–3) 

2 3 

T. pedemontanus 
Gozo 

Grotta di Bossea 

[Pi 108]

(44.24 N, 7.84 E)

8.9 High 15 11.88±0.96
(10.5–13.5) 

13 14 3.38±0.96 
(2–5) 

4 5 

T. bornensis 

Isaia & Pantini

Grotte di Pugnetto 

[Pi 1501–1504]

(45.27 N, 7.14 E)

8.7 Interm. 11 
9.44±0.73 

(9–11)
9 11 0.94±0.73 

(0.5–2.5) 
1 3 
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T. iulianae 
Brignoli

Grotta del Baraccone 

[Li 309] 

(44.27 N, 8.08 E)

10*  Interm. 24 11.76±0.89
(11–14) 

12 14 1.76±0.89 
(1–4) 

2 4 

T. nigraerosae 
Brignoli

Buca del Ghiaccio della Cavallaria 
[Pi 1609] 

(45.51 N, 7.79 E)

6.6 Interm. 22  7.89±2.40 
(5–13) 

8 13 2.42±1.54 
(0.5–5.5) 

2 6 

T. vignai 

Brignoli

Tana del Diavolo

 [Pi 1591] 

(45.02 N, 7.12 E)

6.3  

Interm. 36  13.11±2.35
(10.5–17.5) 

13 18 5.18±2.42 
(2–10) 

4 10 

Tornini mine [Art.] 

(44.90 N, 7.19 E)
7.6 

T. lucifer 

Isaia et al.

Grotta del Ghiaccio di Bosconero 
[Pi 1580] 

(45.19 N, 7.04 E)

4  

Low 31 21.18±7.04
(11–30) 

19 30 16.70±8.89
(2–27) 

19 27 

Tana del Diavolo 

[Pi 1591] 

(45.02 N, 7.12 E)

 6.7 

Grotte di Pugnetto 

[Pi 1501–1504] 

(45.27 N, 7.14 E)

8.7 

T. lucifuga 

(Simon)

Buca del Ghiaccio della Cavallaria 
[Pi 1609] 

(45.51 N, 7.79 E)

6.6  

Low 21 12.43±4.11
(6–19) 

11 19 7.68±3.18 
(2–15) 

7 15 

Borna del Servais B [Art.] 

(45.51 N, 7.79 E)
6.7 

T. pluto 

Di Caporiacco

Grotta del Caudano 

[Pi 121–122]

(44.29 N, 7.79 E)

9 Low 18 12.50±2.29
(9.5–17.5) 

13 18 3.50±2.29 
(0.5–8.5) 

4 9 

* Internal mean annual temperature estimated from the closest weather station
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For all species tested, ∆T did not significantly varied depending on the sex of the 

specimens (ANOVA: F18,152= 0.31, p= 0.99). In the case of three species (T. lucifuga, T. 

vignai, T. konradi) for which we tested two populations, no differences in ∆T between 

populations (ANOVA: T. konradi: F2,21= 0.81, p= 0.46; T. lucifuga: F2,10= 3.45, p= 0.09; T. 

vignai: F2,24=  1.65, p= 0.21) were detected. In the case of T. lucifer, most individuals were 

collected in one out of the three caves (Grotta del Ghiaccio di Bosconero), preventing to fit a 

robust ANOVA due to a significant imbalance in the levels of the factor.  Also, we found 

no . 

RESULTS 

Thermal overlap for deep and shallow cave habitats 

Variation in ambient temperature was extremely low in deep sectors of caves, with virtually 

no detectable daily variations and seasonal variations in the order of one tenth of degree. 

We observed no overlap in thermal regimes between deep caves habitats at different 

elevations (Fig. 2B). By contrast, thermal regimes were more variable in the superficial cave 

sectors and there was a substantial overlap between thermal regimes among these habitats 

at different elevations (Fig. 2A).  

Experimental test on thermal tolerance 

A total of 247 specimens belonging to 11 species were collected in 13 caves across the 

Western Italian Alps. The species T. bolognai was excluded from the analysis, because high 

mortality of individuals occurred during the acclimation phase before the beginning of the 

test. All remaining species were successfully tested in the climatic chamber (Table 1). 

Narrow thermal tolerance was observed for most Troglohyphantes (Fig. 3A), with the 

majority of species reaching their CT50 at ∆T ranging from 1 to 4 °C (Table 1). T. bornensis 

and T. konradi proved to be the least tolerant species, reaching their CT50 at ∆T of 1 °C, and 

its CT100 at ∆T ranging from 3 and 5 °C, respectively. Conversely, T. lucifer was the most 

tolerant species, reaching its CT50 at ∆T 19 °C and its CT100 at 27 °C.  
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effects of sex and population on ∆T when we estimated ∆T using the cave temperature 

values at the time when the specimens were collected in the caves (Appendix S1). 

Subterranean habitat specialization 

Using morphological traits and a Ward2 hierarchical clustering method, we assigned each 

species to a distinct class of subterranean specialization. The Gap statistic revealed an 

optimal k of 3, corresponding to three discrete classes of species with similar levels of 

morphological subterranean specialization (Fig. 4). The first cluster included all individuals 

belonging to T. lucifer, T. lucifuga and T. pluto, namely species with minor morphological 

specialization to subterranean life (eyes normally developed and abdominal pattern present) 

and often found in the vicinity of the cave entrance or in shallow subterranean habitats 

(“Low” class of subterranean specialization in Fig. 4). The second cluster comprised species 

with a moderate degree of morphological specialization (“Intermediate” class in Fig. 4), and 

included most individuals of the species T. bornensis, T. iulianae, T. nigraerosae and T. 

vignai. The third cluster comprised highly specialized species (“High” class in Fig. 4), namely 

T. konradi, T. lanai and T. pedemontanus, with pronounced eye and profile reduction, 

appendage elongation and absence of abdominal pigmentation. Clusters were mostly 

homogeneous, with the exception of six misplaced individuals highlighted in Fig. 4.  

Relationship between thermal tolerance, specialization and elevational range 

GLMM revealed a significant interaction between ∆T and the class of specialization, 

indicating that the shape of the survival curve varied according to the degree of 

subterranean habitat specialization (Fig. 3B; see also Fig. S1). The high and intermediate 

class curves were significantly different from the low one (GLMM: High: estimated β±SE= –

1.43±0.19, p-value< 0.01; Intermediate: estimated β±SE= –0.68±0.07, p< 0.01), indicating a 
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steep decline in survival rate at increasing ∆T. Conversely, the survival curve for low 

specialized Troglohyphantes declined more smoothly (Low: estimated β±SE 2.60±0.84).  

We found a significant positive relationship between a species’ elevational range and 

thermal tolerance (∆T), with increasing elevational range extents at increasing values of ∆T 

(Fig. 3C; PGLS: estimated β±SE= 930.06±184.66, p< 0.01) and no phylogenetic signal in 

the residuals (Pagel λ= –0.71). The extent of a species’ elevational range decreased 

significantly with increasing specialization to deep subterranean life (Fig. 3D; ANOVA: F2,8= 

5.47, p< 0.05). We recovered the same significant trend with respect to the realized thermal 

niche breadth, with increasing variation in temperature among localities of a species’ range 

at increasing values of ∆T (Fig. 3E; PGLS: estimated β±SE= 4.02±0.92, p< 0.01; Pagel λ= –

0.31). Furthermore, realized thermal niche breadth decreased significantly with increasing 

specialization to deep subterranean life (Fig. 3F; F2,8= 4.61, p< 0.05).  

Figure 2. Compared to shallow cave habitats (A), deep cave habitats show extremely reduced 

thermal seasonality and no overlap in thermal regimes across elevational gradient (B). Seasonal 

experimental temperature records shown in the graph were taken in winter (20 Nov 2012 – 04 Feb 

2013) across caves at different elevations in the Western Italian Alps, using HygrochronTM 
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dataloggers installed at the cave entrance (1–10 m from surface) and deeper inside the cave (>100 m 

from surface). Daily temperature range (max–min) is shown. Same color corresponds to same cave. 

Figure 3. Thermal tolerance (∆T) of Western alpine Troglohyphantes species according to the class 

of subterranean specialization, and relations with elevational range extent and realized thermal niche 

breadth. A) Survival rate as a function of ∆T. Survival curves represent best fits to the data, according 

to GLMs. B) Predicted relationship between the survival rate of Troglohyphantes species and ∆T, in 

interaction with the class of morphological adaptation to the subterranean conditions, as derived from 

GLMM. C) Relationship between elevational range extent and ∆T, according to PGLS. D) Differences 

in the extent of elevational range among the three classes of morphological specialization to 

subterranean life. E) Relationship between the thermal breadth experienced by species across their 

elevational range and ∆T, according to PGLS. F) Differences in realized thermal breadth among 

classes of morphological specialization to subterranean life. Color coding in C–F refers to the legend 

in the inset B. 
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Figure 4. Overall morphological similarity among the Troglohyphantes species considered in the 

analyses. Clustering is based on three morphological traits (bottom panel) and on Euclidean 

distances and Ward2’s hierarchical clustering. Three distinct clusters correspond to the three classes 

of subterranean specialization: low (T. lucifuga, T. lucifer, T. pluto), intermediate (T. bornensis, T. 

nigraerosae, T. vignai), and high (T. konradi, T. lanai, T. pedemontanus) specialized species. 

Misplaced individuals are highlighted with the color of their putative cluster. Morphological drawings 

by Elena Pelizzoli.
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Our extension of Janzen’s mountain passes hypothesis to temperate subterranean 

ecosystems is based on the integration of multiple lines of evidence and is grounded in 

organismal and habitat measures. Rather than inferring thermal tolerance breadth from 

species distributions (see Cardillo, Dinnage, & McAlister, 2019), we quantified thermal traits 

via experimental tests on the widest simultaneous set of congeneric subterranean organisms 

to date (Fig. 3A). We also used annual temperature data series measured at the habitat 

level, that allowed us to characterize the steep gradients of thermal variability in caves 

(Fig. . 

DISCUSSION 

Extending Janzen’s hypothesis to temperate subterranean ecosystems 

Five decades after its publication, Janzen’s (1967) milestone contribution has been listed 

among the 100 most influential papers in ecology (Courchamp & Bradshaw, 2018). The 

mountain passes hypothesis is seminal not only in providing a mechanistic explanation for 

biodiversity patterns in tropical versus temperate mountain systems (Ghalambor et al., 2006; 

Sheldon et al, 2018), but also because it can potentially be transferred to a large variety of 

habitats displaying steep gradients of thermal seasonality, including for example soils 

(Bahrndorff, Loeschcke, Pertoldi, Beier, & Holmstrup, 2009; Raschmanová, Miklisová, 

Kováč, & Šustr, 2015), polar waters (Peck, Webb, & Bailey, 2004; Pörtner, Peck, & Somero, 

2007), and deep sea (Rex et al., 1993). Yet, the ecological complexity of most ecosystems 

and the challenge posed by the geographic scale at which this hypothesis can be tested, 

have largely prevented ecologists from comprehensively testing the underlying assumptions 

of Janzen’s hypothesis and transferring it to non-tropical settings (Gill et al., 2016; McCain, 

2009; Polato et al., 2018; Scheffers et al., 2017). Due to their ecological simplicity and 

environmental stability, subterranean habitats emerge as an ideal model system in which to 

explore eco-evolutionary questions in general (Mammola, 2018; Sánchez-Fernández et al., 

2018) and hypotheses pertaining to thermal niche breadth in particular (Eme et al., 2014; 

Mermillod-Blondin et al., 2013; Pallarés et al., 2019; Raschmanová et al., 2018; Rizzo, 

Sánchez-Fernández, Fresneda, Cieslak, & Ribera, 2015).  
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PGLS analyses revealed a weak phylogenetic signal in our dataset, implying that two 

closely related Troglohyphantes species are not necessarily more physiologically similar 

than two Troglohyphantes species selected at random from the phylogenetic tree. This 

result . 

2). An additional novelty of this study was to use a quantitative method supported by 

statistical inference to estimate the level of subterranean specialization of the different 

species (Fig. 4), and to incorporate this information in the evaluation of the thermal tolerance 

(Fig. 3B). 

Thermal tolerance and subterranean specialization 

By integrating morphological measures and physiological experiments, we were first able to 

demonstrate that an increased specialization to subterranean habitats was accompanied by 

a concomitant reduction in thermal tolerance. Overall, intermediate and highly subterranean 

specialized Troglohyphantes species reached CT50 already between 1 and 4 °C above their 

natural ambient temperature, and CT100 between 3 and 10 °C. Within the intermediate class 

of specialization, T. vignai was the only species to exhibit a greater thermal tolerance.  In 

particular, the species behaved similarly to T. pluto, which clustered in the low specialized 

class (Fig. 4). In this regard, it is worth noting that populations of T. vignai display a high 

genetic structuring (Mammola et al., 2015), which casts some doubts about the current 

taxonomic status of this species and, consequently, about its thermal tolerance limits. The 

low specialized species T. lucifuga and T. lucifer, showed the widest thermal tolerances, 

reaching CT50 at 7 and 19 °C above their natural ambient temperature, respectively, and 

CT100 at 15 and 27 °C. In other words, species that are morphologically specialized for life in 

shallow subterranean habitats proved to be able to withstand a two-fold larger temperature 

increase than species morphologically specialized for life in deep subterranean habitats. 

This result is consistent with the fact that the seasonal variability of shallow subterranean 

habitats is much greater than that of deep subterranean habitats (Pipan et al., 2011).  
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probably owed much to our study's specificity which consisted in using a regional scale for 

testing Janzen’s hypothesis. Using species from temperate and tropical regions, species 

within these two regions are more closely related to each other and they display similar 

physiological traits; hence the strong phylogenetic signal typically observed in a number of 

studies (Gutiérrez-Pesquera et al., 2016). Conversely, when using multiple congeneric 

species from the same region but specialized to different habitats—in our case, deep and 

shallow subterranean habitats—there is a greater chance that some species from the most 

climatically-variable habitat evolved species adapted to the more climatically-stable one. 

This yields sister species exhibiting contrasted thermal tolerance, hence the weak 

phylogenetic signal observed in our study. 

Subterranean specialization and elevational range extent 

Having adapted to narrow thermal conditions (Fig. 2B), specialized subterranean organisms 

would have more difficulty in crossing topographic barriers than less specialized species, 

because they would be more likely to encounter temperatures outside their thermal tolerance 

(Ghalambor et al., 2006). In the alpine context in which Troglohyphantes species are found, 

subterranean dispersal over elevational gradients would be unlikely, in account for the 

significant variation in temperature and reduced overlap in thermal regime between deep 

cave habitats at different elevations (Fig. 2B; Rubel et al., 2017). The small-range size of 

subterranean species has long been solely attributed to habitat fragmentation (e.g. 

Christman & Culver, 2001; Moldovan, Meleg, & Perşoiu, 2012), without considering the 

potential influence of thermal specialization on dispersal propensity (Eme et al., 2014). Yet, 

this study is the first to establish a relationship between the extent of a subterranean 

species’ range across the elevation gradient and its thermal tolerance. Habitat fragmentation 

and thermal specialization most likely act synergistically to constrain dispersal. Habitat 



A
cc

ep
te

d
 A

rt
ic

le

 Our extension of Janzen’s hypothesis to subterranean habitat also provides a 

potential mechanism for explaining the high rate of local endemism and increased species 

packing that are typically observed in disparate subterranean systems (e.g. Hedin, 2015; 

Njunjić et al., 2018; Ribera et al., 2010; Wessel et al., 2013). It is acknowledged that strong 

topographic heterogeneity could both inflate speciation rate by increasing specialization and 

imposing barriers to dispersal, and decrease the extinction rate by promoting local survival 

during climate shifts (Jetz & Rahbek, 2002; Ohlemüller et al., 2008; Eme et al., 2014). In the 

case of our model organisms, the specialization to a habitat with limited seasonal variability 

may have contributed to promote reproductive isolation, leading to high adaptive radiation 

in . 

fragmentation restricts maladaptive gene flow between populations, thereby facilitating 

thermal specialization, which itself creates physiological barriers to dispersal.  

A potentially important caveat of the present study is the use of range size as a 

surrogate for dispersal capacity (Lester, Ruttenberg, Gaines, & Kinlan, 2007). Yet, there are 

several lines of evidence which suggest that dispersal within the genus Troglohyphantes 

indeed depends on the degree of subterranean specialization. In T. vignai, the only 

specialized species of Troglohyphantes for which a population genetic study was carried out, 

mitochondrial and nuclear genetic data at the population/species interface indicated very 

limited gene flow, with many populations being strongly isolated from each other (Mammola 

et al., 2015). Furthermore, widely distributed species like T. lucifuga, but also other low 

subterranean specialized Troglohyphantes species distributed in central and eastern Alps, 

are typically found both in caves and more superficial habitats, including deep leaf litter 

strata, voids in rocky debris, and other moist and shaded retreats (Isaia et al., 2017; 

Mammola et al., 2018a, 2018b). This ecological plasticity would enhance dispersal across 

shallow habitats and would explain their larger distribution ranges (Mammola et al., 2015). 

Conversely, specialized and short-ranged species of Troglohyphantes are almost exclusively 

collected in caves, empirically suggesting a reduced capacity to disperse through non-

subterranean habitats (Isaia et al., 2017). 
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the genus and to a high proportion of small-range endemics, even co-occurring within limited 

geographic extents (Isaia et al., 2017; Mammola et al., 2018a). In the Western Alps as much 

as six closely related species are known to coexist in the district of Alpi Liguri, i.e. just about 

3,000 km2 (Fig. 1). Yet, the occurrence of non-overlapping thermal regimes among deep 

subterranean habitats at different elevations and the very narrow thermal tolerance of 

specialized subterranean species question the idea that sharp elevational climatic gradients 

may favor local survival through short distance dispersal during climate shifts. 

Climatic controls on subterranean biodiversity patterns 

Our findings contribute to reconcile contrasted views about the relative importance of two 

distinct scales of climate variability in shaping patterns of subterranean biodiversity 

(Zagmajster et al., 2014), a topic that has been recently discussed also in surface 

ecosystems (Scheffers & Williams, 2018; Scheffers et al., 2017). Using correlative methods, 

Zagmajster et al. (2014) and Eme et al. (2018) showed that long-term temperature variability 

accounted for a substantial variation in range size of groundwater crustaceans across 

Europe. Yet, the lack of latitudinal variation in temperature seasonality in subterranean 

habitats does not necessarily imply that the observed pattern of increasing range at higher 

latitudes is primarily driven by climatic variability acting at much longer time-scales than the 

seasonal scale. If, as pointed out by the results of this study, the absence of thermal 

seasonality drives subterranean species towards narrow thermal specialization and low 

dispersal capacity, then these species are also less likely to survive major climate change 

and to recolonize vacant areas once climate becomes favorable again. The two temporal 

scales of climate variability might have acted in concert to shape the current distribution of 

Troglohyphantes species in the Western Alps. On the one hand, all specialized subterranean 

Troglohyphantes species occur in areas that were free of ice during the Pleistocene 

(Mammola et al., 2018b: p. 237, fig. 2), which is consistent with a scenario of restricted 
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dispersal following the retreat of Pleistocene glaciers. On the other hand, the distribution 

range of low specialized species, especially T. lucifuga, stretches in areas that were entirely 

covered by the primary ice shield during the Pleistocene, which could be explained by the 

species having colonized the area in recent time, after the glaciers retreated (Mammola et 

al., 2018b). 

Our study has also important implications for determining the vulnerability of 

subterranean species to anthropogenic climate change. Climate change is expected to affect 

deep subterranean habitats (Mammola et al., 2019; Taylor et al., 2013), especially by 

increasing ambient temperature and reducing moisture content, although with a certain delay 

due to the thermal inertia of the rock (Mammola et al., 2019). In this context, the likelihood of 

evolutionary responses will depend on the magnitude and rates of warming within 

subterranean habitats. To date, the few available studies attempting to predict the future 

response of subterranean species to altered climatic conditions were based on correlative 

species distribution models (SDM) projected onto future climate change scenarios 

(Mammola & Leroy, 2018). However, such predictions may be unreliable if species display 

greater thermal tolerance than those reflected by their current geographic ranges (Sánchez-

Fernández et al., 2016). Results of the present study suggest that the ecological 

specialization-dispersal tradeoff prevents specialized subterranean species from exploiting 

regions with uncertain climates, a proposal which is entirely consistent with previous SDM 

forecasts of habitat quality for Troglohyphantes spp. both in the Pleistocene and under future 

climate change scenarios (Mammola et al., 2018b). By considering the results of this study 

in the light of these future habitat change projections, we can predict that most specialized 

subterranean species will unlikely be able to overcome climatic alterations by means of 

dispersal. However, we observed variability in the individual response to increasing 

temperature among the tested populations, with some individuals being able to withstand 

greater temperature increases in respect to the population average (Table 1). On a positive 

note, this variability suggests that more tolerant individuals may possibly undergo selection 
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of key physiological traits in a climate change scenario, resulting in phenomena of local 

adaptation and in situ persistence. 

Concerns over the fate of biodiversity in a changing climate have revived biodiversity 

research into Janzen’s thoughts (Sheldon et al., 2018). By extending Janzen’s hypothesis to 

climatically-stable habitats other than tropical mountains, we pave the way for integrating the 

ecological specialization/dispersal tradeoff into understanding the differential responses of 

species to climate instability across a broad range of ecosystems. Ultimately, our 

contribution shows that the “move or adapt” dilemma in response to climate change 

(Nogués-Bravo et al., 2018) may in part already be set by the specialization/dispersal trade-

off. Therefore, we encourage scientists to take into consideration physiological barriers to 

dispersal into their modelling fitting exercises, when predicting the species response to 

climate change. 
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