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Abstract 

 

 

Candida species are usually found as commensal microorganisms in the oral cavity of healthy 

people. During chemotherapy, cytostatic drugs lead to depletion of the oral flora with the 

emergence of a dominant bacterial species. The transition from commensal to pathogenic state, 

further associated with yeast colonization and oral mucositis implies a replacement of the 

dominant microorganism by Candida albicans. This process goes plausibly through 

cooperation between C. albicans and bacteria. This study focused on the first step of 

cooperation between microorganisms isolated from the same oral flora either of leukemic or 

healthy children. C. albicans isolated from 8/20 children were cultured to display their 

noninvasive blastosporic yeast form and mixed with their dominant bacteria to study the 

capacity of planktonic aggregation and the early state of biofilm formation. None of the 

dominant bacteria opposed the presence of yeast, on the contrary, an interesting cooperation 

was observed. This behavior is apparently different from that observed when mixing the type 

strains. In fact, three mutated C. albicans strains display, by their spontaneous ability to form 

filament, enhanced risks of virulence for leukemic ill carriers. Despite such risks, neither oral 

nor systemic pathology were observed in ill patients probably because the study was conducted 

during the first course of chemotherapy and Candida colonization is related to the number of 

chemotherapeutic cycles.  

The presence of C. albicans during the initial cycle represents, by its ability to interact with oral 

bacteria, an actual threat for further cures. 
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Introduction 

 

So far, more than 600 bacterial species have been found amongst the human oral flora forming 

therefore a well-balanced system which behaves in a commensal manner most of the time [1]. 

Moreover numerous bacterial species are also able to form commensal relationship with yeasts 

such as Candida [2]. This relation must be noticed as it occurs in case of both sick and healthy 

patients. Actually the presence of Candida does not usually break the balance, but may 

contribute to the colonization of oral and denture surfaces thus causing the formation of local 

dysbiosis [3,4]. As a consequence, oral cavity would then turn itself into a haven for pathogens 

and a potential entrance point for opportunistic infections. 

Fungal infections remain the major complications in the treatment of hematological diseases 

[5-7]. Main risk factors for candidemia are known to be neutropenia, mucositis, and the 

presence of a central venous catheter [8-11]. Administration of cytostatic drugs during 

chemotherapy in case of leukemia involves oral mucositis as a primary side effect[12]. It 

frequently involves ulceration, bleeding and severe pain which may prevent a proper diet and 

result in poor patient compliance to treatment [13]. Moreover, the use of cytostatic drugs leads 

to the depletion of the oral flora with the emergence of a dominant bacterial species [14] further 

associated with yeast colonization and oral mucositis. Candida albicans is the most frequently 

encountered species [5-7]. 

Commensal to pathogenic state transition implies a replacement of the dominant microorganism 

by C. albicans which is a plausible process going through cooperation between yeasts and 

bacteria. In fact, interactions between bacteria and Candida have already been studied [3,15-

18]. Such interactions play a key role in biofilm formation and protect the potential pathogens 

from targeted treatments. Some bacteria such as Pseudomonas aeruginosa, Salmonella 

enterica, Staphylococcus aureus or Lactobacillus spp prevent Candida from colonizing their 

biofilm [19-24]. Considering oral cavity, Streptococcus or Actinomyces spp, the main 

constituents of bacterial flora, are known for being more permissible concerning Candida 

proliferation into the biofilm [2,3,17,18]. These previous studies [3,15-18] have been conducted 

on ATCC type strains. 

To our knowledge, this is the first study carried out on the behavior of C. albicans and bacterial 

strains collected from orally healthy volunteers and patients with hematological diseases. 

Interactions between the dominant bacterial strain and C. albicans were intended to identify 

any evaluable cooperation that occurs when yeast and bacteria are isolated from the same 

patient. 

Acc
ep

ted
 m

an
us

cri
pt



4 

 

As adherence constitutes a crucial step in the initiation and propagation of oral candidiasis, we 

decided to focus on the ability of C. albicans to form biofilm either alone or with dominant 

bacteria from the same oral flora. In order to observe the transition from commensal form into 

a pathogenic one, culture conditions were aimed at maintaining C. albicans under the yeast 

state. By this way, C. albicans remained commensal, therefore displaying a noninvasive 

blastosporic yeast form during the whole study [25,26].  

The first state of adherence runs under the control of ALS type genes. ALS3 gene is directly 

involved in germ tube and biofilm formation [27,28] while the deletion of ALS1 gene leads to 

nonfunctional biofilm formation [29]. ALS4 gene is induced early in biofilm formation and 

upregulated compared to the non-adherent planktonic reference [30]. Germ tube formation and 

cell adhesion decrease when ALS4 gene is deleted [31]. Als4p covers the surface of yeast cells 

with a greater abundance on cells grown at 30°C compared to 37°C. On germ tubes, Als4p is 

localized in a restricted area proximal to the mother yeast [32]. At last, ALS6 gene expression 

increases yeast adhesion to oral epithelial cells [33], while its expression corrects effects of 

ALS1 and ALS3 gene deletions [29]. The study of ALS genes with their contribution to cell 

adhesion and germ tubes formation appeared to be a relevant way to explain the differences in 

the behavior of the wild strains compared to the type ones. 

The goal of this study was to evaluate the cooperation between C. albicans and the dominant 

bacterial strain isolated from the mouth in leukemic and/ or healthy children. This point was 

explored through the microbial aggregate properties and the early state of biofilm formation 

capacities in wild compared to type strains and/or in ill compared to healthy patients.  

 

 

 

 

Patients and methods 

 

Patients 

Two groups of 10 patients (aged 3 to 13 years) were enrolled during 4 weeks in the study. The 

parents gave their informed consent (contrat CCPPRB 95 /12.92). The first group gathered 

children suffering from acute lymphoblastic or myeloblastic leukemia treated by chemotherapy 

for the first time. The control group included healthy children paired by age and dental formula. 

The study began by an oral hygiene appointment assessing initial oral health, excluding children 

showing oral lesions. Patients requiring antibiotics during the study were excluded. 
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Samples 

The study enclosed 20 children for a total of 80 samples collected once a week during 4 weeks 

(at day 0, 7, 14 and 21), before any meal and brushing of teeth. Sample collection was performed 

by swabbing the supra-gingival plaque of the last three teeth of the upper right quadrant and the 

last three teeth of the lower left quadrant. The samples were carefully taken by passing the swab 

onto the gingivodental line [14]. 

The samples (labeled L for leukemia group, T for control group) were transferred to 1 ml of 

pre-reduced transport fluid (RTF) for transport to the laboratory. All specimens were processed 

within the following 2 h. Briefly, they were diluted in series and the dilution of 10-5 was cultured 

at 37°C on Columbia agar containing 5% blood under aerobic and anaerobic (80%N2, 10%H2, 

10%CO2) condition to select the dominant bacterial strains. To isolate fungi, the undiluted and 

samples diluted to 10-1 were grown simultaneously on Sabouraud agar at 30°C and at 37°C 

under aerobic conditions. 

 

Identification 

The dominant bacterial strains were selected after 48 hours in aerobic and after 5 days under 

anaerobic conditions. The characterization of the dominant bacterial strains included 

morphological assessment as well as identification by strips (Rapid ID 32 STREP®, Rapid ID 

32A®, API NH® Biomérieux, France). Yeasts were assessed by examining Sabouraud agar after 

48 hours of incubation and identified using Rapid Yeast plus® (AES Laboratoires, France). 

 

Aggregation of planktonic cells  

Aggregation protocol was performed according to Hsu et al. [34]. The cultures were performed 

in enriched Todd Hewitt broth for bacteria and Sabouraud broth for yeast strains. Both culture 

were incubated individually for 24 hours. They were then washed twice in PBS and buffered 

using potassium phosphate buffer (pH 7.4). One equal volume of 108 cfu mL-1 bacterial 

suspension (OD600 0.02 for Streptococcus to 0.05 for other bacteria) were mixed to the 107 mL-

1 yeast suspension (OD600 0.4) in the 24-well plate. These concentrations are near the end of the 

exponential phase of growth. In the same way, the self-aggregation was carried out for a well 

contained bacteria or yeast strains alone using C. albicans ATCC 26555 and S. mutans ATCC 

25175 as control. The plates were shaken at 33 rpm during 16 hours. The aggregation was then 

evaluated using a scale from 0 to 3 after the observation of the entire well by inverted photonic 

microscope. 

Acc
ep

ted
 m

an
us

cri
pt



6 

 

While 0 meant an absence of any aggregate, 1 assessed an observation of less than one aggregate 

on a field of view at 200 magnification, 2 was attributed when one aggregate was observed on 

a single field of view, 3 was attributed when several aggregates were observed on a single field 

of view. The entire well, almost 20 fields, was always scored by the same biologist. Candida 

albicans and Streptococcus mutans are two species known to show strong synergism and high 

cells aggregation in dual species biofilm [35,36]. We used Candida albicans ATCC 26555 and 

Streptococcus mutans ATCC 25175 as control. 

 

Characterization of planktonic cells aggregates by electronic scanning microscopy 

After scoring the planktonic cell aggregates by photonic microscopic analysis, the yeast and 

bacterial coaggregates in the suspension were collected by centrifugation. The supernatant was 

removed and discarded. Pellets were then fixed using a 2.5 % glutaraldehyde solution in a 

cacodylate buffer at pH 7.2 for 1 hour, rinsed and dehydrated using ethanol [37]. Specimens 

were then coated with a thin film of gold-palladium. New observations were performed using a 

scanning tunneling microscope JEOL IT 300 with JEOL image analysis piloted by JEAOL 

software. 

 

Evaluation of the initial phase of biofilm formation using Biofilm Ring Test® 

Early state of biofilm formation was assessed using the Biofilm Ring Test method (BioFilm 

Control, Saint Beauzire, France) as described by the manufacturer [38]. This assay is based on 

the immobilization of magnetic beads (TON 006) while they get embedded in microbial 

aggregates. Microbial inoculum (fungi and /or bacteria) were prepared from exponential 

cultures in filtered BHI medium and adjusted for an initial concentration corresponding to 

OD600 ranging between 0.4 for fungi strains (107 mL-1) to 0.04 for the three spontaneous 

filamentous fungi determined by direct microscopic examination (L6 J7, L7 J14 and L7 J21) 

and 0.02 for Streptococcus to 0.05 for other bacteria (108cfu mL-1). The microbial suspension 

supplemented with 1% magnetic beads solution were distributed in sterile wells of polystyrene 

strips (Strip Well MSW002B) and incubated at 37°C for 0 hour (t0h), 4 hours (t4h) and 22 hours 

(t22h). One well with TON and without microorganism was used as control for bead efficiency. 

At any time point, wells were scanned by a dedicated scanner before and after magnetization. 

Biofilm formation was expressed as a Biofilm Formation Index (BFI) calculated by the Biofilm 

Control Software. A low BFI value ≈ 2 corresponds to complete immobilization of beads by 

cells forming a biofilm whereas a high BFI value ≥ 7 indicates that the microbial population 

did not form biofilm [38]. The results are expressed as the mean of triplicate BFI values from 
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three independent experiments per isolate and incubation time. Controls were performed using 

strains of C. albicans ATCC 26555 and Streptococcus gordonii DL1 as initial colonizing 

bacteria in oral biofilm. 

 

Visualization of microbial communities in biofilm by confocal scanning microscopy 

The study focused on the three couples of spontaneous filamentous fungi isolated from ill 

patients and their dominant bacterial strain: L6 J7, L7 J0 and L7 J21. They were monitored 

using confocal scanning microscopy. Strains were prepared according to the Biofilm Ring Test 

protocol. Biofilm were then grown in sterile Ludin® chambers (Life Imaging Services, 

Switzerland) connected to a peristaltic pump (Minipuls 3, Gilson, Middleton, WI) allowing a 

flow rate of 7 mL.h-1 through silicone tubing in aerobic conditions. Flow cells were coated with 

0.22-µm filtrated sterile human saliva (collected from six healthy stimulated volunteers, treated 

with 2.5mM dithiothreitol and diluted in distilled water to obtain a 25% (v/v) solution) for 30 

min before bacterial inoculation. All steps (inoculation, washing, staining) were performed with 

a flow rate of 7ml.h-1 [39]. 

Assays of mono or dual-species biofilm formation of fungi with or without bacteria were 

performed by inoculation for 30 minutes in the flowing system. Biofilms were then incubated 

for 24 hours at 37°C in a humidified chamber. After 15 minutes of washing with PBS, biofilms 

were stained with 5µM of Syto® 9 nucleic acid dye (Molecular Probes, Lieden, The 

Netherlands) diluted in PBS and a ½ dilution of Calcofluor White stain (Fluka, Sigma Aldrich, 

Buchs, Switzerland) diluted in KOH (1:10) for 15 minutes [40]. 

Flow cells were then observed in situ with a Leica TCS-SP8 confocal laser scanning microscope 

(Leica Microsystems, Wezlar, Germany). An HC PL Apo 63X, 1.4 NA, oil immersion objective 

lens was used for image capture and a numerical zoom of 1.5 was applied. The 488-nm Ar laser 

and a 500 to 570-nm band-pass emission filter were used to detect Syto®9-assocciated 

fluorescence. The 405-nm UV diode and a 450 to 500-nm band-pass emission filter were used 

to detect C. albicans stained with Calcofluor® [40].  

Biofilm stacks (123 X 123 µm) acquired at 1 µm intervals were scanned with a line average of 

2. Leica software (LAS AF V.2.2.1) was used for microscope piloting and image acquisition 

before image analysis by ImageJ V1.43m (National Institute of Health). 

C. albicans ATCC 26555, S. gordonii DL1 and S. mutans ATCC 25175 were used as controls. 

 

Amplification and sequencing of Agglutinin-Like Sequences ALS1, ALS3, ALS4 and ALS6 

genes from Candida albicans isolates 
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Total genomic DNA was obtained using the chelex extraction protocol [41].  Using specific 

primers [42] (Table 1), a segment of 318bp for Als1p, 342bp for Als3p, 356bp for Als4p and 

152bp for Als6p from ALS gene family of C. albicans were amplified from each genomic DNA 

extract. 

PCR was performed using 1 µl of template DNA, 0.5 µl of each forward and reverse primer 

(both 5 µM).  Total reaction volume was 15 µl made up using 8µl of MyTaq Mix (Bioline®) 

and 5µl of distilled water.  Thermocycling conditions were; one cycle of 5 min at 94°C followed 

by 40 cycles of 30 s at 94°C, 15 s to 30 s at the annealing temperature of 45°C to 62°C, and 30 

s at 72°C, and a final 7 min extension at 72°C [42]. Double strand sequences were obtained 

using an automated sequencer (PE Applied Biosystems 3730 Genetic Analyser; plate-forme de 

séquençage Biogenouest, Nantes). Sequences were aligned using the CodonCodeAligner® 

software v3.5 (CodonCode Corporation, Dedham, Massachusetts). Analyses of sequence 

polymorphism were carried out using DNASP v4.10.9 [43].  

 

Statistical analysis 

The quantitative results from the biofilm Ring Test were analysed using Statview V, one-way 

ANOVA followed by PLSD Fisher test to determine the significant differences layout. Fisher’s 

exact tests were done to compare ill and healthy patients. 

 

 

 

 

Results 

 

Oral carriage of Candida and associated dominant bacteria isolates 

C. albicans were found in 40% of patients both in the ill and control groups. Eight different 

isolates of C. albicans in ill patients and nine in the control groups were isolated from 40 

samples during the four weeks of survey. However, carriers did not show any symptoms of C. 

albicans infection whether they belonged to the control group or not. The dominant bacterial 

strain was quite common for every C. albicans carriage in the leukemia group; 5 of them were 

colonized by Streptoccocus spp. and 4 others by Actinomyces except for subject L1 who showed 

a co-existence of two dominant strains at day 7 (Table 2). In the control group, the range of 

bacterial strains associated to Candida was more relevant: six Streptoccocus, one Actinomyces, 

one Fusobacterium and one Neisseria species were identified.  
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Aggregation of planktonic cells  

Although experimental conditions were known to decrease mycelium formation, five C. 

albicans strains were able to auto-aggregate in planktonic conditions after 16 hours 

(aggregation score ≥ 2). The auto-aggregation was assessed by 84% (15 /18) of the oral bacterial 

strains while 72% (13/18) of them were qualified to co-aggregate with C. albicans. The co-

aggregation intensity varied from a species to another (Table 2). 

 

Characterization of the aggregation of planktonic cells by electronic scanning microscopy 

Results obtained from scanning electron microscopy showed that all C. albicans strains studied 

here built a layer style organization with extra-cellular material (Figure 1) even if a low 

aggregation score was assessed by optical microscopy. Efficient filamentation in C. albicans 

requires, in vitro, nutriments as fetal calf serum or glucose which were not provided here. Every 

isolates observed remained in a yeast form except the samples of 3 ill patients; L6 J7, L7 J0 and 

L7 J21. 

Regardless of isolated genus, as shown in Figure 2, Streptococcus, Actinomyces, Fusobacterium 

or Neisseria aggregated on their own in a planktonic medium forming layers of adherent 

bacteria. 

The planktonic aggregate formed when C. albicans and bacteria were incubated together 

showed that the bacteria were inserted between the yeast cells of C. albicans and attached to 

the hyphal form when present (Figure 3). Bacteria were clearly adherent to both morphological 

forms of the fungus. 

 

Evaluation of the initial phase of biofilm formation using Biofilm Ring Test® 

In biofilm formation, the first step is the association of planktonic cells with surfaces 

constituting the reversible attachment stage. This step contributes to the irreversible attachment 

stage called “early stage biofilm formation” where adhered cells develop biofilm. At T0, there 

is no adhesion of microorganisms on the surface (BHI > 7). When present, early stage biofilm 

formation (or irreversible attachment stage) appears at T 4h (BFI ≈ 2) and remains stable after 

22 h. Biofilm Ring Test methodology permitted to detect the early state of biofilm formation of 

three C. albicans strains from L6 J7, L7 J0 and L7 J21 samples, isolated from two ill patients, 

in less than 4 hours with BFI value ≈ 2. This adherent community partner, crucial element in 

biofilm formation, remained stable after 22 hours as shown in Figure 4. None of other C. 
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albicans isolates either in control or ill groups (Table 2 and Figure 4), were able to form biofilm 

(BFI value ≥12) even at the end of incubation time (22 hours). 

On studying dominant bacterium and C. albicans pairs, we observed that biofilm formation also 

occurred within 4 hours and lasted at least 22 hours (BFI value ≈2), noticing that dominant 

bacteria, S. oralis (shown in Figure 5), S. gordonii and A. odontolyticus (data not shown) were 

showing biofilm formation capabilities themselves (BFI value ≈2). 

 

Visualization of microbial communities in biofilm by confocal laser scanning microscopy 

(CLSM) 

The experimental conditions used were not favorable for the filamentation of C. albicans. This 

fact was confirmed by the evaluation of the development of the yeast form of C. albicans ATCC 

26555 stained with calcofluor as control. Controls using Streptococcus gordonii DL1 and 

Streptococcus mutans ATCC 25175 stained with Syto®9 formed a biofilm alone within 24 

hours. The three studied couples L6 J7 + Streptococcus oralis, L7 J0 + Streptococcus gordonii 

and L7 J21 + Actinomyces odontolyticus developed an adherent microbial community (Figure 

6).  

 

Amplification and sequencing of Agglutinin-Like Sequences ALS1, ALS3, ALS4 and ALS6 

genes from Candida albicans isolates 

As shown in Table 3, sequence analysis demonstrated a homozygous thymidin-cytosin 

mutation on the 263rd position of ALS4 gene. This mutation concerned the strains of C. albicans 

in sample L6 J7, L7 J0 and L7 J21. C. albicans from T4 J7 and L9 J0 samples displayed the 

same mutation but only in a heterozygous manner. These strains were also homozygous at 

position 122 whereas others were heterozygous. A part of these five heterozygous strains 

regarding to position 77, 156 and 209 of ALS3 gene remained monomorphic for all of the others. 

No genetic variation was observed in ALS1 and ALS6 gene sequences of the 18 isolated strains 

studied. These results attest a greater variability of the previously cited strains. 

 

 

Discussion 

 

The structure of oral microbiota can differ considerably from one age group to another; i.e., 

between toothless infants, preschoolers with milk teeth, children with mixed teeth and 
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adolescents with permanent teeth [44-46]. This study was designed to include a paired-control 

group in order to provide reliable information with no age bar. 

Candida species can be found as commensal microorganisms in the oral cavity in 

approximately 10% to 70% of the total population, increasing with age [47,48]. In children 

however, occurrence of oral Candida carriage is not well known. Colonization in the mouth, 

influenced by lifestyle, [7,49] occurs in the first years of life [50] and may be involved in 

childhood caries [51]. In our work, 40 % of ill and healthy children showed at least one positive 

sample. These observed data fit theoretical distribution when carriage of Candida is 

independent from the healthy status (p Fisher’s exact test > 0.99). Furthermore C. albicans was 

isolated persistently over the course of the study for 2 /8 patients (one in each group).The 

species C. albicans was identified in all our samples. In the most part, this was a consistent 

result given the spread of this species. Westbrook et al [7] noted that colonization by a single 

Candida species is common and the rate of colonization by multiple yeasts is known to be low. 

 

Like other studies [1,44,52], in our case the oral samples were dominated by Streptococcus, 

Actinomyces and Fusobacterium genera. These strains belonging to the oral flora have been 

identified by other studies as common genera in dental plaque using pyrosequensing [6,52-54]. 

The Mitis group streptococci, mainly represented by Streptococcus gordonii, Streptococcus 

oralis, Streptococcus sanguinis, and Streptococcus mitis colonize both teeth and oral mucosal 

surfaces. In accordance with our results, it is the most numerically dominant [1,18,55]. Two 

patients (one ill and one healthy) showed a shift in dominant bacterial strain going from 

Streptococcus to Actinomyces. For the ill patient, this occurred at day 7 supposedly caused by 

the administration of cytostatic drugs. For one child the predominant bacteria was Neisseria 

cinerea; a taxa regarded as one of the most variable of its genera. Neisseria may hereby fill a 

functional role generally carried out by  facultative aerobic Streptococcus bacteria [56]. 

 

In planktonic conditions, the aggregation score for C. albicans, appeared to be low for most of 

the studied fungi isolates. However, five of them showed a good cell auto-aggregation 

(aggregation score ≥ 2). Using Scanning electron microscopy, we observed a layer organization 

embedded in extra cellular material for all strains even under non-permissive condition for 

filament formation. These strains self-aggregate to form the basal community layer from which 

the filaments with a role in the forming of biofilm could be developed (Figure 1). This 

observation corroborated the study of Pereira et al. [57] who found that all Candida strains from 

the oral cavities of patients with denture stomatitis had a high capacity to produce a biofilm. 
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This basal substrate-bound layer of yeast cells is usually described as the first step of 

colonization [58]. 

As shown in Figure 2, studied bacteria are more likely to aggregate using either pili or long 

fibrillar-like structures to promote intercellular binding. This phenomenon occurs in spite of 

growth conditions. 

We have showed here that the C. albicans and dominant bacteria from same patient cultured 

together produced a co-aggregate in planktonic conditions. Analysis of these co-aggregates by 

SEM microscopy revealed the presence of the dense clumps containing both bacteria and 

blastosporic yeast that resembled to a miniature biofilm on solid surfaces as described by Fox 

et al. [59]. Similar observations have been founded by Chassot et al. [60] and Fox et al. [59] by 

revealing this kind of relationship between Candida and either Lactobacillus or Clostridium 

respectively under planktonic conditions. These observations indicate that bacteria strains and 

C. albicans from the same oral cavity do not require a solid surface to initiate the formation of 

a microbial community. This property confirms the different behaviors described between 

clinical isolates and reference strains [5,15]. Three Candida isolated from ill patients; L6 J7, 

L7 J0, and L7 J21 showed spontaneous filament formation. The dominant bacterial strains from 

these couples adhered to the yeast as well as the hyphal forms (Figure 3 C and D). This 

observation supports the thesis that these strains are probably more virulent and present a real 

danger for their immunocompromised carriers [25,26]. They could be 'high invaders' [61] even 

if during this study, either diagnosed subjects undergoing myelosuppressing chemotherapy or 

healthy ones were not affected by any oral infection. 

The SEM analysis has led us to evaluate the biofilm formation capacity of microbial strains 

through the study of the initial adhesion phase onto a polystyrene support by Biofilm Ring Test 

technology [38,62]. Our results showed that 15 pairs /18 were not able to initiate the biofilm 

formation in 24 hours. It can be explained by the use of the brain heart infusion medium that 

allows yeast growth under a blastosporic shape. 

 

The three spontaneous filamentous isolates L6J7, L7J0, L7J21 were adhering to the surface of 

polystyrene support after 4 hours and were maintained until 22 hours, even with a ten-fold 

diluted inoculum. The filamentation ability of strains in non-permissive conditions might 

explain such observation, thus C. albicans is known to constitute biofilm via its filament form 

[16,63-65].  

Nonetheless, dominant bacterial strains; S. oralis, S. gordonii and A. odontolyticus, were able 

to initiate a mono-biofilm and /or duo-biofilm formation with C. albicans after 4 hours. The 
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latter remains stable for at least 22 hours. The early stage of biofilm formation by these couples; 

L6 J7, L7J0 and L7 J21 was visualized using CLSM. This microscopy method has been 

recognized as the most powerful microscopic technique to analyze the biofilm structure [66]. 

Our results showed that each of the two partners was involved in the biofilm construction 

(Figure 6). It suggested that no antagonism effect occurred between the two associated partners 

after 24 hours of co-habitation. This positive interaction has already been described concerning 

S. gordonii and C. albicans with reference strains [4,18]. In a similar way, it was demonstrated 

that C. albicans can attach to surface bound from S. gordonii by protein interactions (Alsp and 

SspA and SspB; antigen I /II family polypeptide) or by direct recognition of salivary proteins 

previously adsorbed by S. gordonii [22,67-69]. Unlike us, Diaz et al. [18] and Xu et al., [4] 

have shown that S. oralis 34 lack the ability to form robust mucosal biofilm [4,18]. In the 

present study S. oralis as C. albicans in L6 J7 couple strain clearly formed a mono and duo-

biofilm (Figure 6). As Cavalcanti et al. [17], we did not observe inhibition of C. albicans by A. 

odontolyticus in any case of dual species biofilms; despite the observation of Guo et al. [70].  

This interesting relationship suggests intergeneric communication that may involve adhesin-

receptor interactions such as bacterial adhesins with hyphal cell wall receptor Als. Als family 

proteins are known to mediate aggregation between bacteria and yeasts as demonstrated by 

Klotz et al. [71]. In our study, sequencing of ALS3 and ALS4 genes unveiled a versatility for 5 

/17 C. albicans isolates from 4 ill patients; L6 J7, L7 J0, L7 J21, L9 J0 and one control T4 J7 

whereas all strains appeared to be homogenous for ALS1 and ALS6 genes. Meanwhile 3 /5 

versatile strains display a spontaneous filamentation without any serum or glucose 

supplementation. This property could be related to the thymidine /cytosine mutation at the 263rd 

position observed in the isolates of C. albicans from couples L6 J7, L7 J0 and L7 J21 strains 

during this study as to another mutation outside the sequenced fragments of ALS genes (Table 

3). Regarding heterozygous mutation (L9 J0 and T4 J7), filaments would be inexistent in non-

permissive conditions. This could corroborate the observations of Garcia et al. [72] that the 

mutation Als5p-V326N decreases significantly the Als5p aggregation capacity. Supposing that 

the corollary must be true: a different mutation might induce an increase of aggregation 

capability hence explaining the behavior discrepancies observed on strains L6 J7, L7 J0 and L7 

J21. 

These results seem to comfort the idea that wild strains can behave differently while belonging 

to the same flora [5]. 

In conclusion, our study focused on the cooperation between the dominant bacterial strain and 

C. albicans from the same oral flora isolated either from ill or healthy children. Considering the 
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two populations, C. albicans was always found in small amounts regardless of any infection 

symptoms. Regarding commensalism, dominant bacterial strains generally belonged to the 

expected genus. In fact, none of the dominant bacteria tested here antagonized the yeast 

presence in microbial community. Instead, the results clearly suggested the cooperation 

between cells. This behavior is seemingly different to the one observed while mixing the type 

strains. In the wild oral flora, C. albicans seems to be helped by endogenous bacteria agreeing 

with the hypothesis of a more “sinister” role for the cocci as accessories to primary pathogens 

in mucosal infections [3,55,73]. On the other hand, 3 mutated C. albicans strains display, by 

their spontaneous ability to form filaments, enhanced risks of virulence for leukemia affected 

carriers. Despite such risks, we have observed neither oral nor systemic pathology in the ill 

patients studied. It could be suggested that immunosuppression resulting from the first 

antineoplastic cure may not be severe enough. Indeed, oral colonization of Candida sp. is 

directly related to number of chemotherapy cycles [74].  
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Figure captions 

 

 

 

Figure 1. Scanning electron micrographs of the clinical strains of Candida albicans 

showing layer style organization in planktonic conditions with extra-cellular material sediment 

(white arrows). A: strain from the control group, B and C: strains from the leukemia group, D: 

strain from L6 leukemia patient at day 7 with spontaneous pseudohyphae formation under 

unfavorable conditions. Bars in all images, 1µm. 
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Figure 2. Scanning electron micrographs of bacterial strains. A: Streptococcus sanguinis, 

B: Actinomyces viscosus, C: Streptococcus gordinii bacteria alone aggregated in a planktonic 

medium by forming layers. A and B were isolated from leukemia group, C was isolated from 

control group. Bars in all images, 1µm. 
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Figure 3. Scanning electron micrographs of dual-species planktonic aggregate of Candida 

albicans and dominant bacteria from the same oral flora. A: with Streptococcus sanguinis and 

B: with Fusobacterium nucleatum from two different patients from the control group. Bacteria 

are inserted between the C. albicans cells. C and D: L7 leukemia patient with spontaneous 

Candida pseudohyphae formation at day 0 (C) and day 21 (D). Note that whatever is the 

dominant strain: Streptococcus gordonii (Day 0) or Actinomyces odontolyticus (Day 21) 

bacteria are clearly adherent to both morphological forms of the fungus. E: Control strains: C. 

albicans ATCC 26555 and Streptococcus mutans ATCC 25175. Bars in all images, 1µm. 
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Figure 4. Biofilm formation by C. albicans strains 

Numerically evaluated biofilm using the “biofilm formation indice” (BFI). Low BFI (≈2) 

reflects full immobilization of beads and formation of a biofilm observed for patients L6 at 

day 7 (see below) and L7 day 0 and 21. Other C. albicans isolates remain blastosporic and do 

not form biofilm. Asterisks (*) indicate significant differences between these 3 isolates and 

other C. albicans (p<0.05). 
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Figure 5. Biofilm formation by C. albicans from patient L6 at day 7 

A central point indicates the absence of biofilm formation. For this variable strain, C. 

albicans and dominant bacteria S. oralis, were showing biofilm formation capabilities by 

themselves and together. 
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Figure 6. Confocal laser scanning microscopy of dual-species biofilms formed on salivary 

pellicle after 24 h at 37°C. C. albicans was stained with Calcofluor® white (shown in red), 

bacteria were stained with Syto® 9 (shown in green). A, B and C are respectively strains from 

patient L6J7 (C. albicans and S. oralis), patient L7J0 (C. albicans and S. gordonii) and patient 

L7J21 (C. albicans and A. odontolyticus). D: control strains C. albicans ATCC 26555 and S. 

gordonii DL1.  
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Table 1. PCR primers for analysis of ALS genes 

 

Gene Primer 

name 

Sequence (5’→ 3’) PCR product 

size (bp) 

ALS1 ALS1F GAC TAG TGA ACC AAC AAA TAC CAG A 318 

ALS1R CCA GAA GAA ACA GCA GGT GA 

ALS3 ALS3F CCA CTT CAC AAT CCC CAT C 342 

ALS3R CAG CAG TAG TAG TAA CAG TAG TAG TTT CAT C 

ALS4 ALS4F CCC AGT CTT TCA CAA GCA GTA AAT 356 

ALS4R GTA AAT GAG TCA TCA ACA GAA GCC 

ALS6 ALS6F GAC TCC ACA ATC ATC TAG TAG CTT GGT TT 152 

ALS6R CAA TTG TCA CAT CAT CTT TTG TTG C 

F, forward; R, reverse 
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Table 2. Oral Candida albicans carriage, associated dominant bacteria, planktonic aggregation 

and Biofilm ring test from immunocompromised and control group patients. 

 

Immunocompromised patients Planktonic aggregation score Biofilm formation 
(BRT) Candida 
albicans alone 

Candida 
albicans 
carriage 
sample 

Associated dominant 
bacteria 

Bacteria 
alone 

Candida 
albicans 

alone 

Bacteria +  
Candida 
albicans 

 
4 hours 

 
22 hours 

L1 J0 Streptococcus sanguinis 2 1 3 -  - 

L1 J7 1 Streptococcus sanguinis 2 1 3 - - 

L1 J7 2 Actinomyces viscosus 1 1 1 - - 

L1 J14 Actinomyces viscosus 2 0 1 - - 

L1 J21 Actinomyces viscosus 2 0 2 - - 

L6 J7 Streptococcus oralis 3 2 2 +  +  

L7 J0 Streptococcus gordonii 3 3 2 +  +  

L7 J21 Actinomyces odontolyticus 1 3 2 + + 

L9 J0 Streptococcus oralis 3 1 1 - - 
 

 

Control group patients Planktonic aggregation score Biofilm formation 
(BRT) Candida 
albicans alone 

Candida 
albicans 
carriage 
sample 

Associated dominant 
bacteria 

Bacteria 
alone 

Candida 
albicans 

alone 

Bacteria +  
Candida 
albicans 

 
4 hours 

 
22 hours 

T1 J7 Streptococcus mitis 3 0 1 - -  

T3 J21 Streptococcus oralis 1 0 2 - - 

T4 J7 Streptococcus salivarius 3 2 3 - - 

T4 J14 Streptococcus oralis 2 2 2 - - 

T4 J21 Streptococcus sanguinis 3 1 3 - - 

T5 J0 Fusobacterium nucleatum 3 1 3 - - 

T5 J7 Neisseria cinerea 3 1 3 - - 

T5 J14 Actinomyces naeslundi 3 1 3 - - 

T5 J21 Streptococcus oralis 2 0 1 - - 
Candida 
albicans 
ATCC2655 

Streptococcus mutans  
ATCC 25175 

3 1 3 - - 

L: leukemic ill patients; T: control group 

BRT: Biofilm Ring Test 
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Table 3.  DNA sequences from ALS3  and ALS4  genes of Candida  albicans  strains 

isolated from immunocompromised and control group patients  

ALS3  
Sample            Position  
 
5’  1     77      156         209     316 
__________________________________________________________________________ 
T1 J7    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T3 J21    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T4 J7    GGT TKC ATT  CAC ATK AGT  AAA TWC AAC 
T4 J14    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T4 J21    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T5 J0    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T5 J7    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T5 J14    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
T5 J21    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
L1 J0    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
L1 J7    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
L1 J14    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
L1 J21    GGT TTC ATT  CAC ATT AGT  AAA TAC AAC 
L6 J7    GGT TKC ATT  CAC ATK AGT  AAA TWC AAC 
L7 J0    GGT TKC ATT  CAC ATK AGT  AAA TWC AAC 
L7 J21   GGT TKC ATT  CAC ATK AGT  AAA TWC AAC 
L9 J0    GGT TKC ATT  CAC ATK AGT  AAA TWC AAC  

 

ALS4  
Sample            Position  
 
5’  1     122          263    330 
 
T1 J7     GAT AWG TTA       CAG TTG AAA 
T3 J21     GAT AWG TTA       CAG TTG AAA 
T4 J7     GAT AAG TTA       CAG TMG AAA 
T4 J14     GAT AWG TTA       CAG TTG AAA 
T4 J21     GAT AWG TTA       CAG TTG AAA 
T5 J0     GAT AWG TTA       CAG TTG AAA 
T5 J7     GAT AWG TTA       CAG TTG AAA 
T5 J14     GAT AWG TTA       CAG TTG AAA 
T5 J21     GAT AWG TTA       CAG TTG AAA 
L1 J0     GAT AWG TTA       CAG TTG AAA 
L1 J7     GAT AWG TTA       CAG TTG AAA 
L1 J14     GAT AWG TTA       CAG TTG AAA 
L1J 21     GAT AWG TTA       CAG TTG AAA 
L6 J7     GAT AAG TTA       CAG TCG AAA 
L7 J0     GAT AAG TTA       CAG TCG AAA 
L7 J21    GAT AAG TTA       CAG TCG AAA 
L9 J0     GAT AAG TTA       CAG TMG AAA 
K = G or T, M = A or C, W = A or T 
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